/* * rabin_polynomial.c * * The rabin polynomial computation is derived from: * http://code.google.com/p/rabin-fingerprint-c/ * * originally created by Joel Lawrence Tucci on 09-March-2011. * * Rabin polynomial portions Copyright (c) 2011 Joel Lawrence Tucci * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the project's author nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /* * This file is a part of Pcompress, a chunked parallel multi- * algorithm lossless compression and decompression program. * * Copyright (C) 2012 Moinak Ghosh. All rights reserved. * Use is subject to license terms. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * moinakg@belenix.org, http://moinakg.wordpress.com/ * */ #include #include #include #include #include #include "rabin_polynomial.h" extern int lzma_init(void **data, int *level, ssize_t chunksize); extern int lzma_compress(void *src, size_t srclen, void *dst, size_t *destlen, int level, uchar_t chdr, void *data); extern int lzma_decompress(void *src, size_t srclen, void *dst, size_t *dstlen, int level, uchar_t chdr, void *data); extern int lzma_deinit(void **data); extern int bsdiff(u_char *old, bsize_t oldsize, u_char *new, bsize_t newsize, u_char *diff, u_char *scratch, bsize_t scratchsize); extern bsize_t get_bsdiff_sz(u_char *pbuf); extern int bspatch(u_char *pbuf, u_char *old, bsize_t oldsize, u_char *new, bsize_t *_newsize); uint32_t rabin_polynomial_max_block_size = RAB_POLYNOMIAL_MAX_BLOCK_SIZE; /* * Initialize the algorithm with the default params. */ rabin_context_t * create_rabin_context(uint64_t chunksize, uint64_t real_chunksize, const char *algo, int delta_flag) { rabin_context_t *ctx; unsigned char *current_window_data; uint32_t blknum; /* * Rabin window size must be power of 2 for optimization. */ if (!ISP2(RAB_POLYNOMIAL_WIN_SIZE)) { fprintf(stderr, "Rabin window size must be a power of 2 in range 4 <= x <= 64\n"); return (NULL); } if (chunksize < RAB_MIN_CHUNK_SIZE) { fprintf(stderr, "Minimum chunk size for Dedup must be %l bytes\n", RAB_MIN_CHUNK_SIZE); return (NULL); } /* * For LZMA with chunksize <= LZMA Window size and/or Delta enabled we * use 4K minimum Rabin block size. For everything else it is 2K based * on experimentation. */ ctx = (rabin_context_t *)slab_alloc(NULL, sizeof (rabin_context_t)); ctx->rabin_poly_max_block_size = RAB_POLYNOMIAL_MAX_BLOCK_SIZE; if (((memcmp(algo, "lzma", 4) == 0 || memcmp(algo, "adapt", 5) == 0) && chunksize <= LZMA_WINDOW_MAX) || delta_flag) { if (memcmp(algo, "lzfx", 4) == 0 || memcmp(algo, "lz4", 3) == 0) { ctx->rabin_poly_min_block_size = RAB_POLYNOMIAL_MIN_BLOCK_SIZE2; ctx->rabin_avg_block_mask = RAB_POLYNOMIAL_AVG_BLOCK_MASK2; ctx->rabin_poly_avg_block_size = RAB_POLYNOMIAL_AVG_BLOCK_SIZE2; ctx->rabin_break_patt = 0; } else { ctx->rabin_poly_min_block_size = RAB_POLYNOMIAL_MIN_BLOCK_SIZE; ctx->rabin_avg_block_mask = RAB_POLYNOMIAL_AVG_BLOCK_MASK; ctx->rabin_poly_avg_block_size = RAB_POLYNOMIAL_AVG_BLOCK_SIZE; ctx->rabin_break_patt = RAB_POLYNOMIAL_CONST; } } else { ctx->rabin_poly_min_block_size = RAB_POLYNOMIAL_MIN_BLOCK_SIZE2; ctx->rabin_avg_block_mask = RAB_POLYNOMIAL_AVG_BLOCK_MASK2; ctx->rabin_poly_avg_block_size = RAB_POLYNOMIAL_AVG_BLOCK_SIZE2; ctx->rabin_break_patt = 0; } blknum = chunksize / ctx->rabin_poly_min_block_size; if (chunksize % ctx->rabin_poly_min_block_size) blknum++; if (blknum > RABIN_MAX_BLOCKS) { fprintf(stderr, "Chunk size too large for dedup.\n"); destroy_rabin_context(ctx); return (NULL); } current_window_data = slab_alloc(NULL, RAB_POLYNOMIAL_WIN_SIZE); ctx->blocks = NULL; if (real_chunksize > 0) { ctx->blocks = (rabin_blockentry_t *)slab_alloc(NULL, blknum * ctx->rabin_poly_min_block_size); } if(ctx == NULL || current_window_data == NULL || (ctx->blocks == NULL && real_chunksize > 0)) { fprintf(stderr, "Could not allocate rabin polynomial context, out of memory\n"); destroy_rabin_context(ctx); return (NULL); } ctx->lzma_data = NULL; ctx->level = 14; if (real_chunksize > 0) { lzma_init(&(ctx->lzma_data), &(ctx->level), chunksize); if (!(ctx->lzma_data)) { fprintf(stderr, "Could not initialize LZMA data for rabin index, out of memory\n"); destroy_rabin_context(ctx); return (NULL); } } /* * We should compute the power for the window size. * static uint64_t polynomial_pow; * polynomial_pow = 1; * for(index=0; indexcurrent_window_data = current_window_data; ctx->real_chunksize = real_chunksize; ctx->delta_flag = delta_flag; reset_rabin_context(ctx); return (ctx); } void reset_rabin_context(rabin_context_t *ctx) { memset(ctx->current_window_data, 0, RAB_POLYNOMIAL_WIN_SIZE); ctx->window_pos = 0; } void destroy_rabin_context(rabin_context_t *ctx) { if (ctx) { if (ctx->current_window_data) slab_free(NULL, ctx->current_window_data); if (ctx->blocks) slab_free(NULL, ctx->blocks); if (ctx->lzma_data) lzma_deinit(&(ctx->lzma_data)); slab_free(NULL, ctx); } } /* * Checksum Comparator for qsort */ static int cmpblks(const void *a, const void *b) { rabin_blockentry_t *a1 = (rabin_blockentry_t *)a; rabin_blockentry_t *b1 = (rabin_blockentry_t *)b; if (a1->cksum_n_offset < b1->cksum_n_offset) { return (-1); } else if (a1->cksum_n_offset == b1->cksum_n_offset) { /* * If fingerprints match then compare lengths. Length match makes * for strong exact detection/ordering during sort while stopping * short of expensive memcmp(). */ if (a1->length < b1->length) { return (-1); } else if (a1->length == b1->length) { return (0); } else if (a1->length > b1->length) { return (1); } } else if (a1->cksum_n_offset > b1->cksum_n_offset) { return (1); } } /** * Perform Deduplication based on Rabin Fingerprinting. A 31-byte window is used for * the rolling checksum and dedup blocks vary in size from 4K-128K. */ uint32_t rabin_dedup(rabin_context_t *ctx, uchar_t *buf, ssize_t *size, ssize_t offset, ssize_t *rabin_pos) { ssize_t i, last_offset, j, fplist_sz; uint32_t blknum; char *buf1 = (char *)buf; uint32_t length; uint64_t cur_roll_checksum, cur_sketch; uint64_t *fplist; uint32_t len1, fpos[2]; if (rabin_pos == NULL) { /* * Initialize arrays for sketch computation. We re-use memory allocated * for the compressed chunk temporarily. */ fplist_sz = 8 * ctx->rabin_poly_avg_block_size; fplist = (uint64_t *)(ctx->cbuf + ctx->real_chunksize - fplist_sz); memset(fplist, 0, fplist_sz); fpos[0] = 0; fpos[1] = 0; len1 = 0; } length = offset; last_offset = 0; blknum = 0; ctx->valid = 0; cur_roll_checksum = 0; j = 0; cur_sketch = 0; /* * If rabin_pos is non-zero then we are being asked to scan for the last rabin boundary * in the chunk. We start scanning at chunk end - max rabin block size. We avoid doing * a full chunk scan. * * !!!NOTE!!!: Code duplication below for performance. */ if (rabin_pos) { offset = *size - RAB_POLYNOMIAL_MAX_BLOCK_SIZE; for (i=offset; i<*size; i++) { char cur_byte = buf1[i]; uint64_t pushed_out = ctx->current_window_data[ctx->window_pos]; ctx->current_window_data[ctx->window_pos] = cur_byte; cur_roll_checksum = (cur_roll_checksum << 1) + cur_byte; cur_roll_checksum -= (pushed_out << RAB_POLYNOMIAL_WIN_SIZE); ctx->window_pos = (ctx->window_pos + 1) & (RAB_POLYNOMIAL_WIN_SIZE-1); length++; if (length < ctx->rabin_poly_min_block_size) continue; // If we hit our special value or reached the max block size update block offset if ((cur_roll_checksum & ctx->rabin_avg_block_mask) == ctx->rabin_break_patt || length >= rabin_polynomial_max_block_size) { last_offset = i+1; length = 0; j = 0; } } if (last_offset < *size) { *rabin_pos = last_offset; } return (0); } if (*size < ctx->rabin_poly_avg_block_size) return; for (i=offset; i<*size; i++) { char cur_byte = buf1[i]; uint64_t pushed_out = ctx->current_window_data[ctx->window_pos]; ctx->current_window_data[ctx->window_pos] = cur_byte; /* * We want to do: * cur_roll_checksum = cur_roll_checksum * RAB_POLYNOMIAL_CONST + cur_byte; * cur_roll_checksum -= pushed_out * polynomial_pow; * * However since RAB_POLYNOMIAL_CONST == 2, we use shifts. */ cur_roll_checksum = (cur_roll_checksum << 1) + cur_byte; cur_roll_checksum -= (pushed_out << RAB_POLYNOMIAL_WIN_SIZE); /* * Compute a super sketch value of the block. We store a sum of relative * maximal rabin hash values per 1K(SKETCH_BASIC_BLOCK_SZ) of data. So we * get upto 128 sums for a max block size of 128K. This is a representative * fingerprint sketch of the block. Storing and comparing upto 128 fingerprints * per block is very expensive (compute & RAM) so we eventually sum all the * fingerprints for the block to create a single super sketch value representing * maximal features of the block. * * This value can be used for similarity detection for delta encoding. Exact * match for deduplication is additionally detected via a memcmp(). This is a * variant of some approaches detailed in: * http://www.armedia.com/wp/SimilarityIndex.pdf */ len1++; fpos[1] = cur_roll_checksum & ctx->rabin_avg_block_mask; fplist[fpos[1]] += cur_roll_checksum; /* * Perform the following statement without branching: * if (fplist[fpos[1]] > fplist[fpos[0]]) fpos[0] = fpos[1]; */ fpos[0] = fpos[(fplist[fpos[1]] > fplist[fpos[0]])]; if (len1 == SKETCH_BASIC_BLOCK_SZ) { /* * Compute the super sketch value by summing all the representative * fingerprints of the block. */ cur_sketch += fplist[fpos[0]]; memset(fplist, 0, fplist_sz); fpos[0] = 0; len1 = 0; } /* * Window pos has to rotate from 0 .. RAB_POLYNOMIAL_WIN_SIZE-1 * We avoid a branch here by masking. This requires RAB_POLYNOMIAL_WIN_SIZE * to be power of 2 */ ctx->window_pos = (ctx->window_pos + 1) & (RAB_POLYNOMIAL_WIN_SIZE-1); length++; if (length < ctx->rabin_poly_min_block_size) continue; // If we hit our special value or reached the max block size update block offset if ((cur_roll_checksum & ctx->rabin_avg_block_mask) == ctx->rabin_break_patt || length >= rabin_polynomial_max_block_size) { ctx->blocks[blknum].offset = last_offset; ctx->blocks[blknum].index = blknum; // Need to store for sorting ctx->blocks[blknum].length = length; ctx->blocks[blknum].refcount = 0; ctx->blocks[blknum].similar = 0; ctx->blocks[blknum].cksum_n_offset = cur_sketch; memset(fplist, 0, fplist_sz); fpos[0] = 0; len1 = 0; cur_sketch = 0; blknum++; last_offset = i+1; length = 0; j = 0; } } // If we found at least a few chunks, perform dedup. if (blknum > 2) { uint64_t prev_cksum; uint32_t blk, prev_length; ssize_t pos, matchlen, pos1; int valid = 1; char *tmp, *prev_offset; uint32_t *blkarr, *trans, *rabin_index, prev_index, prev_blk; ssize_t rabin_index_sz; // Insert the last left-over trailing bytes, if any, into a block. if (last_offset < *size) { ctx->blocks[blknum].offset = last_offset; ctx->blocks[blknum].index = blknum; ctx->blocks[blknum].length = *size - last_offset; ctx->blocks[blknum].refcount = 0; ctx->blocks[blknum].similar = 0; ctx->blocks[blknum].cksum_n_offset = cur_sketch; blknum++; last_offset = *size; } rabin_index_sz = (ssize_t)blknum * RABIN_ENTRY_SIZE; prev_cksum = 0; prev_length = 0; prev_offset = 0; /* * Now sort the block array based on checksums. This will bring virtually * all similar block entries together. Effectiveness depends on how strong * our checksum is. We are using a maximal super-sketch value. */ qsort(ctx->blocks, blknum, sizeof (rabin_blockentry_t), cmpblks); rabin_index = (uint32_t *)(ctx->cbuf + RABIN_HDR_SIZE); /* * We need 2 temporary arrays. We just use available space in the last * portion of the buffer that will hold the deduped segment. */ blkarr = (uint32_t *)(ctx->cbuf + ctx->real_chunksize - (rabin_index_sz * 2 + 1)); trans = (uint32_t *)(ctx->cbuf + ctx->real_chunksize - (rabin_index_sz + 1)); matchlen = 0; /* * Now make a pass through the sorted block array making identical blocks * point to the first identical block entry. A simple Run Length Encoding * sort of. Checksums, length and contents (memcmp()) must match for blocks * to be considered identical. * The block index in the chunk is initialized with pointers into the * sorted block array. * A reference count is maintained for blocks that are similar with other * blocks. This helps in non-duplicate block merging later. */ for (blk = 0; blk < blknum; blk++) { blkarr[ctx->blocks[blk].index] = blk; if (blk > 0 && ctx->blocks[blk].cksum_n_offset == prev_cksum && ctx->blocks[blk].length == prev_length && memcmp(prev_offset, buf1 + ctx->blocks[blk].offset, prev_length) == 0) { ctx->blocks[blk].similar = SIMILAR_EXACT; ctx->blocks[blk].index = prev_index; (ctx->blocks[prev_blk].refcount)++; matchlen += prev_length; continue; } prev_offset = buf1 + ctx->blocks[blk].offset; prev_cksum = ctx->blocks[blk].cksum_n_offset; prev_length = ctx->blocks[blk].length; prev_index = ctx->blocks[blk].index; prev_blk = blk; } if (ctx->delta_flag) { for (blk = 0; blk < blknum; blk++) { if (ctx->blocks[blk].similar) continue; if (blk > 0 && ctx->blocks[blk].refcount == 0 && ctx->blocks[blk].cksum_n_offset == prev_cksum) { ctx->blocks[blk].index = prev_index; ctx->blocks[blk].similar = SIMILAR_PARTIAL; (ctx->blocks[prev_blk].refcount)++; matchlen += prev_length/2; continue; } prev_offset = buf1 + ctx->blocks[blk].offset; prev_cksum = ctx->blocks[blk].cksum_n_offset; prev_length = ctx->blocks[blk].length; prev_index = ctx->blocks[blk].index; prev_blk = blk; } } if (matchlen < rabin_index_sz) { ctx->valid = 0; return; } /* * Another pass, this time through the block index in the chunk. We insert * block length into unique block entries. For block entries that are * identical with another one we store the index number with msb set. * This way we can differentiate between a unique block length entry and a * pointer to another block without needing a separate flag. */ prev_index = 0; prev_length = 0; pos = 0; for (blk = 0; blk < blknum; blk++) { rabin_blockentry_t *be; be = &(ctx->blocks[blkarr[blk]]); if (be->similar == 0) { /* * Update Index entry with the length. Also try to merge runs * of unique (non-duplicate/similar) blocks into a single block * entry as long as the total length does not exceed max block * size. */ if (prev_index == 0) { if (be->refcount == 0) { prev_index = pos; prev_length = be->length; } rabin_index[pos] = be->length; ctx->blocks[pos].cksum_n_offset = be->offset; trans[blk] = pos; pos++; } else { if (be->refcount > 0) { prev_index = 0; prev_length = 0; rabin_index[pos] = be->length; ctx->blocks[pos].cksum_n_offset = be->offset; trans[blk] = pos; pos++; } else { if (prev_length + be->length <= RABIN_MAX_BLOCK_SIZE) { prev_length += be->length; rabin_index[prev_index] = prev_length; } else { prev_index = 0; prev_length = 0; rabin_index[pos] = be->length; ctx->blocks[pos].cksum_n_offset = be->offset; trans[blk] = pos; pos++; } } } } else { prev_index = 0; prev_length = 0; ctx->blocks[pos].cksum_n_offset = be->offset; ctx->blocks[pos].new_length = be->length; trans[blk] = pos; if (be->similar == SIMILAR_EXACT) { rabin_index[pos] = (blkarr[be->index] | RABIN_INDEX_FLAG) & CLEAR_SIMILARITY_FLAG; } else { rabin_index[pos] = blkarr[be->index] | RABIN_INDEX_FLAG | SET_SIMILARITY_FLAG; } pos++; } } /* * Final pass, copy the data and perform delta encoding. */ blknum = pos; rabin_index_sz = (ssize_t)pos * RABIN_ENTRY_SIZE; pos1 = rabin_index_sz + RABIN_HDR_SIZE; for (blk = 0; blk < blknum; blk++) { uchar_t *old, *new; int32_t bsz; /* * If blocks are overflowing the allowed chunk size then dedup did not * help at all. We invalidate the dedup operation. */ if (pos1 > last_offset) { valid = 0; break; } if (rabin_index[blk] & RABIN_INDEX_FLAG) { j = rabin_index[blk] & RABIN_INDEX_VALUE; i = ctx->blocks[j].index; if (rabin_index[blk] & GET_SIMILARITY_FLAG) { old = buf1 + ctx->blocks[j].offset; new = buf1 + ctx->blocks[blk].cksum_n_offset; matchlen = ctx->real_chunksize - *size; bsz = bsdiff(old, ctx->blocks[j].length, new, ctx->blocks[blk].new_length, ctx->cbuf + pos1, buf1 + *size, matchlen); if (bsz == 0) { memcpy(ctx->cbuf + pos1, new, ctx->blocks[blk].new_length); rabin_index[blk] = htonl(ctx->blocks[blk].new_length); pos1 += ctx->blocks[blk].new_length; } else { rabin_index[blk] = htonl(trans[i] | RABIN_INDEX_FLAG | SET_SIMILARITY_FLAG); pos1 += bsz; } } else { rabin_index[blk] = htonl(trans[i] | RABIN_INDEX_FLAG); } } else { memcpy(ctx->cbuf + pos1, buf1 + ctx->blocks[blk].cksum_n_offset, rabin_index[blk]); pos1 += rabin_index[blk]; rabin_index[blk] = htonl(rabin_index[blk]); } } cont: if (valid) { uchar_t *cbuf = ctx->cbuf; ssize_t *entries; *((uint32_t *)cbuf) = htonl(blknum); cbuf += sizeof (uint32_t); entries = (ssize_t *)cbuf; entries[0] = htonll(*size); entries[1] = 0; entries[2] = htonll(pos1 - rabin_index_sz - RABIN_HDR_SIZE); *size = pos1; ctx->valid = 1; /* * Remaining header entries: size of compressed index and size of * compressed data are inserted later via rabin_update_hdr, after actual compression! */ return (rabin_index_sz); } } return (0); } void rabin_update_hdr(uchar_t *buf, ssize_t rabin_index_sz_cmp, ssize_t rabin_data_sz_cmp) { ssize_t *entries; buf += sizeof (uint32_t); entries = (ssize_t *)buf; entries[1] = htonll(rabin_index_sz_cmp); entries[3] = htonll(rabin_data_sz_cmp); } void rabin_parse_hdr(uchar_t *buf, uint32_t *blknum, ssize_t *rabin_index_sz, ssize_t *rabin_data_sz, ssize_t *rabin_index_sz_cmp, ssize_t *rabin_data_sz_cmp, ssize_t *rabin_deduped_size) { ssize_t *entries; *blknum = ntohl(*((uint32_t *)(buf))); buf += sizeof (uint32_t); entries = (ssize_t *)buf; *rabin_data_sz = ntohll(entries[0]); *rabin_index_sz = (ssize_t)(*blknum) * RABIN_ENTRY_SIZE; *rabin_index_sz_cmp = ntohll(entries[1]); *rabin_deduped_size = ntohll(entries[2]); *rabin_data_sz_cmp = ntohll(entries[3]); } void rabin_inverse_dedup(rabin_context_t *ctx, uchar_t *buf, ssize_t *size) { uint32_t blknum, blk, oblk, len; uint32_t *rabin_index; ssize_t data_sz, sz, indx_cmp, data_sz_cmp, deduped_sz; ssize_t rabin_index_sz, pos1, i; uchar_t *pos2; rabin_parse_hdr(buf, &blknum, &rabin_index_sz, &data_sz, &indx_cmp, &data_sz_cmp, &deduped_sz); rabin_index = (uint32_t *)(buf + RABIN_HDR_SIZE); pos1 = rabin_index_sz + RABIN_HDR_SIZE; pos2 = ctx->cbuf; sz = 0; ctx->valid = 1; for (blk = 0; blk < blknum; blk++) { len = ntohl(rabin_index[blk]); if (len == 0) { ctx->blocks[blk].length = 0; ctx->blocks[blk].index = 0; } else if (!(len & RABIN_INDEX_FLAG)) { ctx->blocks[blk].length = len; ctx->blocks[blk].offset = pos1; pos1 += len; } else { bsize_t blen; ctx->blocks[blk].length = 0; if (len & GET_SIMILARITY_FLAG) { ctx->blocks[blk].offset = pos1; ctx->blocks[blk].index = (len & RABIN_INDEX_VALUE) | SET_SIMILARITY_FLAG; blen = get_bsdiff_sz(buf + pos1); pos1 += blen; } else { ctx->blocks[blk].index = len & RABIN_INDEX_VALUE; } } } for (blk = 0; blk < blknum; blk++) { int rv; bsize_t newsz; if (ctx->blocks[blk].length == 0 && ctx->blocks[blk].index == 0) continue; if (ctx->blocks[blk].length > 0) { len = ctx->blocks[blk].length; pos1 = ctx->blocks[blk].offset; } else { oblk = ctx->blocks[blk].index; if (oblk & GET_SIMILARITY_FLAG) { oblk = oblk & CLEAR_SIMILARITY_FLAG; len = ctx->blocks[oblk].length; pos1 = ctx->blocks[oblk].offset; newsz = data_sz - sz; rv = bspatch(buf + ctx->blocks[blk].offset, buf + pos1, len, pos2, &newsz); if (rv == 0) { fprintf(stderr, "Failed to bspatch block.\n"); ctx->valid = 0; break; } pos2 += newsz; sz += newsz; if (sz > data_sz) { fprintf(stderr, "Dedup data overflows chunk.\n"); ctx->valid = 0; break; } continue; } else { len = ctx->blocks[oblk].length; pos1 = ctx->blocks[oblk].offset; } } memcpy(pos2, buf + pos1, len); pos2 += len; sz += len; if (sz > data_sz) { fprintf(stderr, "Dedup data overflows chunk.\n"); ctx->valid = 0; break; } } if (ctx->valid && sz < data_sz) { fprintf(stderr, "Too little dedup data processed.\n"); ctx->valid = 0; } *size = data_sz; } /* * TODO: Consolidate rabin dedup and compression/decompression in functions here rather than * messy code in main program. int rabin_compress(rabin_context_t *ctx, uchar_t *from, ssize_t fromlen, uchar_t *to, ssize_t *tolen, int level, char chdr, void *data, compress_func_ptr cmp) { } */