/*
* The rabin polynomial computation is derived from:
* http://code.google.com/p/rabin-fingerprint-c/
*
* originally created by Joel Lawrence Tucci on 09-March-2011.
*
* Rabin polynomial portions Copyright (c) 2011 Joel Lawrence Tucci
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of the project's author nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/*
* This file is a part of Pcompress, a chunked parallel multi-
* algorithm lossless compression and decompression program.
*
* Copyright (C) 2012-2013 Moinak Ghosh. All rights reserved.
* Use is subject to license terms.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program.
* If not, see .
*
* moinakg@belenix.org, http://moinakg.wordpress.com/
*
*/
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS 1
#endif
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "rabin_dedup.h"
#if defined(__USE_SSE_INTRIN__) && defined(__SSE4_1__) && RAB_POLYNOMIAL_WIN_SIZE == 16
# include
# define SSE_MODE 1
#endif
#if defined(__USE_SSE_INTRIN__) && !defined(__SSE4_1__)
# include
#endif
#if defined(_OPENMP)
#include
#endif
#define DELTA_EXTRA2_PCT(x) ((x) >> 1)
#define DELTA_EXTRA_PCT(x) (((x) >> 1) + ((x) >> 3))
#define DELTA_NORMAL_PCT(x) (((x) >> 1) + ((x) >> 2) + ((x) >> 3))
extern int lzma_init(void **data, int *level, int nthreads, int64_t chunksize,
int file_version, compress_op_t op);
extern int lzma_compress(void *src, uint64_t srclen, void *dst,
uint64_t *destlen, int level, uchar_t chdr, void *data);
extern int lzma_decompress(void *src, uint64_t srclen, void *dst,
uint64_t *dstlen, int level, uchar_t chdr, void *data);
extern int lzma_deinit(void **data);
extern int bsdiff(u_char *oldbuf, bsize_t oldsize, u_char *newbuf, bsize_t newsize,
u_char *diff, u_char *scratch, bsize_t scratchsize);
extern bsize_t get_bsdiff_sz(u_char *pbuf);
extern int bspatch(u_char *pbuf, u_char *oldbuf, bsize_t oldsize, u_char *newbuf,
bsize_t *_newsize);
static pthread_mutex_t init_lock = PTHREAD_MUTEX_INITIALIZER;
uint64_t ir[256], out[256];
static int inited = 0;
archive_config_t *arc = NULL;
uint64_t freqs[RAB_POLYNOMIAL_MAX_BLOCK_SIZE+1];
uint64_t tot_chunks = 0;
uint64_t tot_size = 0, non_hashed_size = 0;
double tot_time = 0;
static uint32_t
dedupe_min_blksz(int rab_blk_sz)
{
uint32_t min_blk;
min_blk = (1 << (rab_blk_sz + RAB_BLK_MIN_BITS)) - 1024;
return (min_blk);
}
uint32_t
dedupe_buf_extra(uint64_t chunksize, int rab_blk_sz, const char *algo, int delta_flag)
{
if (rab_blk_sz < 1 || rab_blk_sz > 5)
rab_blk_sz = RAB_BLK_DEFAULT;
return ((chunksize / dedupe_min_blksz(rab_blk_sz)) * sizeof (uint32_t));
}
void
dump_frequencies()
{
int i, j;
uint64_t tot;
double tot_c, tot_s, bytes_sec;
printf("\nChunk Frequency Distribution\n");
printf("====================================\n");
for (i = 1; i <= RAB_POLYNOMIAL_MAX_BLOCK_SIZE;) {
tot = 0;
for (j = 0; j < 4096; j++) tot += freqs[i++];
if (tot > 0)
printf("%3d KB: %" PRIu64 "\n", i/1024, tot);
}
printf("====================================\n");
printf("Number of chunks : %" PRIu64 "\n", tot_chunks);
tot_c = tot_chunks;
tot_s = tot_size;
printf("Average chunk size: %.2F Bytes\n", tot_s / tot_c);
bytes_sec = tot_s / tot_time * 1000;
printf("Average chunking speed: %.3f MB/s\n", BYTES_TO_MB(bytes_sec));
tot_c = non_hashed_size;
printf("%%age of roll hash coverage: %.2f%%\n", (1 - tot_c / tot_s) * 100);
printf("====================================\n");
}
/*
* Helper function to let caller size the the user specific compression chunk/segment
* to align with deduplication requirements.
*/
int
global_dedupe_bufadjust(uint32_t rab_blk_sz, uint64_t *user_chunk_sz, int pct_interval,
const char *algo, cksum_t ck, cksum_t ck_sim, size_t file_sz,
size_t memlimit, int nthreads, int pipe_mode)
{
uint64_t memreqd;
archive_config_t cfg;
int rv, pct_i, hash_entry_size;
uint32_t hash_slots;
rv = 0;
pct_i = pct_interval;
if (pipe_mode && pct_i == 0)
pct_i = DEFAULT_PCT_INTERVAL;
rv = setup_db_config_s(&cfg, rab_blk_sz, user_chunk_sz, &pct_i, algo, ck, ck_sim,
file_sz, &hash_slots, &hash_entry_size, &memreqd, memlimit, "/tmp");
return (rv);
}
/*
* Initialize the algorithm with the default params.
*/
dedupe_context_t *
create_dedupe_context(uint64_t chunksize, uint64_t real_chunksize, int rab_blk_sz,
const char *algo, const algo_props_t *props, int delta_flag, int dedupe_flag,
int file_version, compress_op_t op, uint64_t file_size, char *tmppath,
int pipe_mode, int nthreads) {
dedupe_context_t *ctx;
uint32_t i;
if (rab_blk_sz < 1 || rab_blk_sz > 5)
rab_blk_sz = RAB_BLK_DEFAULT;
if (dedupe_flag == RABIN_DEDUPE_FIXED || dedupe_flag == RABIN_DEDUPE_FILE_GLOBAL) {
delta_flag = 0;
if (dedupe_flag != RABIN_DEDUPE_FILE_GLOBAL)
inited = 1;
}
/*
* Pre-compute a table of irreducible polynomial evaluations for each
* possible byte value.
*/
pthread_mutex_lock(&init_lock);
if (!inited) {
int term, pow, j;
uint64_t val, poly_pow;
memset(freqs, 0, sizeof (freqs));
poly_pow = 1;
for (j = 0; j < RAB_POLYNOMIAL_WIN_SIZE; j++) {
poly_pow = (poly_pow * RAB_POLYNOMIAL_CONST) & POLY_MASK;
}
for (j = 0; j < 256; j++) {
term = 1;
pow = 1;
val = 1;
out[j] = (j * poly_pow) & POLY_MASK;
for (i=0; i 0) {
my_sysinfo msys_info;
int pct_interval, chunk_cksum, cksum_bytes, mac_bytes;
char *ck;
/*
* Get amount of memory to use. The freeram got here is adjusted amount.
*/
get_sys_limits(&msys_info);
pct_interval = 0;
if (pipe_mode)
pct_interval = DEFAULT_PCT_INTERVAL;
chunk_cksum = 0;
if ((ck = getenv("PCOMPRESS_CHUNK_HASH_GLOBAL")) != NULL) {
if (get_checksum_props(ck, &chunk_cksum, &cksum_bytes, &mac_bytes, 1) != 0 ||
strcmp(ck, "CRC64") == 0) {
fprintf(stderr, "Invalid PCOMPRESS_CHUNK_HASH_GLOBAL.\n");
chunk_cksum = -1;
pthread_mutex_unlock(&init_lock);
return (NULL);
}
}
if (chunk_cksum == 0) {
chunk_cksum = DEFAULT_CHUNK_CKSUM;
if (get_checksum_props(NULL, &chunk_cksum, &cksum_bytes, &mac_bytes, 0) != 0) {
fprintf(stderr, "Invalid default chunk checksum: %d\n", DEFAULT_CHUNK_CKSUM);
return (NULL);
}
}
arc = init_global_db_s(NULL, tmppath, rab_blk_sz, chunksize, pct_interval,
algo, chunk_cksum, GLOBAL_SIM_CKSUM, file_size,
msys_info.freeram, nthreads);
if (arc == NULL) {
pthread_mutex_unlock(&init_lock);
return (NULL);
}
}
inited = 1;
}
pthread_mutex_unlock(&init_lock);
/*
* Rabin window size must be power of 2 for optimization.
*/
if (!ISP2(RAB_POLYNOMIAL_WIN_SIZE)) {
fprintf(stderr, "Rabin window size must be a power of 2 in range 4 <= x <= 64\n");
return (NULL);
}
if (chunksize < RAB_MIN_CHUNK_SIZE) {
fprintf(stderr, "Minimum chunk size for Dedup must be %" PRIu64 " bytes\n",
RAB_MIN_CHUNK_SIZE);
return (NULL);
}
/*
* For LZMA with chunksize <= LZMA Window size and/or Delta enabled we
* use 4K minimum Rabin block size. For everything else it is 2K based
* on experimentation.
*/
ctx = (dedupe_context_t *)slab_alloc(NULL, sizeof (dedupe_context_t));
ctx->rabin_poly_max_block_size = RAB_POLYNOMIAL_MAX_BLOCK_SIZE;
ctx->arc = arc;
ctx->current_window_data = NULL;
ctx->dedupe_flag = dedupe_flag;
ctx->rabin_break_patt = 0;
ctx->rabin_poly_avg_block_size = RAB_BLK_AVG_SZ(rab_blk_sz);
ctx->rabin_avg_block_mask = RAB_BLK_MASK;
ctx->rabin_poly_min_block_size = dedupe_min_blksz(rab_blk_sz);
ctx->delta_flag = 0;
ctx->deltac_min_distance = props->deltac_min_distance;
ctx->pagesize = sysconf(_SC_PAGE_SIZE);
ctx->similarity_cksums = NULL;
if (arc)
arc->pagesize = ctx->pagesize;
/*
* Scale down similarity percentage based on avg block size unless user specified
* argument '-EE' in which case fixed 40% match is used for Delta compression.
*/
if (delta_flag == DELTA_NORMAL) {
if (ctx->rabin_poly_avg_block_size < (1 << 14)) {
ctx->delta_flag = 1;
} else if (ctx->rabin_poly_avg_block_size < (1 << 16)) {
ctx->delta_flag = 2;
} else {
ctx->delta_flag = 3;
}
} else if (delta_flag == DELTA_EXTRA) {
ctx->delta_flag = 2;
}
if (dedupe_flag != RABIN_DEDUPE_FIXED)
ctx->blknum = chunksize / ctx->rabin_poly_min_block_size;
else
ctx->blknum = chunksize / ctx->rabin_poly_avg_block_size;
if (chunksize % ctx->rabin_poly_min_block_size)
++(ctx->blknum);
if (ctx->blknum > RABIN_MAX_BLOCKS) {
fprintf(stderr, "Chunk size too large for dedup.\n");
destroy_dedupe_context(ctx);
return (NULL);
}
#ifndef SSE_MODE
ctx->current_window_data = (uchar_t *)slab_alloc(NULL, RAB_POLYNOMIAL_WIN_SIZE);
#else
ctx->current_window_data = (uchar_t *)1;
#endif
ctx->blocks = NULL;
if (real_chunksize > 0 && dedupe_flag != RABIN_DEDUPE_FILE_GLOBAL) {
ctx->blocks = (rabin_blockentry_t **)slab_calloc(NULL,
ctx->blknum, sizeof (rabin_blockentry_t *));
}
if(ctx == NULL || ctx->current_window_data == NULL ||
(ctx->blocks == NULL && real_chunksize > 0 && dedupe_flag != RABIN_DEDUPE_FILE_GLOBAL)) {
fprintf(stderr,
"Could not allocate rabin polynomial context, out of memory\n");
destroy_dedupe_context(ctx);
return (NULL);
}
if (arc && dedupe_flag == RABIN_DEDUPE_FILE_GLOBAL) {
ctx->similarity_cksums = (uchar_t *)slab_calloc(NULL,
arc->sub_intervals,
arc->similarity_cksum_sz);
if (!ctx->similarity_cksums) {
fprintf(stderr,
"Could not allocate dedupe context, out of memory\n");
destroy_dedupe_context(ctx);
return (NULL);
}
}
ctx->lzma_data = NULL;
ctx->level = 14;
if (real_chunksize > 0) {
lzma_init(&(ctx->lzma_data), &(ctx->level), 1, chunksize, file_version, op);
// The lzma_data member is not needed during decompression
if (!(ctx->lzma_data) && op == COMPRESS) {
fprintf(stderr,
"Could not initialize LZMA data for dedupe index, out of memory\n");
destroy_dedupe_context(ctx);
return (NULL);
}
}
slab_cache_add(sizeof (rabin_blockentry_t));
ctx->real_chunksize = real_chunksize;
reset_dedupe_context(ctx);
return (ctx);
}
void
reset_dedupe_context(dedupe_context_t *ctx)
{
#ifndef SSE_MODE
memset(ctx->current_window_data, 0, RAB_POLYNOMIAL_WIN_SIZE);
#endif
ctx->valid = 0;
}
void
destroy_dedupe_context(dedupe_context_t *ctx)
{
if (ctx) {
uint32_t i;
#ifndef SSE_MODE
if (ctx->current_window_data) slab_free(NULL, ctx->current_window_data);
#endif
pthread_mutex_lock(&init_lock);
if (arc) {
destroy_global_db_s(arc);
}
arc = NULL;
pthread_mutex_unlock(&init_lock);
if (ctx->blocks) {
for (i=0; iblknum && ctx->blocks[i] != NULL; i++) {
slab_free(NULL, ctx->blocks[i]);
}
slab_free(NULL, ctx->blocks);
}
if (ctx->similarity_cksums) slab_free(NULL, ctx->similarity_cksums);
if (ctx->lzma_data) lzma_deinit(&(ctx->lzma_data));
slab_free(NULL, ctx);
}
}
/*
* Simple insertion sort of integers. Used for sorting a small number of items to
* avoid overheads of qsort() with callback function.
*/
static void
isort_uint64(uint64_t *ary, uint32_t nitems)
{
uint32_t i, j, k;
uint64_t tmp;
for (i = 1 ; i < nitems; i++) {
for (j = 0 ; j < i ; j++) {
if (ary[j] > ary[i]) {
tmp = ary[j] ;
ary[j] = ary[i] ;
for (k = i ; k > j ; k--)
ary[k] = ary[k - 1] ;
ary[k + 1] = tmp ;
}
}
}
}
/*
* Sort an array of 64-bit unsigned integers. The QSORT macro provides an
* inline quicksort routine that does not use a callback function.
*/
#define int_lt(a,b) ((*a)<(*b))
static void
do_qsort(uint64_t *arr, uint32_t len)
{
QSORT(uint64_t, arr, len, int_lt);
}
static inline int
ckcmp(uchar_t *a, uchar_t *b, int sz)
{
size_t *v1 = (size_t *)a;
size_t *v2 = (size_t *)b;
int len;
len = 0;
do {
if (*v1 != *v2) {
return (1);
}
++v1;
++v2;
len += sizeof (size_t);
} while (len < sz);
return (0);
}
/**
* Perform Deduplication.
* Both Semi-Rabin fingerprinting based and Fixed Block Deduplication are supported.
* A 16-byte window is used for the rolling checksum and dedup blocks can vary in size
* from 4K-128K.
*/
uint32_t
dedupe_compress(dedupe_context_t *ctx, uchar_t *buf, uint64_t *size, uint64_t offset,
uint64_t *rabin_pos, int mt)
{
uint64_t i, last_offset, j, ary_sz;
uint32_t blknum, window_pos;
uchar_t *buf1 = (uchar_t *)buf;
uint32_t length;
uint64_t cur_roll_checksum, cur_pos_checksum;
uint32_t *ctx_heap;
rabin_blockentry_t **htab;
MinHeap heap;
DEBUG_STAT_EN(uint32_t max_count = 0);
DEBUG_STAT_EN(double en);
double strt, en_1;
length = offset;
last_offset = 0;
blknum = 0;
window_pos = 0;
ctx->valid = 0;
cur_roll_checksum = 0;
if (*size < ctx->rabin_poly_avg_block_size) return (0);
strt = get_wtime_millis();
if (ctx->dedupe_flag == RABIN_DEDUPE_FIXED) {
blknum = *size / ctx->rabin_poly_avg_block_size;
j = *size % ctx->rabin_poly_avg_block_size;
if (j)
++blknum;
else
j = ctx->rabin_poly_avg_block_size;
last_offset = 0;
length = ctx->rabin_poly_avg_block_size;
for (i=0; iblocks[i] == 0) {
ctx->blocks[i] = (rabin_blockentry_t *)slab_alloc(NULL,
sizeof (rabin_blockentry_t));
}
ctx->blocks[i]->offset = last_offset;
ctx->blocks[i]->index = i; // Need to store for sorting
ctx->blocks[i]->length = length;
ctx->blocks[i]->similar = 0;
ctx->blocks[i]->hash = XXH32(buf1+last_offset, length, 0);
ctx->blocks[i]->similarity_hash = ctx->blocks[i]->hash;
last_offset += length;
tot_chunks++;
tot_size += length;
non_hashed_size += length;
}
en_1 = get_wtime_millis();
tot_time += en_1 - strt;
for (i=0; iblocks[i]->length]++;
goto process_blocks;
}
if (rabin_pos == NULL) {
/*
* If global dedupe is active, the global blocks array uses temp space in
* the target buffer.
*/
ary_sz = 0;
if (ctx->arc != NULL) {
ary_sz = (sizeof (global_blockentry_t) * (*size / ctx->rabin_poly_min_block_size + 1));
ctx->g_blocks = (global_blockentry_t *)(ctx->cbuf + ctx->real_chunksize - ary_sz);
}
/*
* Initialize arrays for sketch computation. We re-use memory allocated
* for the compressed chunk temporarily.
*/
ary_sz += ctx->rabin_poly_max_block_size;
ctx_heap = (uint32_t *)(ctx->cbuf + ctx->real_chunksize - ary_sz);
}
#ifndef SSE_MODE
memset(ctx->current_window_data, 0, RAB_POLYNOMIAL_WIN_SIZE);
#else
__m128i cur_sse_byte = _mm_setzero_si128();
__m128i window = _mm_setzero_si128();
#endif
j = *size - RAB_POLYNOMIAL_WIN_SIZE;
/*
* If rabin_pos is non-zero then we are being asked to scan for the last rabin boundary
* in the chunk. We start scanning at chunk end - max rabin block size. We avoid doing
* a full chunk scan.
*
* !!!NOTE!!!: Code duplication below for performance.
*/
if (rabin_pos) {
offset = *size - ctx->rabin_poly_max_block_size;
length = 0;
for (i=offset; i>= 24;
asm ("movd %[cur_byte], %[cur_sse_byte]"
: [cur_sse_byte] "=x" (cur_sse_byte)
: [cur_byte] "r" (cur_byte)
);
window = _mm_slli_si128(window, 1);
window = _mm_or_si128(window, cur_sse_byte);
#else
uint32_t pushed_out = ctx->current_window_data[window_pos];
ctx->current_window_data[window_pos] = cur_byte;
#endif
cur_roll_checksum = (cur_roll_checksum * RAB_POLYNOMIAL_CONST) & POLY_MASK;
cur_roll_checksum += cur_byte;
cur_roll_checksum -= out[pushed_out];
#ifndef SSE_MODE
window_pos = (window_pos + 1) & (RAB_POLYNOMIAL_WIN_SIZE-1);
#endif
++length;
if (length < ctx->rabin_poly_min_block_size) continue;
// If we hit our special value update block offset
cur_pos_checksum = cur_roll_checksum ^ ir[pushed_out];
if ((cur_pos_checksum & ctx->rabin_avg_block_mask) == ctx->rabin_break_patt) {
last_offset = i;
length = 0;
}
}
if (last_offset < *size) {
*rabin_pos = last_offset;
}
return (0);
}
/*
* Start our sliding window at a fixed number of bytes before the min window size.
* It is pointless to slide the window over the whole length of the chunk.
*/
offset = ctx->rabin_poly_min_block_size - RAB_WINDOW_SLIDE_OFFSET;
length = offset;
non_hashed_size += offset;
for (i=offset; i>= 24;
/*
* No intrinsic available for this.
*/
asm ("movd %[cur_byte], %[cur_sse_byte]"
: [cur_sse_byte] "=x" (cur_sse_byte)
: [cur_byte] "r" (cur_byte)
);
window = _mm_slli_si128(window, 1);
window = _mm_or_si128(window, cur_sse_byte);
#else
uint32_t pushed_out = ctx->current_window_data[window_pos];
ctx->current_window_data[window_pos] = cur_byte;
#endif
cur_roll_checksum = (cur_roll_checksum * RAB_POLYNOMIAL_CONST) & POLY_MASK;
cur_roll_checksum += cur_byte;
cur_roll_checksum -= out[pushed_out];
#ifndef SSE_MODE
/*
* Window pos has to rotate from 0 .. RAB_POLYNOMIAL_WIN_SIZE-1
* We avoid a branch here by masking. This requires RAB_POLYNOMIAL_WIN_SIZE
* to be power of 2
*/
window_pos = (window_pos + 1) & (RAB_POLYNOMIAL_WIN_SIZE-1);
#endif
++length;
if (length < ctx->rabin_poly_min_block_size) continue;
// If we hit our special value or reached the max block size update block offset
cur_pos_checksum = cur_roll_checksum ^ ir[pushed_out];
if ((cur_pos_checksum & ctx->rabin_avg_block_mask) == ctx->rabin_break_patt ||
length >= ctx->rabin_poly_max_block_size) {
if (!(ctx->arc)) {
if (ctx->blocks[blknum] == 0)
ctx->blocks[blknum] = (rabin_blockentry_t *)slab_alloc(NULL,
sizeof (rabin_blockentry_t));
ctx->blocks[blknum]->offset = last_offset;
ctx->blocks[blknum]->index = blknum; // Need to store for sorting
ctx->blocks[blknum]->length = length;
} else {
ctx->g_blocks[blknum].length = length;
ctx->g_blocks[blknum].offset = last_offset;
}
tot_chunks++;
tot_size += length;
DEBUG_STAT_EN(if (length >= ctx->rabin_poly_max_block_size) ++max_count);
/*
* Reset the heap structure and find the K min values if Delta Compression
* is enabled. We use a min heap mechanism taken from the heap based priority
* queue implementation in Python.
* Here K = similarity extent = 87% or 62% or 50%.
*
* Once block contents are arranged in a min heap we compute the K min values
* sketch by hashing over the heap till K%. We interpret the raw bytes as a
* sequence of 64-bit integers.
* This is variant of minhashing which is used widely, for example in various
* search engines to detect similar documents.
*/
if (ctx->delta_flag) {
length /= 8;
pc[1] = DELTA_NORMAL_PCT(length);
pc[2] = DELTA_EXTRA_PCT(length);
pc[3] = DELTA_EXTRA2_PCT(length);
heap_nsmallest(&heap, (int64_t *)(buf1+last_offset),
(int64_t *)ctx_heap, pc[ctx->delta_flag], length);
ctx->blocks[blknum]->similarity_hash =
XXH32((const uchar_t *)ctx_heap, heap_size(&heap)*8, 0);
}
++blknum;
last_offset = i+1;
length = 0;
if (*size - last_offset <= ctx->rabin_poly_min_block_size) break;
length = ctx->rabin_poly_min_block_size - RAB_WINDOW_SLIDE_OFFSET;
i = i + length;
non_hashed_size += length;
}
}
// Insert the last left-over trailing bytes, if any, into a block.
if (last_offset < *size) {
length = *size - last_offset;
non_hashed_size += length;
if (!(ctx->arc)) {
if (ctx->blocks[blknum] == 0)
ctx->blocks[blknum] = (rabin_blockentry_t *)slab_alloc(NULL,
sizeof (rabin_blockentry_t));
ctx->blocks[blknum]->offset = last_offset;
ctx->blocks[blknum]->index = blknum;
ctx->blocks[blknum]->length = length;
} else {
ctx->g_blocks[blknum].length = length;
ctx->g_blocks[blknum].offset = last_offset;
}
tot_chunks++;
tot_size += length;
if (ctx->delta_flag) {
uint64_t cur_sketch;
uint64_t pc[4];
if (length > ctx->rabin_poly_min_block_size) {
length /= 8;
pc[1] = DELTA_NORMAL_PCT(length);
pc[2] = DELTA_EXTRA_PCT(length);
pc[3] = DELTA_EXTRA2_PCT(length);
heap_nsmallest(&heap, (int64_t *)(buf1+last_offset),
(int64_t *)ctx_heap, pc[ctx->delta_flag], length);
cur_sketch =
XXH32((const uchar_t *)ctx_heap, heap_size(&heap)*8, 0);
} else {
cur_sketch =
XXH32((const uchar_t *)(buf1+last_offset), length, 0);
}
ctx->blocks[blknum]->similarity_hash = cur_sketch;
}
++blknum;
last_offset = *size;
}
process_blocks:
// If we found at least a few chunks, perform dedup.
en_1 = get_wtime_millis();
tot_time += en_1 - strt;
DEBUG_STAT_EN(fprintf(stderr, "Original size: %" PRId64 ", blknum: %u\n", *size, blknum));
DEBUG_STAT_EN(fprintf(stderr, "Number of maxlen blocks: %u\n", max_count));
if (blknum <=2 && ctx->arc) {
sem_wait(ctx->index_sem);
sem_post(ctx->index_sem_next);
}
if (blknum > 2) {
uint64_t pos, matchlen, pos1 = 0;
int valid = 1;
uint32_t *dedupe_index;
uint64_t dedupe_index_sz = 0;
rabin_blockentry_t *be;
DEBUG_STAT_EN(uint32_t delta_calls, delta_fails, merge_count, hash_collisions);
DEBUG_STAT_EN(double w1 = 0);
DEBUG_STAT_EN(double w2 = 0);
DEBUG_STAT_EN(delta_calls = 0);
DEBUG_STAT_EN(delta_fails = 0);
DEBUG_STAT_EN(hash_collisions = 0);
/*
* If global dedupe is enabled then process it here.
*/
if (ctx->arc) {
uchar_t *g_dedupe_idx, *tgt, *src;
/*
* First compute all the rabin chunk/block cryptographic hashes.
*/
#if defined(_OPENMP)
# pragma omp parallel for
#endif
for (i=0; ig_blocks[i].cksum,
ctx->arc->chunk_cksum_type, buf1+ctx->g_blocks[i].offset,
ctx->g_blocks[i].length, 0, 0);
}
for (i=0; ig_blocks[i].length]++;
/*
* Index table within this segment.
*/
g_dedupe_idx = ctx->cbuf + RABIN_HDR_SIZE;
dedupe_index_sz = 0;
/*
* First entry in table is the original file offset where this
* data segment begins.
*/
*((uint64_t *)g_dedupe_idx) = LE64(ctx->file_offset);
g_dedupe_idx += (RABIN_ENTRY_SIZE * 2);
dedupe_index_sz += 2;
matchlen = 0;
if (ctx->arc->dedupe_mode == MODE_SIMPLE) {
/*======================================================================
* This code block implements Global Dedupe with simple in-memory index.
*======================================================================
*/
/*
* Now lookup blocks in index. First wait for our semaphore to be
* signaled. If the previous thread in sequence is using the index
* it will finish and then signal our semaphore. So we can have
* predictable serialization of index access in a sequence of
* threads without locking.
*/
length = 0;
DEBUG_STAT_EN(w1 = get_wtime_millis());
sem_wait(ctx->index_sem);
DEBUG_STAT_EN(w2 = get_wtime_millis());
for (i=0; iarc, ctx->g_blocks[i].cksum, 0,
ctx->file_offset + ctx->g_blocks[i].offset,
ctx->g_blocks[i].length, 1);
if (!he) {
/*
* Block match in index not found.
* Block was added to index. Merge this block.
*/
if (length + ctx->g_blocks[i].length > RABIN_MAX_BLOCK_SIZE) {
*((uint32_t *)g_dedupe_idx) = LE32(length);
g_dedupe_idx += RABIN_ENTRY_SIZE;
length = 0;
dedupe_index_sz++;
}
length += ctx->g_blocks[i].length;
} else {
/*
* Block match in index was found.
*/
if (length > 0) {
/*
* Write pending accumulated block length value.
*/
*((uint32_t *)g_dedupe_idx) = LE32(length);
g_dedupe_idx += RABIN_ENTRY_SIZE;
length = 0;
dedupe_index_sz++;
}
/*
* Add a reference entry to the dedupe array.
*/
*((uint32_t *)g_dedupe_idx) = LE32((he->item_size | RABIN_INDEX_FLAG) &
CLEAR_SIMILARITY_FLAG);
g_dedupe_idx += RABIN_ENTRY_SIZE;
*((uint64_t *)g_dedupe_idx) = LE64(he->item_offset);
g_dedupe_idx += (RABIN_ENTRY_SIZE * 2);
matchlen += he->item_size;
dedupe_index_sz += 3;
}
}
/*
* Signal the next thread in sequence to access the index.
*/
sem_post(ctx->index_sem_next);
/*
* Write final pending block length value (if any).
*/
if (length > 0) {
*((uint32_t *)g_dedupe_idx) = LE32(length);
g_dedupe_idx += RABIN_ENTRY_SIZE;
length = 0;
dedupe_index_sz++;
}
blknum = dedupe_index_sz; // Number of entries in block list
tgt = g_dedupe_idx;
g_dedupe_idx = ctx->cbuf + RABIN_HDR_SIZE;
dedupe_index_sz = tgt - g_dedupe_idx;
src = buf1;
g_dedupe_idx += (RABIN_ENTRY_SIZE * 2);
} else {
uchar_t *seg_heap, *sim_ck, *sim_offsets;
archive_config_t *cfg;
uint32_t increment, len, blks, o_blks, k;
global_blockentry_t *seg_blocks;
uint64_t seg_offset, offset;
global_blockentry_t **htab, *be;
int sub_i;
/*======================================================================
* This code block implements Segmented similarity based Dedupe with
* in-memory index for very large datasets.
* ======================================================================
*/
cfg = ctx->arc;
assert(cfg->similarity_cksum_sz == sizeof (uint64_t));
seg_heap = (uchar_t *)(ctx->g_blocks) - cfg->segment_sz * cfg->chunk_cksum_sz;
ary_sz = (cfg->sub_intervals * cfg->similarity_cksum_sz + sizeof (blks) + 1) *
(blknum / cfg->segment_sz + 1) + 3;
sim_offsets = seg_heap - ary_sz;
src = sim_offsets;
ary_sz = cfg->segment_sz * sizeof (global_blockentry_t **);
htab = (global_blockentry_t **)(src - ary_sz);
for (i=0; isegment_sz;
if (blks > blknum-i) blks = blknum-i;
length = 0;
tgt = seg_heap;
#ifdef __USE_SSE_INTRIN__
if ((cfg->chunk_cksum_sz & 15) == 0) {
for (j=0; jchunk_cksum_sz;
sc = ctx->g_blocks[j+i].cksum;
/*
* Use SSE2 to copy 16 bytes at a time avoiding a call
* to memcpy() since hash sizes are typically multiple
* of 16 bytes: 256-bit or 512-bit.
*/
while (k > 0) {
s = _mm_loadu_si128((__m128i *)sc);
_mm_storeu_si128((__m128i *)tgt, s);
tgt += 16;
sc += 16;
k -= 16;
}
length += cfg->chunk_cksum_sz;
}
} else {
#else
{
#endif
for (j=0; jg_blocks[j+i].cksum, cfg->chunk_cksum_sz);
length += cfg->chunk_cksum_sz;
tgt += cfg->chunk_cksum_sz;
}
}
*((uint32_t *)src) = blks;
src += sizeof (blks);
blks = j+i;
/*
* Sort concatenated chunk hash buffer by raw 64-bit integer
* magnitudes.
*/
do_qsort((uint64_t *)seg_heap, length/8);
/*
* Compute the min-values range similarity hashes.
*/
sim_ck = ctx->similarity_cksums;
sub_i = cfg->sub_intervals;
tgt = seg_heap;
increment = cfg->chunk_cksum_sz / 2;
if (increment * sub_i > length)
sub_i = length / increment;
for (j = 0; jsimilarity_cksum_sz;
}
/*
* Begin shared index access and write segment metadata to cache
* first.
*/
if (i == 0) {
DEBUG_STAT_EN(w1 = get_wtime_millis());
sem_wait(ctx->index_sem);
DEBUG_STAT_EN(w2 = get_wtime_millis());
}
seg_offset = db_segcache_pos(cfg, ctx->id);
len = (blks-i) * sizeof (global_blockentry_t);
if (db_segcache_write(cfg, ctx->id, (uchar_t *)&(ctx->g_blocks[i]),
len, blks-i, ctx->file_offset) == -1) {
sem_post(ctx->index_sem_next);
ctx->valid = 0;
return (0);
}
/*
* Now lookup all the similarity hashes. We sort the hashes first so that
* all duplicate hash values can be easily eliminated.
*
* The matching segment offsets in the segcache are stored in a list. Entries
* that were not found are stored with offset of UINT64_MAX.
*/
isort_uint64((uint64_t *)(ctx->similarity_cksums), sub_i);
sim_ck = ctx->similarity_cksums;
tgt = src + 1; // One byte for number of entries
crc = 0;
off1 = UINT64_MAX;
k = 0;
for (j=0; j < sub_i; j++) {
hash_entry_t *he = NULL;
if (j > 0 && crc != *((uint64_t *)sim_ck)) {
he = db_lookup_insert_s(cfg, sim_ck, 0, seg_offset, 0, 1);
} else {
he = NULL;
}
if (he) {
*((uint64_t *)tgt) = he->item_offset;
} else {
*((uint64_t *)tgt) = UINT64_MAX;
}
crc = *((uint64_t *)sim_ck);
sim_ck += cfg->similarity_cksum_sz;
tgt += cfg->similarity_cksum_sz;
}
/*
* At this point we have a list of segment offsets from the segcache
* file. Sort the offsets to avoid subsequent random access.
*/
tgt = src + 1;
isort_uint64((uint64_t *)tgt, sub_i);
/*
* Now eliminate duplicate offsets and UINT64_MAX offset entries which
* indicate entries that were not found.
*/
sim_ck = tgt;
for (j=0; j < sub_i; j++) {
if (off1 != *((uint64_t *)sim_ck) && *((uint64_t *)sim_ck) != UINT64_MAX) {
off1 = *((uint64_t *)sim_ck);
*((uint64_t *)tgt) = off1;
tgt += cfg->similarity_cksum_sz;
k++;
}
sim_ck += cfg->similarity_cksum_sz;
}
*src = k; // Number of entries
src = tgt;
i = blks;
}
/*
* Signal the next thread in sequence to access the index.
*/
sem_post(ctx->index_sem_next);
/*
* Now go through all the matching segments for all the current segments
* and perform actual deduplication.
*/
src = sim_offsets;
for (i=0; ig_blocks[k].cksum, cfg->chunk_cksum_sz, 0);
hent ^= (hent / cfg->chunk_cksum_sz);
hent = hent % cfg->segment_sz;
if (htab[hent] == NULL) {
htab[hent] = &(ctx->g_blocks[k]);
ctx->g_blocks[k].offset += ctx->file_offset;
ctx->g_blocks[k].next = NULL;
be = NULL;
} else {
be = htab[hent];
do {
if (ckcmp(ctx->g_blocks[k].cksum,
be->cksum, cfg->chunk_cksum_sz) == 0 &&
ctx->g_blocks[k].length == be->length) {
global_blockentry_t *en;
/*
* Block match in index was found. Update g_blocks
* array.
*/
en = &(ctx->g_blocks[k]);
en->length = (en->length | RABIN_INDEX_FLAG) &
CLEAR_SIMILARITY_FLAG;
en->offset = be->offset;
break;
}
if (be->next) {
be = be->next;
} else {
be->next = &(ctx->g_blocks[k]);
be->next->offset += ctx->file_offset;
be->next->next = NULL;
break;
}
} while(1);
}
}
/*
* Now go through segment match list which was prepared earlier
* and deduplicate with the matching segment blocks.
*/
sub_i = *src;
src++;
sim_ck = src;
for (j=0; j < sub_i; j++) {
/*
* Load segment metadata from disk and perform identity deduplication
* with the segment chunks.
*/
offset = *((uint64_t *)sim_ck);
if (db_segcache_map(cfg, ctx->id, &o_blks, &offset,
(uchar_t **)&seg_blocks) == -1) {
fprintf(stderr, "** Segment cache mmap failed.\n");
ctx->valid = 0;
return (0);
}
/*
* Now lookup loaded segment blocks in hashtable. If match is
* found then the hashtable entry is updated to point to the
* loaded segment block.
*/
for (k=0; kchunk_cksum_sz, 0);
hent ^= (hent / cfg->chunk_cksum_sz);
hent = hent % cfg->segment_sz;
if (htab[hent] != NULL) {
be = htab[hent];
do {
if (be->length & RABIN_INDEX_FLAG)
goto next_ent;
if (ckcmp(seg_blocks[k].cksum,
be->cksum, cfg->chunk_cksum_sz) == 0 &&
seg_blocks[k].length == be->length) {
be->length = (be->length |
RABIN_INDEX_FLAG) &
CLEAR_SIMILARITY_FLAG;
be->offset = seg_blocks[k].offset +
offset;
break;
}
next_ent:
if (be->next)
be = be->next;
else
break;
} while(1);
}
}
sim_ck += cfg->similarity_cksum_sz;
}
src = sim_ck;
i = blks;
}
/*======================================================================
* Finally scan the blocks array and update dedupe index.
*======================================================================
*/
length = 0;
for (i=0; ig_blocks[i].length & RABIN_INDEX_FLAG)) {
/*
* Block match in index was not found.
* Block was added to index. Merge this block.
*/
if (length + ctx->g_blocks[i].length > RABIN_MAX_BLOCK_SIZE) {
*((uint32_t *)g_dedupe_idx) = LE32(length);
g_dedupe_idx += RABIN_ENTRY_SIZE;
length = 0;
dedupe_index_sz++;
}
length += ctx->g_blocks[i].length;
} else {
/*
* Block match in index was found.
*/
if (length > 0) {
/*
* Write pending accumulated block length value.
*/
*((uint32_t *)g_dedupe_idx) = LE32(length);
g_dedupe_idx += RABIN_ENTRY_SIZE;
length = 0;
dedupe_index_sz++;
}
/*
* Add a reference entry to the dedupe array.
*/
*((uint32_t *)g_dedupe_idx) = LE32(ctx->g_blocks[i].length);
g_dedupe_idx += RABIN_ENTRY_SIZE;
*((uint64_t *)g_dedupe_idx) = LE64(ctx->g_blocks[i].offset);
g_dedupe_idx += (RABIN_ENTRY_SIZE * 2);
matchlen += (ctx->g_blocks[i].length & RABIN_INDEX_VALUE);
dedupe_index_sz += 3;
}
}
/*
* Write final pending block length value (if any).
*/
if (length > 0) {
*((uint32_t *)g_dedupe_idx) = LE32(length);
g_dedupe_idx += RABIN_ENTRY_SIZE;
length = 0;
dedupe_index_sz++;
}
blknum = dedupe_index_sz; // Number of entries in block list
tgt = g_dedupe_idx;
g_dedupe_idx = ctx->cbuf + RABIN_HDR_SIZE;
dedupe_index_sz = tgt - g_dedupe_idx;
src = buf1;
g_dedupe_idx += (RABIN_ENTRY_SIZE * 2);
}
/*
* Deduplication reduction should at least be greater than block list metadata.
*/
if (matchlen < dedupe_index_sz) {
DEBUG_STAT_EN(en = get_wtime_millis());
DEBUG_STAT_EN(fprintf(stderr, "Chunking speed %.3f MB/s, Overall Dedupe speed %.3f MB/s\n",
get_mb_s(*size, strt, en_1), get_mb_s(*size, strt, en - (w2 - w1))));
DEBUG_STAT_EN(fprintf(stderr, "No Dedupe possible."));
ctx->valid = 0;
return (0);
}
/*
* Now copy the block data;
*/
for (i=0; icbuf;
blknum |= GLOBAL_FLAG;
goto dedupe_done;
}
/*
* Subsequent processing below is for per-segment Deduplication.
*/
/*
* Compute hash signature for each block. We do this in a separate loop to
* have a fast linear scan through the buffer.
*/
if (ctx->delta_flag) {
#if defined(_OPENMP)
# pragma omp parallel for if (mt)
#endif
for (i=0; iblocks[i]->hash = XXH32(buf1+ctx->blocks[i]->offset,
ctx->blocks[i]->length, 0);
}
} else {
#if defined(_OPENMP)
# pragma omp parallel for if (mt)
#endif
for (i=0; iblocks[i]->hash = XXH32(buf1+ctx->blocks[i]->offset,
ctx->blocks[i]->length, 0);
ctx->blocks[i]->similarity_hash = ctx->blocks[i]->hash;
}
}
for (i=0; iblocks[i]->length]++;
ary_sz = (blknum << 1) * sizeof (rabin_blockentry_t *);
htab = (rabin_blockentry_t **)(ctx->cbuf + ctx->real_chunksize - ary_sz);
memset(htab, 0, ary_sz);
/*
* Perform hash-matching of blocks and use a bucket-chained hashtable to match
* for duplicates and similar blocks. Unique blocks are inserted and duplicates
* and similar ones are marked in the block array.
*
* Hashtable memory is not allocated. We just use available space in the
* target buffer.
*/
matchlen = 0;
for (i=0; iblocks[i]->similarity_hash;
ck ^= (ck / ctx->blocks[i]->length);
j = ck % (blknum << 1);
if (htab[j] == 0) {
/*
* Hash bucket empty. So add block into table.
*/
htab[j] = ctx->blocks[i];
ctx->blocks[i]->other = 0;
ctx->blocks[i]->next = 0;
ctx->blocks[i]->similar = 0;
} else {
be = htab[j];
length = 0;
/*
* Look for exact duplicates. Same cksum, length and memcmp()
*/
while (1) {
if (be->hash == ctx->blocks[i]->hash &&
be->length == ctx->blocks[i]->length &&
memcmp(buf1 + be->offset, buf1 + ctx->blocks[i]->offset,
be->length) == 0) {
ctx->blocks[i]->similar = SIMILAR_EXACT;
ctx->blocks[i]->other = be;
be->similar = SIMILAR_REF;
matchlen += be->length;
length = 1;
break;
}
if (be->next)
be = be->next;
else
break;
}
if (ctx->delta_flag && !length) {
/*
* Look for similar blocks.
*/
be = htab[j];
while (1) {
if (be->similarity_hash == ctx->blocks[i]->similarity_hash &&
be->length == ctx->blocks[i]->length) {
uint64_t off_diff;
if (be->offset > ctx->blocks[i]->offset)
off_diff = be->offset - ctx->blocks[i]->offset;
else
off_diff = ctx->blocks[i]->offset - be->offset;
if (off_diff > ctx->deltac_min_distance) {
ctx->blocks[i]->similar = SIMILAR_PARTIAL;
ctx->blocks[i]->other = be;
be->similar = SIMILAR_REF;
matchlen += (be->length>>1);
length = 1;
break;
}
}
if (be->next)
be = be->next;
else
break;
}
}
/*
* No duplicate in table for this block. So add it to
* the bucket chain.
*/
if (!length) {
ctx->blocks[i]->other = 0;
ctx->blocks[i]->next = 0;
ctx->blocks[i]->similar = 0;
be->next = ctx->blocks[i];
DEBUG_STAT_EN(++hash_collisions);
}
}
}
DEBUG_STAT_EN(fprintf(stderr, "Total Hashtable bucket collisions: %u\n", hash_collisions));
dedupe_index_sz = (uint64_t)blknum * RABIN_ENTRY_SIZE;
if (matchlen < dedupe_index_sz) {
DEBUG_STAT_EN(en = get_wtime_millis());
DEBUG_STAT_EN(fprintf(stderr, "Chunking speed %.3f MB/s, Overall Dedupe speed %.3f MB/s\n",
get_mb_s(*size, strt, en_1), get_mb_s(*size, strt, en)));
DEBUG_STAT_EN(fprintf(stderr, "No Dedupe possible.\n"));
ctx->valid = 0;
return (0);
}
dedupe_index = (uint32_t *)(ctx->cbuf + RABIN_HDR_SIZE);
pos = 0;
DEBUG_STAT_EN(merge_count = 0);
/*
* Merge runs of unique blocks into a single block entry to reduce
* dedupe index size.
*/
for (i=0; iblocks[i]->index = pos;
++pos;
length = 0;
j = i;
if (ctx->blocks[i]->similar == 0) {
while (i< blknum && ctx->blocks[i]->similar == 0 &&
length < RABIN_MAX_BLOCK_SIZE) {
length += ctx->blocks[i]->length;
++i;
DEBUG_STAT_EN(++merge_count);
}
ctx->blocks[j]->length = length;
} else {
++i;
}
}
DEBUG_STAT_EN(fprintf(stderr, "Merge count: %u\n", merge_count));
/*
* Final pass update dedupe index and copy data.
*/
blknum = pos;
dedupe_index_sz = (uint64_t)blknum * RABIN_ENTRY_SIZE;
pos1 = dedupe_index_sz + RABIN_HDR_SIZE;
matchlen = ctx->real_chunksize - *size;
for (i=0; iblocks[dedupe_index[i]];
if (be->similar == 0 || be->similar == SIMILAR_REF) {
/* Just copy. */
dedupe_index[i] = htonl(be->length);
memcpy(ctx->cbuf + pos1, buf1 + be->offset, be->length);
pos1 += be->length;
} else {
if (be->similar == SIMILAR_EXACT) {
dedupe_index[i] = htonl((be->other->index | RABIN_INDEX_FLAG) &
CLEAR_SIMILARITY_FLAG);
} else {
uchar_t *oldbuf, *newbuf;
int32_t bsz;
/*
* Perform bsdiff.
*/
oldbuf = buf1 + be->other->offset;
newbuf = buf1 + be->offset;
DEBUG_STAT_EN(++delta_calls);
bsz = bsdiff(oldbuf, be->other->length, newbuf, be->length,
ctx->cbuf + pos1, buf1 + *size, matchlen);
if (bsz == 0) {
DEBUG_STAT_EN(++delta_fails);
memcpy(ctx->cbuf + pos1, newbuf, be->length);
dedupe_index[i] = htonl(be->length);
pos1 += be->length;
} else {
dedupe_index[i] = htonl(be->other->index |
RABIN_INDEX_FLAG | SET_SIMILARITY_FLAG);
pos1 += bsz;
}
}
}
}
dedupe_done:
if (valid) {
uchar_t *cbuf = ctx->cbuf;
uint64_t *entries;
DEBUG_STAT_EN(uint64_t sz);
DEBUG_STAT_EN(sz = *size);
*((uint32_t *)cbuf) = htonl(blknum);
cbuf += sizeof (uint32_t);
entries = (uint64_t *)cbuf;
entries[0] = htonll(*size);
entries[1] = 0;
entries[2] = htonll(pos1 - dedupe_index_sz - RABIN_HDR_SIZE);
*size = pos1;
ctx->valid = 1;
DEBUG_STAT_EN(en = get_wtime_millis());
DEBUG_STAT_EN(fprintf(stderr, "Deduped size: %" PRId64 ", blknum: %u, delta_calls: %u, delta_fails: %u\n",
*size, (unsigned int)(blknum & CLEAR_GLOBAL_FLAG), delta_calls, delta_fails));
DEBUG_STAT_EN(fprintf(stderr, "Chunking speed %.3f MB/s, Overall Dedupe speed %.3f MB/s\n",
get_mb_s(sz, strt, en_1), get_mb_s(sz, strt, en)));
/*
* Remaining header entries: size of compressed index and size of
* compressed data are inserted later via rabin_update_hdr, after actual compression!
*/
return (dedupe_index_sz);
}
}
return (0);
}
void
update_dedupe_hdr(uchar_t *buf, uint64_t dedupe_index_sz_cmp, uint64_t dedupe_data_sz_cmp)
{
uint64_t *entries;
buf += sizeof (uint32_t);
entries = (uint64_t *)buf;
entries[1] = htonll(dedupe_index_sz_cmp);
entries[3] = htonll(dedupe_data_sz_cmp);
}
void
parse_dedupe_hdr(uchar_t *buf, uint32_t *blknum, uint64_t *dedupe_index_sz,
uint64_t *dedupe_data_sz, uint64_t *dedupe_index_sz_cmp,
uint64_t *dedupe_data_sz_cmp, uint64_t *deduped_size)
{
uint64_t *entries;
*blknum = ntohl(*((uint32_t *)(buf)));
buf += sizeof (uint32_t);
entries = (uint64_t *)buf;
*dedupe_data_sz = ntohll(entries[0]);
*dedupe_index_sz = (uint64_t)(*blknum & CLEAR_GLOBAL_FLAG) * RABIN_ENTRY_SIZE;
*dedupe_index_sz_cmp = ntohll(entries[1]);
*deduped_size = ntohll(entries[2]);
*dedupe_data_sz_cmp = ntohll(entries[3]);
}
void
dedupe_decompress(dedupe_context_t *ctx, uchar_t *buf, uint64_t *size)
{
uint32_t blknum, blk, oblk, len;
uint32_t *dedupe_index;
uint64_t data_sz, sz, indx_cmp, data_sz_cmp, deduped_sz;
uint64_t dedupe_index_sz, pos1;
uchar_t *pos2;
parse_dedupe_hdr(buf, &blknum, &dedupe_index_sz, &data_sz, &indx_cmp, &data_sz_cmp, &deduped_sz);
dedupe_index = (uint32_t *)(buf + RABIN_HDR_SIZE);
pos1 = dedupe_index_sz + RABIN_HDR_SIZE;
pos2 = ctx->cbuf;
sz = 0;
ctx->valid = 1;
/*
* Handling for Global Deduplication.
*/
if (blknum & GLOBAL_FLAG) {
uchar_t *g_dedupe_idx, *src1, *src2;
uint64_t adj, offset;
uint32_t flag;
blknum &= CLEAR_GLOBAL_FLAG;
g_dedupe_idx = buf + RABIN_HDR_SIZE;
offset = LE64(*((uint64_t *)g_dedupe_idx));
g_dedupe_idx += (RABIN_ENTRY_SIZE * 2);
blknum -= 2;
src1 = buf + RABIN_HDR_SIZE + dedupe_index_sz;
sem_wait(ctx->index_sem);
for (blk=0; blk data_sz) {
fprintf(stderr, "Dedup data overflows chunk.\n");
ctx->valid = 0;
break;
}
if (flag == 0) {
memcpy(pos2, src1, len);
pos2 += len;
src1 += len;
sz += len;
} else {
pos1 = LE64(*((uint64_t *)g_dedupe_idx));
g_dedupe_idx += (RABIN_ENTRY_SIZE * 2);
blk += 2;
/*
* Handling of chunk references at duplicate chunks.
*
* If required data offset is greater than the current segment's starting
* offset then the referenced chunk is already in the current segment in
* RAM. Just mem-copy it.
* Otherwise it will be in the current output file. We mmap() the relevant
* region and copy it. The way deduplication is done it is guaranteed that
* all duplicate references will be backward references so this approach works.
*
* However this approach precludes pipe-mode streamed decompression since
* it requires random access to the output file.
*/
if (pos1 > offset) {
src2 = ctx->cbuf + (pos1 - offset);
memcpy(pos2, src2, len);
} else {
adj = pos1 % ctx->pagesize;
src2 = mmap(NULL, len + adj, PROT_READ, MAP_SHARED, ctx->out_fd, pos1 - adj);
if (src2 == NULL) {
perror("MMAP failed ");
ctx->valid = 0;
break;
}
memcpy(pos2, src2 + adj, len);
munmap(src2, len + adj);
}
pos2 += len;
sz += len;
}
}
*size = data_sz;
return;
}
/*
* Handling for per-segment Deduplication.
* First pass re-create the rabin block array from the index metadata.
* Second pass copy over blocks to the target buffer to re-create the original segment.
*/
slab_cache_add(sizeof (rabin_blockentry_t));
for (blk = 0; blk < blknum; blk++) {
if (ctx->blocks[blk] == 0)
ctx->blocks[blk] = (rabin_blockentry_t *)slab_alloc(NULL, sizeof (rabin_blockentry_t));
len = ntohl(dedupe_index[blk]);
ctx->blocks[blk]->hash = 0;
if (len == 0) {
ctx->blocks[blk]->hash = 1;
} else if (!(len & RABIN_INDEX_FLAG)) {
ctx->blocks[blk]->length = len;
ctx->blocks[blk]->offset = pos1;
pos1 += len;
} else {
bsize_t blen;
ctx->blocks[blk]->length = 0;
if (len & GET_SIMILARITY_FLAG) {
ctx->blocks[blk]->offset = pos1;
ctx->blocks[blk]->index = (len & RABIN_INDEX_VALUE) | SET_SIMILARITY_FLAG;
blen = get_bsdiff_sz(buf + pos1);
pos1 += blen;
} else {
ctx->blocks[blk]->index = len & RABIN_INDEX_VALUE;
}
}
}
for (blk = 0; blk < blknum; blk++) {
int rv;
bsize_t newsz;
if (ctx->blocks[blk]->hash == 1) continue;
if (ctx->blocks[blk]->length > 0) {
len = ctx->blocks[blk]->length;
pos1 = ctx->blocks[blk]->offset;
} else {
oblk = ctx->blocks[blk]->index;
if (oblk & GET_SIMILARITY_FLAG) {
oblk = oblk & CLEAR_SIMILARITY_FLAG;
len = ctx->blocks[oblk]->length;
pos1 = ctx->blocks[oblk]->offset;
newsz = data_sz - sz;
rv = bspatch(buf + ctx->blocks[blk]->offset, buf + pos1, len, pos2, &newsz);
if (rv == 0) {
fprintf(stderr, "Failed to bspatch block.\n");
ctx->valid = 0;
break;
}
pos2 += newsz;
sz += newsz;
if (sz > data_sz) {
fprintf(stderr, "Dedup data overflows chunk.\n");
ctx->valid = 0;
break;
}
continue;
} else {
len = ctx->blocks[oblk]->length;
pos1 = ctx->blocks[oblk]->offset;
}
}
memcpy(pos2, buf + pos1, len);
pos2 += len;
sz += len;
if (sz > data_sz) {
fprintf(stderr, "Dedup data overflows chunk.\n");
ctx->valid = 0;
break;
}
}
if (ctx->valid && sz < data_sz) {
fprintf(stderr, "Too little dedup data processed.\n");
ctx->valid = 0;
}
*size = data_sz;
}