/* * The rabin polynomial computation is derived from: * http://code.google.com/p/rabin-fingerprint-c/ * * originally created by Joel Lawrence Tucci on 09-March-2011. * * Rabin polynomial portions Copyright (c) 2011 Joel Lawrence Tucci * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the project's author nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /* * This file is a part of Pcompress, a chunked parallel multi- * algorithm lossless compression and decompression program. * * Copyright (C) 2012-2013 Moinak Ghosh. All rights reserved. * Use is subject to license terms. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program. * If not, see . * * moinakg@belenix.org, http://moinakg.wordpress.com/ * */ #ifndef __STDC_FORMAT_MACROS #define __STDC_FORMAT_MACROS 1 #endif #include #include #include #include #include #include #include #include #include #include #include #include "rabin_dedup.h" #if defined(__USE_SSE_INTRIN__) && defined(__SSE4_1__) && RAB_POLYNOMIAL_WIN_SIZE == 16 # include # define SSE_MODE 1 #endif #if defined(__USE_SSE_INTRIN__) && !defined(__SSE4_1__) # include #endif #if defined(_OPENMP) #include #endif #define DELTA_EXTRA2_PCT(x) ((x) >> 1) #define DELTA_EXTRA_PCT(x) (((x) >> 1) + ((x) >> 3)) #define DELTA_NORMAL_PCT(x) (((x) >> 1) + ((x) >> 2) + ((x) >> 3)) extern int lzma_init(void **data, int *level, int nthreads, int64_t chunksize, int file_version, compress_op_t op); extern int lzma_compress(void *src, uint64_t srclen, void *dst, uint64_t *destlen, int level, uchar_t chdr, void *data); extern int lzma_decompress(void *src, uint64_t srclen, void *dst, uint64_t *dstlen, int level, uchar_t chdr, void *data); extern int lzma_deinit(void **data); extern int bsdiff(u_char *oldbuf, bsize_t oldsize, u_char *newbuf, bsize_t newsize, u_char *diff, u_char *scratch, bsize_t scratchsize); extern bsize_t get_bsdiff_sz(u_char *pbuf); extern int bspatch(u_char *pbuf, u_char *oldbuf, bsize_t oldsize, u_char *newbuf, bsize_t *_newsize); static pthread_mutex_t init_lock = PTHREAD_MUTEX_INITIALIZER; uint64_t ir[256], out[256]; static int inited = 0; archive_config_t *arc = NULL; static uint32_t dedupe_min_blksz(int rab_blk_sz) { uint32_t min_blk; min_blk = (1 << (rab_blk_sz + RAB_BLK_MIN_BITS)) - 1024; return (min_blk); } uint32_t dedupe_buf_extra(uint64_t chunksize, int rab_blk_sz, const char *algo, int delta_flag) { if (rab_blk_sz < 1 || rab_blk_sz > 5) rab_blk_sz = RAB_BLK_DEFAULT; return ((chunksize / dedupe_min_blksz(rab_blk_sz)) * sizeof (uint32_t)); } /* * Helper function to let caller size the the user specific compression chunk/segment * to align with deduplication requirements. */ int global_dedupe_bufadjust(uint32_t rab_blk_sz, uint64_t *user_chunk_sz, int pct_interval, const char *algo, cksum_t ck, cksum_t ck_sim, size_t file_sz, size_t memlimit, int nthreads, int pipe_mode) { uint64_t memreqd; archive_config_t cfg; int rv, pct_i, hash_entry_size; uint32_t hash_slots; rv = 0; pct_i = pct_interval; if (pipe_mode && pct_i == 0) pct_i = DEFAULT_PCT_INTERVAL; rv = setup_db_config_s(&cfg, rab_blk_sz, user_chunk_sz, &pct_i, algo, ck, ck_sim, file_sz, &hash_slots, &hash_entry_size, &memreqd, memlimit, "/tmp"); return (rv); } /* * Initialize the algorithm with the default params. */ dedupe_context_t * create_dedupe_context(uint64_t chunksize, uint64_t real_chunksize, int rab_blk_sz, const char *algo, const algo_props_t *props, int delta_flag, int dedupe_flag, int file_version, compress_op_t op, uint64_t file_size, char *tmppath, int pipe_mode, int nthreads) { dedupe_context_t *ctx; uint32_t i; if (rab_blk_sz < 1 || rab_blk_sz > 5) rab_blk_sz = RAB_BLK_DEFAULT; if (dedupe_flag == RABIN_DEDUPE_FIXED || dedupe_flag == RABIN_DEDUPE_FILE_GLOBAL) { delta_flag = 0; if (dedupe_flag != RABIN_DEDUPE_FILE_GLOBAL) inited = 1; } /* * Pre-compute a table of irreducible polynomial evaluations for each * possible byte value. */ pthread_mutex_lock(&init_lock); if (!inited) { int term, pow, j; uint64_t val, poly_pow; poly_pow = 1; for (j = 0; j < RAB_POLYNOMIAL_WIN_SIZE; j++) { poly_pow = (poly_pow * RAB_POLYNOMIAL_CONST) & POLY_MASK; } for (j = 0; j < 256; j++) { term = 1; pow = 1; val = 1; out[j] = (j * poly_pow) & POLY_MASK; for (i=0; i 0) { my_sysinfo msys_info; int pct_interval, chunk_cksum, cksum_bytes, mac_bytes; char *ck; /* * Get amount of memory to use. The freeram got here is adjusted amount. */ get_sys_limits(&msys_info); pct_interval = 0; if (pipe_mode) pct_interval = DEFAULT_PCT_INTERVAL; chunk_cksum = 0; if ((ck = getenv("PCOMPRESS_CHUNK_HASH_GLOBAL")) != NULL) { if (get_checksum_props(ck, &chunk_cksum, &cksum_bytes, &mac_bytes, 1) != 0 || strcmp(ck, "CRC64") == 0) { fprintf(stderr, "Invalid PCOMPRESS_CHUNK_HASH_GLOBAL.\n"); chunk_cksum = -1; pthread_mutex_unlock(&init_lock); return (NULL); } } if (chunk_cksum == 0) { chunk_cksum = DEFAULT_CHUNK_CKSUM; if (get_checksum_props(NULL, &chunk_cksum, &cksum_bytes, &mac_bytes, 0) != 0) { fprintf(stderr, "Invalid default chunk checksum: %d\n", DEFAULT_CHUNK_CKSUM); return (NULL); } } arc = init_global_db_s(NULL, tmppath, rab_blk_sz, chunksize, pct_interval, algo, chunk_cksum, GLOBAL_SIM_CKSUM, file_size, msys_info.freeram, nthreads); if (arc == NULL) { pthread_mutex_unlock(&init_lock); return (NULL); } } inited = 1; } pthread_mutex_unlock(&init_lock); /* * Rabin window size must be power of 2 for optimization. */ if (!ISP2(RAB_POLYNOMIAL_WIN_SIZE)) { fprintf(stderr, "Rabin window size must be a power of 2 in range 4 <= x <= 64\n"); return (NULL); } if (chunksize < RAB_MIN_CHUNK_SIZE) { fprintf(stderr, "Minimum chunk size for Dedup must be %" PRIu64 " bytes\n", RAB_MIN_CHUNK_SIZE); return (NULL); } /* * For LZMA with chunksize <= LZMA Window size and/or Delta enabled we * use 4K minimum Rabin block size. For everything else it is 2K based * on experimentation. */ ctx = (dedupe_context_t *)slab_alloc(NULL, sizeof (dedupe_context_t)); ctx->rabin_poly_max_block_size = RAB_POLYNOMIAL_MAX_BLOCK_SIZE; ctx->arc = arc; ctx->current_window_data = NULL; ctx->dedupe_flag = dedupe_flag; ctx->rabin_break_patt = 0; ctx->rabin_poly_avg_block_size = RAB_BLK_AVG_SZ(rab_blk_sz); ctx->rabin_avg_block_mask = RAB_BLK_MASK; ctx->rabin_poly_min_block_size = dedupe_min_blksz(rab_blk_sz); ctx->delta_flag = 0; ctx->deltac_min_distance = props->deltac_min_distance; ctx->pagesize = sysconf(_SC_PAGE_SIZE); ctx->similarity_cksums = NULL; if (arc) arc->pagesize = ctx->pagesize; /* * Scale down similarity percentage based on avg block size unless user specified * argument '-EE' in which case fixed 40% match is used for Delta compression. */ if (delta_flag == DELTA_NORMAL) { if (ctx->rabin_poly_avg_block_size < (1 << 14)) { ctx->delta_flag = 1; } else if (ctx->rabin_poly_avg_block_size < (1 << 16)) { ctx->delta_flag = 2; } else { ctx->delta_flag = 3; } } else if (delta_flag == DELTA_EXTRA) { ctx->delta_flag = 2; } if (dedupe_flag != RABIN_DEDUPE_FIXED) ctx->blknum = chunksize / ctx->rabin_poly_min_block_size; else ctx->blknum = chunksize / ctx->rabin_poly_avg_block_size; if (chunksize % ctx->rabin_poly_min_block_size) ++(ctx->blknum); if (ctx->blknum > RABIN_MAX_BLOCKS) { fprintf(stderr, "Chunk size too large for dedup.\n"); destroy_dedupe_context(ctx); return (NULL); } #ifndef SSE_MODE ctx->current_window_data = (uchar_t *)slab_alloc(NULL, RAB_POLYNOMIAL_WIN_SIZE); #else ctx->current_window_data = (uchar_t *)1; #endif ctx->blocks = NULL; if (real_chunksize > 0 && dedupe_flag != RABIN_DEDUPE_FILE_GLOBAL) { ctx->blocks = (rabin_blockentry_t **)slab_calloc(NULL, ctx->blknum, sizeof (rabin_blockentry_t *)); } if(ctx == NULL || ctx->current_window_data == NULL || (ctx->blocks == NULL && real_chunksize > 0 && dedupe_flag != RABIN_DEDUPE_FILE_GLOBAL)) { fprintf(stderr, "Could not allocate rabin polynomial context, out of memory\n"); destroy_dedupe_context(ctx); return (NULL); } if (arc && dedupe_flag == RABIN_DEDUPE_FILE_GLOBAL) { ctx->similarity_cksums = (uchar_t *)slab_calloc(NULL, arc->sub_intervals, arc->similarity_cksum_sz); if (!ctx->similarity_cksums) { fprintf(stderr, "Could not allocate dedupe context, out of memory\n"); destroy_dedupe_context(ctx); return (NULL); } } ctx->lzma_data = NULL; ctx->level = 14; if (real_chunksize > 0) { lzma_init(&(ctx->lzma_data), &(ctx->level), 1, chunksize, file_version, op); // The lzma_data member is not needed during decompression if (!(ctx->lzma_data) && op == COMPRESS) { fprintf(stderr, "Could not initialize LZMA data for dedupe index, out of memory\n"); destroy_dedupe_context(ctx); return (NULL); } } slab_cache_add(sizeof (rabin_blockentry_t)); ctx->real_chunksize = real_chunksize; reset_dedupe_context(ctx); return (ctx); } void reset_dedupe_context(dedupe_context_t *ctx) { #ifndef SSE_MODE memset(ctx->current_window_data, 0, RAB_POLYNOMIAL_WIN_SIZE); #endif ctx->valid = 0; } void destroy_dedupe_context(dedupe_context_t *ctx) { if (ctx) { uint32_t i; #ifndef SSE_MODE if (ctx->current_window_data) slab_free(NULL, ctx->current_window_data); #endif pthread_mutex_lock(&init_lock); if (arc) { destroy_global_db_s(arc); } arc = NULL; pthread_mutex_unlock(&init_lock); if (ctx->blocks) { for (i=0; iblknum && ctx->blocks[i] != NULL; i++) { slab_free(NULL, ctx->blocks[i]); } slab_free(NULL, ctx->blocks); } if (ctx->similarity_cksums) slab_free(NULL, ctx->similarity_cksums); if (ctx->lzma_data) lzma_deinit(&(ctx->lzma_data)); slab_free(NULL, ctx); } } /* * Simple insertion sort of integers. Used for sorting a small number of items to * avoid overheads of qsort() with callback function. */ static void isort_uint64(uint64_t *ary, uint32_t nitems) { uint32_t i, j, k; uint64_t tmp; for (i = 1 ; i < nitems; i++) { for (j = 0 ; j < i ; j++) { if (ary[j] > ary[i]) { tmp = ary[j] ; ary[j] = ary[i] ; for (k = i ; k > j ; k--) ary[k] = ary[k - 1] ; ary[k + 1] = tmp ; } } } } /* * Sort an array of 64-bit unsigned integers. The QSORT macro provides an * inline quicksort routine that does not use a callback function. */ #define int_lt(a,b) ((*a)<(*b)) static void do_qsort(uint64_t *arr, uint32_t len) { QSORT(uint64_t, arr, len, int_lt); } static inline int ckcmp(uchar_t *a, uchar_t *b, int sz) { size_t *v1 = (size_t *)a; size_t *v2 = (size_t *)b; int len; len = 0; do { if (*v1 != *v2) { return (1); } ++v1; ++v2; len += sizeof (size_t); } while (len < sz); return (0); } /** * Perform Deduplication. * Both Semi-Rabin fingerprinting based and Fixed Block Deduplication are supported. * A 16-byte window is used for the rolling checksum and dedup blocks can vary in size * from 4K-128K. */ uint32_t dedupe_compress(dedupe_context_t *ctx, uchar_t *buf, uint64_t *size, uint64_t offset, uint64_t *rabin_pos, int mt) { uint64_t i, last_offset, j, ary_sz; uint32_t blknum, window_pos; uchar_t *buf1 = (uchar_t *)buf; uint32_t length; uint64_t cur_roll_checksum, cur_pos_checksum; uint32_t *ctx_heap; rabin_blockentry_t **htab; MinHeap heap; DEBUG_STAT_EN(uint32_t max_count); DEBUG_STAT_EN(max_count = 0); DEBUG_STAT_EN(double strt, en_1, en); length = offset; last_offset = 0; blknum = 0; window_pos = 0; ctx->valid = 0; cur_roll_checksum = 0; if (*size < ctx->rabin_poly_avg_block_size) return (0); DEBUG_STAT_EN(strt = get_wtime_millis()); if (ctx->dedupe_flag == RABIN_DEDUPE_FIXED) { blknum = *size / ctx->rabin_poly_avg_block_size; j = *size % ctx->rabin_poly_avg_block_size; if (j) ++blknum; else j = ctx->rabin_poly_avg_block_size; last_offset = 0; length = ctx->rabin_poly_avg_block_size; for (i=0; iblocks[i] == 0) { ctx->blocks[i] = (rabin_blockentry_t *)slab_alloc(NULL, sizeof (rabin_blockentry_t)); } ctx->blocks[i]->offset = last_offset; ctx->blocks[i]->index = i; // Need to store for sorting ctx->blocks[i]->length = length; ctx->blocks[i]->similar = 0; ctx->blocks[i]->hash = XXH32(buf1+last_offset, length, 0); ctx->blocks[i]->similarity_hash = ctx->blocks[i]->hash; last_offset += length; } goto process_blocks; } if (rabin_pos == NULL) { /* * If global dedupe is active, the global blocks array uses temp space in * the target buffer. */ ary_sz = 0; if (ctx->arc != NULL) { ary_sz = (sizeof (global_blockentry_t) * (*size / ctx->rabin_poly_min_block_size + 1)); ctx->g_blocks = (global_blockentry_t *)(ctx->cbuf + ctx->real_chunksize - ary_sz); } /* * Initialize arrays for sketch computation. We re-use memory allocated * for the compressed chunk temporarily. */ ary_sz += ctx->rabin_poly_max_block_size; ctx_heap = (uint32_t *)(ctx->cbuf + ctx->real_chunksize - ary_sz); } #ifndef SSE_MODE memset(ctx->current_window_data, 0, RAB_POLYNOMIAL_WIN_SIZE); #else __m128i cur_sse_byte = _mm_setzero_si128(); __m128i window = _mm_setzero_si128(); #endif j = *size - RAB_POLYNOMIAL_WIN_SIZE; /* * If rabin_pos is non-zero then we are being asked to scan for the last rabin boundary * in the chunk. We start scanning at chunk end - max rabin block size. We avoid doing * a full chunk scan. * * !!!NOTE!!!: Code duplication below for performance. */ if (rabin_pos) { offset = *size - ctx->rabin_poly_max_block_size; length = 0; for (i=offset; i>= 24; asm ("movd %[cur_byte], %[cur_sse_byte]" : [cur_sse_byte] "=x" (cur_sse_byte) : [cur_byte] "r" (cur_byte) ); window = _mm_slli_si128(window, 1); window = _mm_or_si128(window, cur_sse_byte); #else uint32_t pushed_out = ctx->current_window_data[window_pos]; ctx->current_window_data[window_pos] = cur_byte; #endif cur_roll_checksum = (cur_roll_checksum * RAB_POLYNOMIAL_CONST) & POLY_MASK; cur_roll_checksum += cur_byte; cur_roll_checksum -= out[pushed_out]; #ifndef SSE_MODE window_pos = (window_pos + 1) & (RAB_POLYNOMIAL_WIN_SIZE-1); #endif ++length; if (length < ctx->rabin_poly_min_block_size) continue; // If we hit our special value update block offset cur_pos_checksum = cur_roll_checksum ^ ir[pushed_out]; if ((cur_pos_checksum & ctx->rabin_avg_block_mask) == ctx->rabin_break_patt) { last_offset = i; length = 0; } } if (last_offset < *size) { *rabin_pos = last_offset; } return (0); } /* * Start our sliding window at a fixed number of bytes before the min window size. * It is pointless to slide the window over the whole length of the chunk. */ offset = ctx->rabin_poly_min_block_size - RAB_WINDOW_SLIDE_OFFSET; length = offset; for (i=offset; i>= 24; /* * No intrinsic available for this. */ asm ("movd %[cur_byte], %[cur_sse_byte]" : [cur_sse_byte] "=x" (cur_sse_byte) : [cur_byte] "r" (cur_byte) ); window = _mm_slli_si128(window, 1); window = _mm_or_si128(window, cur_sse_byte); #else uint32_t pushed_out = ctx->current_window_data[window_pos]; ctx->current_window_data[window_pos] = cur_byte; #endif cur_roll_checksum = (cur_roll_checksum * RAB_POLYNOMIAL_CONST) & POLY_MASK; cur_roll_checksum += cur_byte; cur_roll_checksum -= out[pushed_out]; #ifndef SSE_MODE /* * Window pos has to rotate from 0 .. RAB_POLYNOMIAL_WIN_SIZE-1 * We avoid a branch here by masking. This requires RAB_POLYNOMIAL_WIN_SIZE * to be power of 2 */ window_pos = (window_pos + 1) & (RAB_POLYNOMIAL_WIN_SIZE-1); #endif ++length; if (length < ctx->rabin_poly_min_block_size) continue; // If we hit our special value or reached the max block size update block offset cur_pos_checksum = cur_roll_checksum ^ ir[pushed_out]; if ((cur_pos_checksum & ctx->rabin_avg_block_mask) == ctx->rabin_break_patt || length >= ctx->rabin_poly_max_block_size) { if (!(ctx->arc)) { if (ctx->blocks[blknum] == 0) ctx->blocks[blknum] = (rabin_blockentry_t *)slab_alloc(NULL, sizeof (rabin_blockentry_t)); ctx->blocks[blknum]->offset = last_offset; ctx->blocks[blknum]->index = blknum; // Need to store for sorting ctx->blocks[blknum]->length = length; } else { ctx->g_blocks[blknum].length = length; ctx->g_blocks[blknum].offset = last_offset; } DEBUG_STAT_EN(if (length >= ctx->rabin_poly_max_block_size) ++max_count); /* * Reset the heap structure and find the K min values if Delta Compression * is enabled. We use a min heap mechanism taken from the heap based priority * queue implementation in Python. * Here K = similarity extent = 87% or 62% or 50%. * * Once block contents are arranged in a min heap we compute the K min values * sketch by hashing over the heap till K%. We interpret the raw bytes as a * sequence of 64-bit integers. * This is variant of minhashing which is used widely, for example in various * search engines to detect similar documents. */ if (ctx->delta_flag) { length /= 8; pc[1] = DELTA_NORMAL_PCT(length); pc[2] = DELTA_EXTRA_PCT(length); pc[3] = DELTA_EXTRA2_PCT(length); heap_nsmallest(&heap, (int64_t *)(buf1+last_offset), (int64_t *)ctx_heap, pc[ctx->delta_flag], length); ctx->blocks[blknum]->similarity_hash = XXH32((const uchar_t *)ctx_heap, heap_size(&heap)*8, 0); } ++blknum; last_offset = i+1; length = 0; if (*size - last_offset <= ctx->rabin_poly_min_block_size) break; length = ctx->rabin_poly_min_block_size - RAB_WINDOW_SLIDE_OFFSET; i = i + length; } } // Insert the last left-over trailing bytes, if any, into a block. if (last_offset < *size) { length = *size - last_offset; if (!(ctx->arc)) { if (ctx->blocks[blknum] == 0) ctx->blocks[blknum] = (rabin_blockentry_t *)slab_alloc(NULL, sizeof (rabin_blockentry_t)); ctx->blocks[blknum]->offset = last_offset; ctx->blocks[blknum]->index = blknum; ctx->blocks[blknum]->length = length; } else { ctx->g_blocks[blknum].length = length; ctx->g_blocks[blknum].offset = last_offset; } if (ctx->delta_flag) { uint64_t cur_sketch; uint64_t pc[4]; if (length > ctx->rabin_poly_min_block_size) { length /= 8; pc[1] = DELTA_NORMAL_PCT(length); pc[2] = DELTA_EXTRA_PCT(length); pc[3] = DELTA_EXTRA2_PCT(length); heap_nsmallest(&heap, (int64_t *)(buf1+last_offset), (int64_t *)ctx_heap, pc[ctx->delta_flag], length); cur_sketch = XXH32((const uchar_t *)ctx_heap, heap_size(&heap)*8, 0); } else { cur_sketch = XXH32((const uchar_t *)(buf1+last_offset), length, 0); } ctx->blocks[blknum]->similarity_hash = cur_sketch; } ++blknum; last_offset = *size; } process_blocks: // If we found at least a few chunks, perform dedup. DEBUG_STAT_EN(en_1 = get_wtime_millis()); DEBUG_STAT_EN(fprintf(stderr, "Original size: %" PRId64 ", blknum: %u\n", *size, blknum)); DEBUG_STAT_EN(fprintf(stderr, "Number of maxlen blocks: %u\n", max_count)); if (blknum <=2 && ctx->arc) { sem_wait(ctx->index_sem); sem_post(ctx->index_sem_next); } if (blknum > 2) { uint64_t pos, matchlen, pos1 = 0; int valid = 1; uint32_t *dedupe_index; uint64_t dedupe_index_sz = 0; rabin_blockentry_t *be; DEBUG_STAT_EN(uint32_t delta_calls, delta_fails, merge_count, hash_collisions); DEBUG_STAT_EN(double w1 = 0); DEBUG_STAT_EN(double w2 = 0); DEBUG_STAT_EN(delta_calls = 0); DEBUG_STAT_EN(delta_fails = 0); DEBUG_STAT_EN(hash_collisions = 0); /* * If global dedupe is enabled then process it here. */ if (ctx->arc) { uchar_t *g_dedupe_idx, *tgt, *src; /* * First compute all the rabin chunk/block cryptographic hashes. */ #if defined(_OPENMP) # pragma omp parallel for #endif for (i=0; ig_blocks[i].cksum, ctx->arc->chunk_cksum_type, buf1+ctx->g_blocks[i].offset, ctx->g_blocks[i].length, 0, 0); } /* * Index table within this segment. */ g_dedupe_idx = ctx->cbuf + RABIN_HDR_SIZE; dedupe_index_sz = 0; /* * First entry in table is the original file offset where this * data segment begins. */ *((uint64_t *)g_dedupe_idx) = LE64(ctx->file_offset); g_dedupe_idx += (RABIN_ENTRY_SIZE * 2); dedupe_index_sz += 2; matchlen = 0; if (ctx->arc->dedupe_mode == MODE_SIMPLE) { /*====================================================================== * This code block implements Global Dedupe with simple in-memory index. *====================================================================== */ /* * Now lookup blocks in index. First wait for our semaphore to be * signaled. If the previous thread in sequence is using the index * it will finish and then signal our semaphore. So we can have * predictable serialization of index access in a sequence of * threads without locking. */ length = 0; DEBUG_STAT_EN(w1 = get_wtime_millis()); sem_wait(ctx->index_sem); DEBUG_STAT_EN(w2 = get_wtime_millis()); for (i=0; iarc, ctx->g_blocks[i].cksum, 0, ctx->file_offset + ctx->g_blocks[i].offset, ctx->g_blocks[i].length, 1); if (!he) { /* * Block match in index not found. * Block was added to index. Merge this block. */ if (length + ctx->g_blocks[i].length > RABIN_MAX_BLOCK_SIZE) { *((uint32_t *)g_dedupe_idx) = LE32(length); g_dedupe_idx += RABIN_ENTRY_SIZE; length = 0; dedupe_index_sz++; } length += ctx->g_blocks[i].length; } else { /* * Block match in index was found. */ if (length > 0) { /* * Write pending accumulated block length value. */ *((uint32_t *)g_dedupe_idx) = LE32(length); g_dedupe_idx += RABIN_ENTRY_SIZE; length = 0; dedupe_index_sz++; } /* * Add a reference entry to the dedupe array. */ *((uint32_t *)g_dedupe_idx) = LE32((he->item_size | RABIN_INDEX_FLAG) & CLEAR_SIMILARITY_FLAG); g_dedupe_idx += RABIN_ENTRY_SIZE; *((uint64_t *)g_dedupe_idx) = LE64(he->item_offset); g_dedupe_idx += (RABIN_ENTRY_SIZE * 2); matchlen += he->item_size; dedupe_index_sz += 3; } } /* * Signal the next thread in sequence to access the index. */ sem_post(ctx->index_sem_next); /* * Write final pending block length value (if any). */ if (length > 0) { *((uint32_t *)g_dedupe_idx) = LE32(length); g_dedupe_idx += RABIN_ENTRY_SIZE; length = 0; dedupe_index_sz++; } blknum = dedupe_index_sz; // Number of entries in block list tgt = g_dedupe_idx; g_dedupe_idx = ctx->cbuf + RABIN_HDR_SIZE; dedupe_index_sz = tgt - g_dedupe_idx; src = buf1; g_dedupe_idx += (RABIN_ENTRY_SIZE * 2); } else { uchar_t *seg_heap, *sim_ck, *sim_offsets; archive_config_t *cfg; uint32_t len, blks, o_blks, k; global_blockentry_t *seg_blocks; uint64_t seg_offset, offset; global_blockentry_t **htab, *be; int sub_i; /*====================================================================== * This code block implements Segmented similarity based Dedupe with * in-memory index for very large datasets. * ====================================================================== */ cfg = ctx->arc; assert(cfg->similarity_cksum_sz == sizeof (uint64_t)); seg_heap = (uchar_t *)(ctx->g_blocks) - cfg->segment_sz * cfg->chunk_cksum_sz; ary_sz = (cfg->sub_intervals * cfg->similarity_cksum_sz + sizeof (blks) + 1) * (blknum / cfg->segment_sz + 1) + 3; sim_offsets = seg_heap - ary_sz; src = sim_offsets; ary_sz = cfg->segment_sz * sizeof (global_blockentry_t **); htab = (global_blockentry_t **)(src - ary_sz); for (i=0; isegment_sz; if (blks > blknum-i) blks = blknum-i; length = 0; tgt = seg_heap; #ifdef __USE_SSE_INTRIN__ if ((cfg->chunk_cksum_sz & 15) == 0) { for (j=0; jchunk_cksum_sz; sc = ctx->g_blocks[j+i].cksum; /* * Use SSE2 to copy 16 bytes at a time avoiding a call * to memcpy() since hash sizes are typically multiple * of 16 bytes: 256-bit or 512-bit. */ while (k > 0) { s = _mm_loadu_si128((__m128i *)sc); _mm_storeu_si128((__m128i *)tgt, s); tgt += 16; sc += 16; k -= 16; } length += cfg->chunk_cksum_sz; } } else { #else { #endif for (j=0; jg_blocks[j+i].cksum, cfg->chunk_cksum_sz); length += cfg->chunk_cksum_sz; tgt += cfg->chunk_cksum_sz; } } *((uint32_t *)src) = blks; src += sizeof (blks); blks = j+i; /* * Assume the concatenated chunk hash buffer as an array of 64-bit * integers and sort them in ascending order. */ do_qsort((uint64_t *)seg_heap, length/8); /* * Compute the K min values sketch where K == 20 in this case. */ sim_ck = ctx->similarity_cksums; tgt = seg_heap; sub_i = 0; *((uint64_t *)sim_ck) = 0; a = 0; for (j = 0; j < length && sub_i < cfg->sub_intervals;) { b = *((uint64_t *)tgt); tgt += sizeof (uint64_t); if (b != a) { *((uint64_t *)sim_ck) = b; sim_ck += sizeof (uint64_t); a = b; sub_i++; } } /* * Begin shared index access and write segment metadata to cache * first. */ if (i == 0) { DEBUG_STAT_EN(w1 = get_wtime_millis()); sem_wait(ctx->index_sem); DEBUG_STAT_EN(w2 = get_wtime_millis()); } seg_offset = db_segcache_pos(cfg, ctx->id); len = (blks-i) * sizeof (global_blockentry_t); if (db_segcache_write(cfg, ctx->id, (uchar_t *)&(ctx->g_blocks[i]), len, blks-i, ctx->file_offset) == -1) { sem_post(ctx->index_sem_next); ctx->valid = 0; return (0); } /* * Now lookup all the similarity hashes. * The matching segment offsets in the segcache are stored in a list. Entries * that were not found are stored with offset of UINT64_MAX. */ sim_ck = ctx->similarity_cksums; tgt = src + 1; // One byte for number of entries crc = 0; off1 = UINT64_MAX; k = 0; for (j=0; j < sub_i; j++) { hash_entry_t *he = NULL; he = db_lookup_insert_s(cfg, sim_ck, 0, seg_offset, 0, 1); if (he) { *((uint64_t *)tgt) = he->item_offset; } else { *((uint64_t *)tgt) = UINT64_MAX; } sim_ck += cfg->similarity_cksum_sz; tgt += cfg->similarity_cksum_sz; } /* * At this point we have a list of segment offsets from the segcache * file. Sort the offsets to avoid subsequent random access. */ tgt = src + 1; isort_uint64((uint64_t *)tgt, sub_i); /* * Now eliminate duplicate offsets and UINT64_MAX offset entries which * indicate entries that were not found. */ sim_ck = tgt; for (j=0; j < sub_i; j++) { if (off1 != *((uint64_t *)sim_ck) && *((uint64_t *)sim_ck) != UINT64_MAX) { off1 = *((uint64_t *)sim_ck); *((uint64_t *)tgt) = off1; tgt += cfg->similarity_cksum_sz; k++; } sim_ck += cfg->similarity_cksum_sz; } *src = k; // Number of entries src = tgt; i = blks; } /* * Signal the next thread in sequence to access the index. */ sem_post(ctx->index_sem_next); /* * Now go through all the matching segments for all the current segments * and perform actual deduplication. */ src = sim_offsets; for (i=0; ig_blocks[k].cksum, cfg->chunk_cksum_sz, 0); hent ^= (hent / cfg->chunk_cksum_sz); hent = hent % cfg->segment_sz; if (htab[hent] == NULL) { htab[hent] = &(ctx->g_blocks[k]); ctx->g_blocks[k].offset += ctx->file_offset; ctx->g_blocks[k].next = NULL; be = NULL; } else { be = htab[hent]; do { if (ckcmp(ctx->g_blocks[k].cksum, be->cksum, cfg->chunk_cksum_sz) == 0 && ctx->g_blocks[k].length == be->length) { global_blockentry_t *en; /* * Block match in index was found. Update g_blocks * array. */ en = &(ctx->g_blocks[k]); en->length = (en->length | RABIN_INDEX_FLAG) & CLEAR_SIMILARITY_FLAG; en->offset = be->offset; break; } if (be->next) { be = be->next; } else { be->next = &(ctx->g_blocks[k]); be->next->offset += ctx->file_offset; be->next->next = NULL; break; } } while(1); } } /* * Now go through segment match list which was prepared earlier * and deduplicate with the matching segment blocks. */ sub_i = *src; src++; sim_ck = src; for (j=0; j < sub_i; j++) { /* * Load segment metadata from disk and perform identity deduplication * with the segment chunks. */ offset = *((uint64_t *)sim_ck); if (db_segcache_map(cfg, ctx->id, &o_blks, &offset, (uchar_t **)&seg_blocks) == -1) { fprintf(stderr, "** Segment cache mmap failed.\n"); ctx->valid = 0; return (0); } /* * Now lookup loaded segment blocks in hashtable. If match is * found then the hashtable entry is updated to point to the * loaded segment block. */ for (k=0; kchunk_cksum_sz, 0); hent ^= (hent / cfg->chunk_cksum_sz); hent = hent % cfg->segment_sz; if (htab[hent] != NULL) { be = htab[hent]; do { if (be->length & RABIN_INDEX_FLAG) goto next_ent; if (ckcmp(seg_blocks[k].cksum, be->cksum, cfg->chunk_cksum_sz) == 0 && seg_blocks[k].length == be->length) { be->length = (be->length | RABIN_INDEX_FLAG) & CLEAR_SIMILARITY_FLAG; be->offset = seg_blocks[k].offset + offset; break; } next_ent: if (be->next) be = be->next; else break; } while(1); } } sim_ck += cfg->similarity_cksum_sz; } src = sim_ck; i = blks; } /*====================================================================== * Finally scan the blocks array and update dedupe index. *====================================================================== */ length = 0; for (i=0; ig_blocks[i].length & RABIN_INDEX_FLAG)) { /* * Block match in index was not found. * Block was added to index. Merge this block. */ if (length + ctx->g_blocks[i].length > RABIN_MAX_BLOCK_SIZE) { *((uint32_t *)g_dedupe_idx) = LE32(length); g_dedupe_idx += RABIN_ENTRY_SIZE; length = 0; dedupe_index_sz++; } length += ctx->g_blocks[i].length; } else { /* * Block match in index was found. */ if (length > 0) { /* * Write pending accumulated block length value. */ *((uint32_t *)g_dedupe_idx) = LE32(length); g_dedupe_idx += RABIN_ENTRY_SIZE; length = 0; dedupe_index_sz++; } /* * Add a reference entry to the dedupe array. */ *((uint32_t *)g_dedupe_idx) = LE32(ctx->g_blocks[i].length); g_dedupe_idx += RABIN_ENTRY_SIZE; *((uint64_t *)g_dedupe_idx) = LE64(ctx->g_blocks[i].offset); g_dedupe_idx += (RABIN_ENTRY_SIZE * 2); matchlen += (ctx->g_blocks[i].length & RABIN_INDEX_VALUE); dedupe_index_sz += 3; } } /* * Write final pending block length value (if any). */ if (length > 0) { *((uint32_t *)g_dedupe_idx) = LE32(length); g_dedupe_idx += RABIN_ENTRY_SIZE; length = 0; dedupe_index_sz++; } blknum = dedupe_index_sz; // Number of entries in block list tgt = g_dedupe_idx; g_dedupe_idx = ctx->cbuf + RABIN_HDR_SIZE; dedupe_index_sz = tgt - g_dedupe_idx; src = buf1; g_dedupe_idx += (RABIN_ENTRY_SIZE * 2); } /* * Deduplication reduction should at least be greater than block list metadata. */ if (matchlen < dedupe_index_sz) { DEBUG_STAT_EN(en = get_wtime_millis()); DEBUG_STAT_EN(fprintf(stderr, "Chunking speed %.3f MB/s, Overall Dedupe speed %.3f MB/s\n", get_mb_s(*size, strt, en_1), get_mb_s(*size, strt, en - (w2 - w1)))); DEBUG_STAT_EN(fprintf(stderr, "No Dedupe possible.")); ctx->valid = 0; return (0); } /* * Now copy the block data; */ for (i=0; icbuf; blknum |= GLOBAL_FLAG; goto dedupe_done; } /* * Subsequent processing below is for per-segment Deduplication. */ /* * Compute hash signature for each block. We do this in a separate loop to * have a fast linear scan through the buffer. */ if (ctx->delta_flag) { #if defined(_OPENMP) # pragma omp parallel for if (mt) #endif for (i=0; iblocks[i]->hash = XXH32(buf1+ctx->blocks[i]->offset, ctx->blocks[i]->length, 0); } } else { #if defined(_OPENMP) # pragma omp parallel for if (mt) #endif for (i=0; iblocks[i]->hash = XXH32(buf1+ctx->blocks[i]->offset, ctx->blocks[i]->length, 0); ctx->blocks[i]->similarity_hash = ctx->blocks[i]->hash; } } ary_sz = (blknum << 1) * sizeof (rabin_blockentry_t *); htab = (rabin_blockentry_t **)(ctx->cbuf + ctx->real_chunksize - ary_sz); memset(htab, 0, ary_sz); /* * Perform hash-matching of blocks and use a bucket-chained hashtable to match * for duplicates and similar blocks. Unique blocks are inserted and duplicates * and similar ones are marked in the block array. * * Hashtable memory is not allocated. We just use available space in the * target buffer. */ matchlen = 0; for (i=0; iblocks[i]->similarity_hash; ck ^= (ck / ctx->blocks[i]->length); j = ck % (blknum << 1); if (htab[j] == 0) { /* * Hash bucket empty. So add block into table. */ htab[j] = ctx->blocks[i]; ctx->blocks[i]->other = 0; ctx->blocks[i]->next = 0; ctx->blocks[i]->similar = 0; } else { be = htab[j]; length = 0; /* * Look for exact duplicates. Same cksum, length and memcmp() */ while (1) { if (be->hash == ctx->blocks[i]->hash && be->length == ctx->blocks[i]->length && memcmp(buf1 + be->offset, buf1 + ctx->blocks[i]->offset, be->length) == 0) { ctx->blocks[i]->similar = SIMILAR_EXACT; ctx->blocks[i]->other = be; be->similar = SIMILAR_REF; matchlen += be->length; length = 1; break; } if (be->next) be = be->next; else break; } if (ctx->delta_flag && !length) { /* * Look for similar blocks. */ be = htab[j]; while (1) { if (be->similarity_hash == ctx->blocks[i]->similarity_hash && be->length == ctx->blocks[i]->length) { uint64_t off_diff; if (be->offset > ctx->blocks[i]->offset) off_diff = be->offset - ctx->blocks[i]->offset; else off_diff = ctx->blocks[i]->offset - be->offset; if (off_diff > ctx->deltac_min_distance) { ctx->blocks[i]->similar = SIMILAR_PARTIAL; ctx->blocks[i]->other = be; be->similar = SIMILAR_REF; matchlen += (be->length>>1); length = 1; break; } } if (be->next) be = be->next; else break; } } /* * No duplicate in table for this block. So add it to * the bucket chain. */ if (!length) { ctx->blocks[i]->other = 0; ctx->blocks[i]->next = 0; ctx->blocks[i]->similar = 0; be->next = ctx->blocks[i]; DEBUG_STAT_EN(++hash_collisions); } } } DEBUG_STAT_EN(fprintf(stderr, "Total Hashtable bucket collisions: %u\n", hash_collisions)); dedupe_index_sz = (uint64_t)blknum * RABIN_ENTRY_SIZE; if (matchlen < dedupe_index_sz) { DEBUG_STAT_EN(en = get_wtime_millis()); DEBUG_STAT_EN(fprintf(stderr, "Chunking speed %.3f MB/s, Overall Dedupe speed %.3f MB/s\n", get_mb_s(*size, strt, en_1), get_mb_s(*size, strt, en))); DEBUG_STAT_EN(fprintf(stderr, "No Dedupe possible.\n")); ctx->valid = 0; return (0); } dedupe_index = (uint32_t *)(ctx->cbuf + RABIN_HDR_SIZE); pos = 0; DEBUG_STAT_EN(merge_count = 0); /* * Merge runs of unique blocks into a single block entry to reduce * dedupe index size. */ for (i=0; iblocks[i]->index = pos; ++pos; length = 0; j = i; if (ctx->blocks[i]->similar == 0) { while (i< blknum && ctx->blocks[i]->similar == 0 && length < RABIN_MAX_BLOCK_SIZE) { length += ctx->blocks[i]->length; ++i; DEBUG_STAT_EN(++merge_count); } ctx->blocks[j]->length = length; } else { ++i; } } DEBUG_STAT_EN(fprintf(stderr, "Merge count: %u\n", merge_count)); /* * Final pass update dedupe index and copy data. */ blknum = pos; dedupe_index_sz = (uint64_t)blknum * RABIN_ENTRY_SIZE; pos1 = dedupe_index_sz + RABIN_HDR_SIZE; matchlen = ctx->real_chunksize - *size; for (i=0; iblocks[dedupe_index[i]]; if (be->similar == 0 || be->similar == SIMILAR_REF) { /* Just copy. */ dedupe_index[i] = htonl(be->length); memcpy(ctx->cbuf + pos1, buf1 + be->offset, be->length); pos1 += be->length; } else { if (be->similar == SIMILAR_EXACT) { dedupe_index[i] = htonl((be->other->index | RABIN_INDEX_FLAG) & CLEAR_SIMILARITY_FLAG); } else { uchar_t *oldbuf, *newbuf; int32_t bsz; /* * Perform bsdiff. */ oldbuf = buf1 + be->other->offset; newbuf = buf1 + be->offset; DEBUG_STAT_EN(++delta_calls); bsz = bsdiff(oldbuf, be->other->length, newbuf, be->length, ctx->cbuf + pos1, buf1 + *size, matchlen); if (bsz == 0) { DEBUG_STAT_EN(++delta_fails); memcpy(ctx->cbuf + pos1, newbuf, be->length); dedupe_index[i] = htonl(be->length); pos1 += be->length; } else { dedupe_index[i] = htonl(be->other->index | RABIN_INDEX_FLAG | SET_SIMILARITY_FLAG); pos1 += bsz; } } } } dedupe_done: if (valid) { uchar_t *cbuf = ctx->cbuf; uint64_t *entries; DEBUG_STAT_EN(uint64_t sz); DEBUG_STAT_EN(sz = *size); *((uint32_t *)cbuf) = htonl(blknum); cbuf += sizeof (uint32_t); entries = (uint64_t *)cbuf; entries[0] = htonll(*size); entries[1] = 0; entries[2] = htonll(pos1 - dedupe_index_sz - RABIN_HDR_SIZE); *size = pos1; ctx->valid = 1; DEBUG_STAT_EN(en = get_wtime_millis()); DEBUG_STAT_EN(fprintf(stderr, "Deduped size: %" PRId64 ", blknum: %u, delta_calls: %u, delta_fails: %u\n", *size, (unsigned int)(blknum & CLEAR_GLOBAL_FLAG), delta_calls, delta_fails)); DEBUG_STAT_EN(fprintf(stderr, "Chunking speed %.3f MB/s, Overall Dedupe speed %.3f MB/s\n", get_mb_s(sz, strt, en_1), get_mb_s(sz, strt, en))); /* * Remaining header entries: size of compressed index and size of * compressed data are inserted later via rabin_update_hdr, after actual compression! */ return (dedupe_index_sz); } } return (0); } void update_dedupe_hdr(uchar_t *buf, uint64_t dedupe_index_sz_cmp, uint64_t dedupe_data_sz_cmp) { uint64_t *entries; buf += sizeof (uint32_t); entries = (uint64_t *)buf; entries[1] = htonll(dedupe_index_sz_cmp); entries[3] = htonll(dedupe_data_sz_cmp); } void parse_dedupe_hdr(uchar_t *buf, uint32_t *blknum, uint64_t *dedupe_index_sz, uint64_t *dedupe_data_sz, uint64_t *dedupe_index_sz_cmp, uint64_t *dedupe_data_sz_cmp, uint64_t *deduped_size) { uint64_t *entries; *blknum = ntohl(*((uint32_t *)(buf))); buf += sizeof (uint32_t); entries = (uint64_t *)buf; *dedupe_data_sz = ntohll(entries[0]); *dedupe_index_sz = (uint64_t)(*blknum & CLEAR_GLOBAL_FLAG) * RABIN_ENTRY_SIZE; *dedupe_index_sz_cmp = ntohll(entries[1]); *deduped_size = ntohll(entries[2]); *dedupe_data_sz_cmp = ntohll(entries[3]); } void dedupe_decompress(dedupe_context_t *ctx, uchar_t *buf, uint64_t *size) { uint32_t blknum, blk, oblk, len; uint32_t *dedupe_index; uint64_t data_sz, sz, indx_cmp, data_sz_cmp, deduped_sz; uint64_t dedupe_index_sz, pos1; uchar_t *pos2; parse_dedupe_hdr(buf, &blknum, &dedupe_index_sz, &data_sz, &indx_cmp, &data_sz_cmp, &deduped_sz); dedupe_index = (uint32_t *)(buf + RABIN_HDR_SIZE); pos1 = dedupe_index_sz + RABIN_HDR_SIZE; pos2 = ctx->cbuf; sz = 0; ctx->valid = 1; /* * Handling for Global Deduplication. */ if (blknum & GLOBAL_FLAG) { uchar_t *g_dedupe_idx, *src1, *src2; uint64_t adj, offset; uint32_t flag; blknum &= CLEAR_GLOBAL_FLAG; g_dedupe_idx = buf + RABIN_HDR_SIZE; offset = LE64(*((uint64_t *)g_dedupe_idx)); g_dedupe_idx += (RABIN_ENTRY_SIZE * 2); blknum -= 2; src1 = buf + RABIN_HDR_SIZE + dedupe_index_sz; sem_wait(ctx->index_sem); for (blk=0; blk data_sz) { fprintf(stderr, "Dedup data overflows chunk.\n"); ctx->valid = 0; break; } if (flag == 0) { memcpy(pos2, src1, len); pos2 += len; src1 += len; sz += len; } else { pos1 = LE64(*((uint64_t *)g_dedupe_idx)); g_dedupe_idx += (RABIN_ENTRY_SIZE * 2); blk += 2; /* * Handling of chunk references at duplicate chunks. * * If required data offset is greater than the current segment's starting * offset then the referenced chunk is already in the current segment in * RAM. Just mem-copy it. * Otherwise it will be in the current output file. We mmap() the relevant * region and copy it. The way deduplication is done it is guaranteed that * all duplicate references will be backward references so this approach works. * * However this approach precludes pipe-mode streamed decompression since * it requires random access to the output file. */ if (pos1 > offset) { src2 = ctx->cbuf + (pos1 - offset); memcpy(pos2, src2, len); } else { adj = pos1 % ctx->pagesize; src2 = mmap(NULL, len + adj, PROT_READ, MAP_SHARED, ctx->out_fd, pos1 - adj); if (src2 == NULL) { perror("MMAP failed "); ctx->valid = 0; break; } memcpy(pos2, src2 + adj, len); munmap(src2, len + adj); } pos2 += len; sz += len; } } *size = data_sz; return; } /* * Handling for per-segment Deduplication. * First pass re-create the rabin block array from the index metadata. * Second pass copy over blocks to the target buffer to re-create the original segment. */ slab_cache_add(sizeof (rabin_blockentry_t)); for (blk = 0; blk < blknum; blk++) { if (ctx->blocks[blk] == 0) ctx->blocks[blk] = (rabin_blockentry_t *)slab_alloc(NULL, sizeof (rabin_blockentry_t)); len = ntohl(dedupe_index[blk]); ctx->blocks[blk]->hash = 0; if (len == 0) { ctx->blocks[blk]->hash = 1; } else if (!(len & RABIN_INDEX_FLAG)) { ctx->blocks[blk]->length = len; ctx->blocks[blk]->offset = pos1; pos1 += len; } else { bsize_t blen; ctx->blocks[blk]->length = 0; if (len & GET_SIMILARITY_FLAG) { ctx->blocks[blk]->offset = pos1; ctx->blocks[blk]->index = (len & RABIN_INDEX_VALUE) | SET_SIMILARITY_FLAG; blen = get_bsdiff_sz(buf + pos1); pos1 += blen; } else { ctx->blocks[blk]->index = len & RABIN_INDEX_VALUE; } } } for (blk = 0; blk < blknum; blk++) { int rv; bsize_t newsz; if (ctx->blocks[blk]->hash == 1) continue; if (ctx->blocks[blk]->length > 0) { len = ctx->blocks[blk]->length; pos1 = ctx->blocks[blk]->offset; } else { oblk = ctx->blocks[blk]->index; if (oblk & GET_SIMILARITY_FLAG) { oblk = oblk & CLEAR_SIMILARITY_FLAG; len = ctx->blocks[oblk]->length; pos1 = ctx->blocks[oblk]->offset; newsz = data_sz - sz; rv = bspatch(buf + ctx->blocks[blk]->offset, buf + pos1, len, pos2, &newsz); if (rv == 0) { fprintf(stderr, "Failed to bspatch block.\n"); ctx->valid = 0; break; } pos2 += newsz; sz += newsz; if (sz > data_sz) { fprintf(stderr, "Dedup data overflows chunk.\n"); ctx->valid = 0; break; } continue; } else { len = ctx->blocks[oblk]->length; pos1 = ctx->blocks[oblk]->offset; } } memcpy(pos2, buf + pos1, len); pos2 += len; sz += len; if (sz > data_sz) { fprintf(stderr, "Dedup data overflows chunk.\n"); ctx->valid = 0; break; } } if (ctx->valid && sz < data_sz) { fprintf(stderr, "Too little dedup data processed.\n"); ctx->valid = 0; } *size = data_sz; }