/*
* This file is a part of Pcompress, a chunked parallel multi-
* algorithm lossless compression and decompression program.
*
* Copyright (C) 2012-2013 Moinak Ghosh. All rights reserved.
* Use is subject to license terms.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program.
* If not, see .
*
* moinakg@belenix.org, http://moinakg.wordpress.com/
*
*/
/*
* This file includes all the archiving related functions. Pathnames are sorted
* based on extension (or first 4 chars of name if no extension) and size. A simple
* external merge sort is used. This sorting yields better compression ratio.
*
* Sorting is enabled for compression levels greater than 6.
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "pc_archive.h"
#undef _FEATURES_H
#define _XOPEN_SOURCE 700
#include
#include
static int inited = 0, filters_inited = 0;
static pthread_mutex_t init_mutex = PTHREAD_MUTEX_INITIALIZER;
static struct ext_hash_entry {
uint64_t extnum;
int type;
} *exthtab = NULL;
static struct type_data typetab[NUM_SUB_TYPES];
/*
AE_IFREG Regular file
AE_IFLNK Symbolic link
AE_IFSOCK Socket
AE_IFCHR Character device
AE_IFBLK Block device
AE_IFDIR Directory
AE_IFIFO Named pipe (fifo)
*/
#define ARC_ENTRY_OVRHEAD 1024
#define MMAP_SIZE (1024 * 1024)
#define SORT_BUF_SIZE (65536)
#define NAMELEN 4
#define TEMP_MMAP_SIZE (128 * 1024)
#define AW_BLOCK_SIZE (256 * 1024)
typedef struct member_entry {
char name[NAMELEN];
uint32_t file_pos; // 32-bit file position to limit memory usage.
uint64_t size;
} member_entry_t;
struct sort_buf {
member_entry_t members[SORT_BUF_SIZE]; // Use 1MB per sorted buffer
int pos, max;
struct sort_buf *next;
};
static struct arc_list_state {
uchar_t *pbuf;
uint64_t bufsiz, bufpos, arc_size, pathlist_size;
uint32_t fcount;
int fd;
struct sort_buf *srt, *head;
int srt_pos;
} a_state;
pthread_mutex_t nftw_mutex = PTHREAD_MUTEX_INITIALIZER;
static int detect_type_by_ext(const char *path, int pathlen);
static int detect_type_by_data(uchar_t *buf, size_t len);
/*
* Archive writer callback routines for archive creation operation.
*/
static int
arc_open_callback(struct archive *arc, void *ctx)
{
pc_ctx_t *pctx = (pc_ctx_t *)ctx;
sem_init(&(pctx->read_sem), 0, 0);
sem_init(&(pctx->write_sem), 0, 0);
pctx->arc_buf = NULL;
pctx->arc_buf_pos = 0;
pctx->arc_buf_size = 0;
return (ARCHIVE_OK);
}
static int
creat_close_callback(struct archive *arc, void *ctx)
{
pc_ctx_t *pctx = (pc_ctx_t *)ctx;
pctx->arc_closed = 1;
if (pctx->arc_buf) {
sem_post(&(pctx->read_sem));
} else {
pctx->arc_buf_pos = 0;
}
return (ARCHIVE_OK);
}
static ssize_t
creat_write_callback(struct archive *arc, void *ctx, const void *buf, size_t len)
{
uchar_t *buff = (uchar_t *)buf;
pc_ctx_t *pctx = (pc_ctx_t *)ctx;
size_t remaining;
if (pctx->arc_closed) {
archive_set_error(arc, ARCHIVE_EOF, "End of file when writing archive.");
return (-1);
}
if (!pctx->arc_writing) {
sem_wait(&(pctx->write_sem));
}
if (pctx->arc_buf == NULL || pctx->arc_buf_size == 0) {
archive_set_error(arc, ARCHIVE_EOF, "End of file when writing archive.");
return (-1);
}
pctx->arc_writing = 1;
remaining = len;
while (remaining && !pctx->arc_closed) {
uchar_t *tbuf;
tbuf = pctx->arc_buf + pctx->arc_buf_pos;
/*
* Determine if we should return the accumulated data to the caller.
* This is done if the data type changes and at least some minimum amount
* of data has accumulated in the buffer.
*/
if (pctx->btype != pctx->ctype) {
if (pctx->btype == TYPE_UNKNOWN || pctx->arc_buf_pos == 0) {
pctx->btype = pctx->ctype;
} else {
if (pctx->arc_buf_pos < pctx->min_chunk) {
uint32_t diff = pctx->min_chunk - pctx->arc_buf_pos;
if (len > diff)
pctx->btype = pctx->ctype;
else
pctx->ctype = pctx->btype;
} else {
pctx->arc_writing = 0;
sem_post(&(pctx->read_sem));
sem_wait(&(pctx->write_sem));
tbuf = pctx->arc_buf + pctx->arc_buf_pos;
pctx->arc_writing = 1;
if (remaining > 0)
pctx->btype = pctx->ctype;
}
}
}
if (remaining > pctx->arc_buf_size - pctx->arc_buf_pos) {
size_t nlen = pctx->arc_buf_size - pctx->arc_buf_pos;
memcpy(tbuf, buff, nlen);
remaining -= nlen;
pctx->arc_buf_pos += nlen;
buff += nlen;
pctx->arc_writing = 0;
sem_post(&(pctx->read_sem));
sem_wait(&(pctx->write_sem));
pctx->arc_writing = 1;
} else {
memcpy(tbuf, buff, remaining);
pctx->arc_buf_pos += remaining;
remaining = 0;
if (pctx->arc_buf_pos == pctx->arc_buf_size) {
pctx->arc_writing = 0;
sem_post(&(pctx->read_sem));
}
break;
}
}
return (len - remaining);
}
int64_t
archiver_read(void *ctx, void *buf, uint64_t count)
{
pc_ctx_t *pctx = (pc_ctx_t *)ctx;
if (pctx->arc_closed)
return (0);
if (pctx->arc_buf != NULL) {
log_msg(LOG_ERR, 0, "Incorrect sequencing of archiver_read() call.");
return (-1);
}
pctx->arc_buf = buf;
pctx->arc_buf_size = count;
pctx->arc_buf_pos = 0;
pctx->btype = TYPE_UNKNOWN;
sem_post(&(pctx->write_sem));
sem_wait(&(pctx->read_sem));
pctx->arc_buf = NULL;
return (pctx->arc_buf_pos);
}
int
archiver_close(void *ctx)
{
pc_ctx_t *pctx = (pc_ctx_t *)ctx;
pctx->arc_closed = 1;
pctx->arc_buf = NULL;
pctx->arc_buf_size = 0;
sem_post(&(pctx->write_sem));
sem_post(&(pctx->read_sem));
return (0);
}
static int
extract_close_callback(struct archive *arc, void *ctx)
{
pc_ctx_t *pctx = (pc_ctx_t *)ctx;
pctx->arc_closed = 1;
if (pctx->arc_buf) {
sem_post(&(pctx->write_sem));
} else {
pctx->arc_buf_size = 0;
}
return (ARCHIVE_OK);
}
static ssize_t
extract_read_callback(struct archive *arc, void *ctx, const void **buf)
{
pc_ctx_t *pctx = (pc_ctx_t *)ctx;
if (pctx->arc_closed) {
pctx->arc_buf_size = 0;
log_msg(LOG_WARN, 0, "End of file.");
archive_set_error(arc, ARCHIVE_EOF, "End of file.");
return (-1);
}
if (!pctx->arc_writing) {
sem_wait(&(pctx->read_sem));
} else {
sem_post(&(pctx->write_sem));
sem_wait(&(pctx->read_sem));
}
if (pctx->arc_buf == NULL || pctx->arc_buf_size == 0) {
pctx->arc_buf_size = 0;
log_msg(LOG_ERR, 0, "End of file when extracting archive.");
archive_set_error(arc, ARCHIVE_EOF, "End of file when extracting archive.");
return (-1);
}
pctx->arc_writing = 1;
*buf = pctx->arc_buf;
return (pctx->arc_buf_size);
}
int64_t
archiver_write(void *ctx, void *buf, uint64_t count)
{
pc_ctx_t *pctx = (pc_ctx_t *)ctx;
if (pctx->arc_closed) {
log_msg(LOG_WARN, 0, "Archive extractor closed unexpectedly");
return (0);
}
if (pctx->arc_buf != NULL) {
log_msg(LOG_ERR, 0, "Incorrect sequencing of archiver_read() call.");
return (-1);
}
pctx->arc_buf = buf;
pctx->arc_buf_size = count;
sem_post(&(pctx->read_sem));
sem_wait(&(pctx->write_sem));
pctx->arc_buf = NULL;
return (pctx->arc_buf_size);
}
/*
* Comparison function for sorting pathname members. Sort by name/extension and then
* by size.
*/
static int
compare_members(const void *a, const void *b) {
int rv, i;
member_entry_t *mem1 = (member_entry_t *)a;
member_entry_t *mem2 = (member_entry_t *)b;
rv = 0;
for (i = 0; i < NAMELEN; i++) {
rv = mem1->name[i] - mem2->name[i];
if (rv != 0)
return (rv);
}
if (mem1->size > mem2->size)
return (1);
else if (mem1->size < mem2->size)
return (-1);
return (0);
}
/*
* Tell if path entry mem1 is "less than" path entry mem2. This function
* is used during the merge phase.
*/
static int
compare_members_lt(member_entry_t *mem1, member_entry_t *mem2) {
int rv, i;
rv = 0;
for (i = 0; i < NAMELEN; i++) {
rv = mem1->name[i] - mem2->name[i];
if (rv < 0)
return (1);
else if (rv > 0)
return (0);
}
if (mem1->size < mem2->size)
return (1);
return (0);
}
/*
* Fetch the next entry from the pathlist file. If we are doing sorting then this
* fetches the next entry in ascending order of the predetermined sort keys.
*/
static int
read_next_path(pc_ctx_t *pctx, char *fpath, char **namechars, int *fpathlen)
{
short namelen;
ssize_t rbytes;
uchar_t *buf;
int n;
if (pctx->enable_archive_sort) {
member_entry_t *mem1, *mem2;
struct sort_buf *srt, *srt1, *psrt, *psrt1;
/*
* Here we have a set of sorted buffers and we do the external merge phase where
* we pop the buffer entry that is smallest.
*/
srt = (struct sort_buf *)pctx->archive_sort_buf;
if (!srt) return (0);
srt1 = srt;
psrt = srt;
psrt1 = psrt;
mem1 = &(srt->members[srt->pos]);
srt = srt->next;
while (srt) {
mem2 = &(srt->members[srt->pos]);
if (compare_members_lt(mem2, mem1)) {
mem1 = mem2;
srt1 = srt;
psrt1 = psrt;
}
psrt = srt;
srt = srt->next;
}
/*
* If we are not using mmap then seek to the position of the current entry, otherwise
* just note the entry position.
*/
if (pctx->temp_mmap_len == 0) {
if (lseek(pctx->archive_members_fd, mem1->file_pos, SEEK_SET) == (off_t)-1) {
log_msg(LOG_ERR, 1, "Error seeking in archive members file.");
return (-1);
}
} else {
pctx->temp_file_pos = mem1->file_pos;
}
/*
* Increment popped position of the current buffer and check if it is empty.
* The empty buffer is freed and is taken out of the linked list of buffers.
*/
srt1->pos++;
if (srt1->pos > srt1->max) {
if (srt1 == pctx->archive_sort_buf) {
pctx->archive_sort_buf = srt1->next;
free(srt1);
} else {
psrt1->next = srt1->next;
free(srt1);
}
}
}
/*
* Mmap handling. If requested entry is in current mmap region read it. Otherwise attempt
* new mmap.
*/
if (pctx->temp_mmap_len > 0) {
int retried;
if (pctx->temp_file_pos < pctx->temp_mmap_pos ||
pctx->temp_file_pos - pctx->temp_mmap_pos > pctx->temp_mmap_len ||
pctx->temp_mmap_len - (pctx->temp_file_pos - pctx->temp_mmap_pos) < 3) {
uint32_t adj;
do_mmap:
munmap(pctx->temp_mmap_buf, pctx->temp_mmap_len);
adj = pctx->temp_file_pos % pctx->pagesize;
pctx->temp_mmap_pos = pctx->temp_file_pos - adj;
pctx->temp_mmap_len = pctx->archive_temp_size - pctx->temp_mmap_pos;
if (pctx->temp_mmap_len > TEMP_MMAP_SIZE)
pctx->temp_mmap_len = TEMP_MMAP_SIZE ;
pctx->temp_mmap_buf = mmap(NULL, pctx->temp_mmap_len, PROT_READ,
MAP_SHARED, pctx->archive_members_fd, pctx->temp_mmap_pos);
if (pctx->temp_mmap_buf == NULL) {
log_msg(LOG_ERR, 1, "Error mmap-ing archive members file.");
return (-1);
}
}
retried = 0;
buf = pctx->temp_mmap_buf + (pctx->temp_file_pos - pctx->temp_mmap_pos);
namelen = U32_P(buf);
pctx->temp_file_pos += 2;
/*
* If length of pathname entry exceeds current mmap region, repeat mmap
* at the entry offset. Only one repeat attempt is made. If there is a
* failure then we give up.
*/
if (pctx->temp_mmap_len - (pctx->temp_file_pos - pctx->temp_mmap_pos) < namelen) {
if (!retried) {
pctx->temp_file_pos -= 2;
retried = 1;
goto do_mmap;
} else {
log_msg(LOG_ERR, 0, "Unable to mmap after retry.");
return (-1);
}
}
buf = pctx->temp_mmap_buf + (pctx->temp_file_pos - pctx->temp_mmap_pos);
memcpy(fpath, buf, namelen);
fpath[namelen] = '\0';
*fpathlen = namelen;
n = namelen-1;
while (fpath[n] == '/' && n > 0) n--;
while (fpath[n] != '/' && fpath[n] != '\\' && n > 0) n--;
*namechars = &fpath[n+1];
pctx->temp_file_pos += namelen;
return (namelen);
}
/*
* This code is used if mmap is not being used for the pathlist file.
*/
if ((rbytes = Read(pctx->archive_members_fd, &namelen, sizeof(namelen))) != 0) {
if (rbytes < 2) {
log_msg(LOG_ERR, 1, "Error reading archive members file.");
return (-1);
}
rbytes = Read(pctx->archive_members_fd, fpath, namelen);
if (rbytes < namelen) {
log_msg(LOG_ERR, 1, "Error reading archive members file.");
return (-1);
}
fpath[namelen] = '\0';
*fpathlen = namelen;
n = namelen-1;
while (fpath[n] == '/' && n > 0) n--;
while (fpath[n] != '/' && fpath[n] != '\\' && n > 0) n--;
*namechars = &fpath[n+1];
printf("%s\n", fpath);
}
return (rbytes);
}
/*
* Build list of pathnames in a temp file.
*/
static int
add_pathname(const char *fpath, const struct stat *sb,
int tflag, struct FTW *ftwbuf)
{
short len;
uchar_t *buf;
const char *basename;
if (tflag == FTW_DP) return (0);
if (tflag == FTW_DNR || tflag == FTW_NS) {
log_msg(LOG_WARN, 0, "Cannot access %s\n", fpath);
return (0);
}
/*
* Pathname entries are pushed into a memory buffer till buffer is full. The
* buffer is then flushed to disk. This is for decent performance.
*/
a_state.arc_size += (sb->st_size + ARC_ENTRY_OVRHEAD);
len = strlen(fpath);
if (a_state.bufpos + len + 14 > a_state.bufsiz) {
ssize_t wrtn = Write(a_state.fd, a_state.pbuf, a_state.bufpos);
if (wrtn < a_state.bufpos) {
log_msg(LOG_ERR, 1, "Write: ");
return (-1);
}
a_state.bufpos = 0;
a_state.pathlist_size += wrtn;
}
/*
* If we are sorting path entries then sort per buffer and then merge when iterating
* through all the path entries.
*/
if (a_state.srt) {
member_entry_t *member;
int i;
char *dot;
basename = &fpath[ftwbuf->base];
if (a_state.srt_pos == SORT_BUF_SIZE) {
struct sort_buf *srt;
/*
* Sort Buffer is full so sort it. Sorting is done by file extension and size.
* If file has no extension then first 4 chars of the filename are used.
*/
srt = (struct sort_buf *)malloc(sizeof (struct sort_buf));
if (srt == NULL) {
log_msg(LOG_WARN, 0, "Out of memory for sort buffer. Continuing without sorting.");
a_state.srt = a_state.head;
while (a_state.srt) {
struct sort_buf *srt;
srt = a_state.srt->next;
free(a_state.srt);
a_state.srt = srt;
goto cont;
}
} else {
log_msg(LOG_INFO, 0, "Sorting ...");
a_state.srt->max = a_state.srt_pos - 1;
qsort(a_state.srt->members, SORT_BUF_SIZE, sizeof (member_entry_t), compare_members);
srt->next = NULL;
srt->pos = 0;
a_state.srt->next = srt;
a_state.srt = srt;
a_state.srt_pos = 0;
}
}
/*
* The total size of path list file that can be handled when sorting is 4GB to
* limit memory usage. If total accumulated path entries exceed 4GB in bytes,
* we abort sorting. This is large enough to handle all practical scenarios
* except in the case of millions of pathname entries each having PATH_MAX length!
*/
if (a_state.pathlist_size + a_state.bufpos >= UINT_MAX) {
log_msg(LOG_WARN, 0, "Too many pathnames. Continuing without sorting.");
a_state.srt = a_state.head;
while (a_state.srt) {
struct sort_buf *srt;
srt = a_state.srt->next;
free(a_state.srt);
a_state.srt = srt;
goto cont;
}
}
member = &(a_state.srt->members[a_state.srt_pos++]);
member->size = sb->st_size;
member->file_pos = a_state.pathlist_size + a_state.bufpos;
dot = strrchr(basename, '.');
// Small NAMELEN so these loops will be unrolled by compiler.
for (i = 0; i < NAMELEN; i++) member->name[i] = 0;
i = 0;
if (!dot) {
while (basename[i] != '\0' && i < NAMELEN) {
member->name[i] = basename[i]; i++;
}
} else {
dot++;
while (dot[i] != '\0' && i < NAMELEN) {
member->name[i] = dot[i]; i++;
}
}
}
cont:
buf = a_state.pbuf + a_state.bufpos;
*((short *)buf) = len;
buf += 2;
memcpy(buf, fpath, len);
a_state.bufpos += (len + 2);
a_state.fcount++;
return (0);
}
/*
* Archiving related functions.
* This one creates a list of files to be included into the archive and
* sets up the libarchive context.
*/
int
setup_archiver(pc_ctx_t *pctx, struct stat *sbuf)
{
char *tmpfile, *tmp;
int err, fd;
uchar_t *pbuf;
struct archive *arc;
struct fn_list *fn;
/*
* If sorting is enabled create the initial sort buffer.
*/
if (pctx->enable_archive_sort) {
struct sort_buf *srt;
srt = (struct sort_buf *)malloc(sizeof (struct sort_buf));
if (srt == NULL) {
log_msg(LOG_ERR, 0, "Out of memory.");
return (-1);
}
srt->next = NULL;
srt->pos = 0;
pctx->archive_sort_buf = srt;
}
/*
* Create a temporary file to hold the generated list of pathnames to be archived.
* Storing in a file saves memory usage and allows scalability.
*/
tmpfile = pctx->archive_members_file;
tmp = get_temp_dir();
strcpy(tmpfile, tmp);
free(tmp);
strcat(tmpfile, "/.pcompXXXXXX");
if ((fd = mkstemp(tmpfile)) == -1) {
log_msg(LOG_ERR, 1, "mkstemp errored.");
return (-1);
}
add_fname(tmpfile);
pbuf = malloc(pctx->chunksize);
if (pbuf == NULL) {
log_msg(LOG_ERR, 0, "Out of memory.");
close(fd); unlink(tmpfile);
return (-1);
}
/*
* Use nftw() to scan all the directory hierarchies provided on the command
* line and generate a consolidated list of pathnames to be archived. By
* doing this we can sort the pathnames and estimate the total archive size.
* Total archive size is needed by the subsequent compression stages.
*/
log_msg(LOG_INFO, 0, "Scanning files.");
sbuf->st_size = 0;
pctx->archive_size = 0;
pctx->archive_members_count = 0;
/*
* nftw requires using global state variable. So we lock to be mt-safe.
* This means only one directory tree scan can happen at a time.
*/
pthread_mutex_lock(&nftw_mutex);
fn = pctx->fn;
a_state.pbuf = pbuf;
a_state.bufsiz = pctx->chunksize;
a_state.bufpos = 0;
a_state.fd = fd;
a_state.srt = pctx->archive_sort_buf;
a_state.srt_pos = 0;
a_state.head = a_state.srt;
a_state.pathlist_size = 0;
while (fn) {
struct stat sb;
if (lstat(fn->filename, &sb) == -1) {
log_msg(LOG_ERR, 1, "Ignoring %s.", fn->filename);
fn = fn->next;
continue;
}
a_state.arc_size = 0;
a_state.fcount = 0;
if (S_ISDIR(sb.st_mode)) {
err = nftw(fn->filename, add_pathname, 1024, FTW_PHYS);
} else {
int tflag;
struct FTW ftwbuf;
char *pos;
if (S_ISLNK(sb.st_mode))
tflag = FTW_SL;
else
tflag = FTW_F;
/*
* Find out basename to mimic FTW.
*/
pos = strrchr(fn->filename, PATHSEP_CHAR);
if (pos)
ftwbuf.base = pos - fn->filename + 1;
else
ftwbuf.base = 0;
add_pathname(fn->filename, &sb, tflag, &ftwbuf);
a_state.arc_size = sb.st_size;
}
if (a_state.bufpos > 0) {
ssize_t wrtn = Write(a_state.fd, a_state.pbuf, a_state.bufpos);
if (wrtn < a_state.bufpos) {
log_msg(LOG_ERR, 1, "Write failed.");
close(fd); unlink(tmpfile);
return (-1);
}
a_state.bufpos = 0;
a_state.pathlist_size += wrtn;
}
pctx->archive_size += a_state.arc_size;
pctx->archive_members_count += a_state.fcount;
fn = fn->next;
}
if (a_state.srt == NULL) {
pctx->enable_archive_sort = 0;
} else {
log_msg(LOG_INFO, 0, "Sorting ...");
a_state.srt->max = a_state.srt_pos - 1;
qsort(a_state.srt->members, a_state.srt_pos, sizeof (member_entry_t), compare_members);
pctx->archive_temp_size = a_state.pathlist_size;
}
pthread_mutex_unlock(&nftw_mutex);
sbuf->st_size = pctx->archive_size;
lseek(fd, 0, SEEK_SET);
free(pbuf);
sbuf->st_uid = geteuid();
sbuf->st_gid = getegid();
sbuf->st_mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
arc = archive_write_new();
if (!arc) {
log_msg(LOG_ERR, 1, "Unable to create libarchive context.\n");
close(fd);
unlink(tmpfile);
return (-1);
}
archive_write_set_format_pax_restricted(arc);
archive_write_set_bytes_per_block(arc, 0);
archive_write_open(arc, pctx, arc_open_callback,
creat_write_callback, creat_close_callback);
pctx->archive_ctx = arc;
pctx->archive_members_fd = fd;
if (pctx->enable_archive_sort) {
pctx->temp_mmap_len = TEMP_MMAP_SIZE;
pctx->temp_mmap_buf = mmap(NULL, pctx->temp_mmap_len, PROT_READ,
MAP_SHARED, pctx->archive_members_fd, 0);
if (pctx->temp_mmap_buf == NULL) {
log_msg(LOG_WARN, 1, "Unable to mmap pathlist file, switching to read().");
pctx->temp_mmap_len = 0;
}
} else {
pctx->temp_mmap_buf = NULL;
pctx->temp_mmap_len = 0;
}
pctx->temp_mmap_pos = 0;
pctx->arc_writing = 0;
return (0);
}
/*
* This creates a libarchive context for extracting members to disk.
*/
int
setup_extractor(pc_ctx_t *pctx)
{
int pipefd[2];
struct archive *arc;
if (pipe(pipefd) == -1) {
log_msg(LOG_ERR, 1, "Unable to create extractor pipe.\n");
return (-1);
}
arc = archive_read_new();
if (!arc) {
log_msg(LOG_ERR, 1, "Unable to create libarchive context.\n");
close(pipefd[0]); close(pipefd[1]);
return (-1);
}
archive_read_support_format_all(arc);
pctx->archive_ctx = arc;
pctx->arc_writing = 0;
return (0);
}
static ssize_t
process_by_filter(int fd, int typ, struct archive *target_arc,
struct archive *source_arc, struct archive_entry *entry, int cmp)
{
struct filter_info fi;
int64_t wrtn;
fi.source_arc = source_arc;
fi.target_arc = target_arc;
fi.entry = entry;
fi.fd = fd;
fi.compressing = cmp;
fi.block_size = AW_BLOCK_SIZE;
wrtn = (*(typetab[(typ >> 3)].filter_func))(&fi, typetab[(typ >> 3)].filter_private);
if (wrtn == FILTER_RETURN_ERROR) {
log_msg(LOG_ERR, 0, "Error invoking filter module: %s",
typetab[(typ >> 3)].filter_name);
}
return (wrtn);
}
/*
* Routines to archive members and write the file data to the callback. Portions of
* the following code is adapted from some of the Libarchive bsdtar code.
*/
static int
copy_file_data(pc_ctx_t *pctx, struct archive *arc, struct archive_entry *entry, int typ)
{
size_t sz, offset, len;
ssize_t bytes_to_write;
uchar_t *mapbuf;
int rv, fd;
const char *fpath;
offset = 0;
rv = 0;
sz = archive_entry_size(entry);
bytes_to_write = sz;
fpath = archive_entry_sourcepath(entry);
fd = open(fpath, O_RDONLY);
if (fd == -1) {
log_msg(LOG_ERR, 1, "Failed to open %s.", fpath);
return (-1);
}
if (typ != TYPE_UNKNOWN) {
if (typetab[(typ >> 3)].filter_func != NULL) {
int64_t rv;
rv = process_by_filter(fd, typ, arc, NULL, entry, 1);
if (rv == FILTER_RETURN_ERROR) {
close(fd);
return (-1);
} else if (rv != FILTER_RETURN_SKIP) {
close(fd);
return (ARCHIVE_OK);
}
}
}
/*
* Use mmap for copying file data. Not necessarily for performance, but it saves on
* resident memory use.
*/
while (bytes_to_write > 0) {
uchar_t *src;
size_t wlen;
ssize_t wrtn;
if (bytes_to_write < MMAP_SIZE)
len = bytes_to_write;
else
len = MMAP_SIZE;
do_map:
mapbuf = mmap(NULL, len, PROT_READ, MAP_SHARED, fd, offset);
if (mapbuf == NULL) {
/* Mmap failed; this is bad. */
log_msg(LOG_ERR, 1, "Mmap failed for %s.", fpath);
rv = -1;
break;
}
offset += len;
src = mapbuf;
wlen = len;
if (typ == TYPE_UNKNOWN) {
pctx->ctype = detect_type_by_data(src, len);
typ = pctx->ctype;
if (typ != TYPE_UNKNOWN) {
if (typetab[(typ >> 3)].filter_func != NULL) {
int64_t rv;
munmap(mapbuf, len);
rv = process_by_filter(fd, typ, arc, NULL, entry, 1);
if (rv == FILTER_RETURN_ERROR) {
return (-1);
} else if (rv == FILTER_RETURN_SKIP) {
lseek(fd, 0, SEEK_SET);
typ = TYPE_COMPRESSED;
offset = 0;
goto do_map;
} else {
return (ARCHIVE_OK);
}
}
}
}
typ = TYPE_COMPRESSED; // Need to avoid calling detect_type_by_data subsequently.
/*
* Write the entire mmap-ed buffer. Since we are writing to the compressor
* stage there is no need for blocking.
*/
wrtn = archive_write_data(arc, src, wlen);
if (wrtn < wlen) {
/* Write failed; this is bad */
log_msg(LOG_ERR, 0, "Data write error: %s", archive_error_string(arc));
rv = -1;
}
bytes_to_write -= wrtn;
if (rv == -1) break;
munmap(mapbuf, len);
}
close(fd);
return (rv);
}
static int
write_entry(pc_ctx_t *pctx, struct archive *arc, struct archive_entry *entry, int typ)
{
int rv;
rv = archive_write_header(arc, entry);
if (rv != ARCHIVE_OK) {
if (rv == ARCHIVE_FATAL || rv == ARCHIVE_FAILED) {
log_msg(LOG_ERR, 0, "%s: %s",
archive_entry_sourcepath(entry), archive_error_string(arc));
return (-1);
} else {
log_msg(LOG_WARN, 0, "%s: %s",
archive_entry_sourcepath(entry), archive_error_string(arc));
}
}
if (archive_entry_size(entry) > 0) {
return (copy_file_data(pctx, arc, entry, typ));
}
return (0);
}
/*
* Thread function. Archive members and write to pipe. The dispatcher thread
* reads from the other end and compresses.
*/
static void *
archiver_thread_func(void *dat) {
pc_ctx_t *pctx = (pc_ctx_t *)dat;
char fpath[PATH_MAX], *name, *bnchars = NULL; // Silence compiler
int warn, rbytes, fpathlen = 0; // Silence compiler
uint32_t ctr;
struct archive_entry *entry, *spare_entry, *ent;
struct archive *arc, *ard;
struct archive_entry_linkresolver *resolver;
int readdisk_flags;
warn = 1;
entry = archive_entry_new();
arc = (struct archive *)(pctx->archive_ctx);
if ((resolver = archive_entry_linkresolver_new()) != NULL) {
archive_entry_linkresolver_set_strategy(resolver, archive_format(arc));
} else {
log_msg(LOG_WARN, 0, "Cannot create link resolver, hardlinks will be duplicated.");
}
ctr = 1;
readdisk_flags = ARCHIVE_READDISK_NO_TRAVERSE_MOUNTS;
readdisk_flags |= ARCHIVE_READDISK_HONOR_NODUMP;
ard = archive_read_disk_new();
archive_read_disk_set_behavior(ard, readdisk_flags);
archive_read_disk_set_standard_lookup(ard);
archive_read_disk_set_symlink_physical(ard);
/*
* Read next path entry from list file. read_next_path() also handles sorted reading.
*/
while ((rbytes = read_next_path(pctx, fpath, &bnchars, &fpathlen)) != 0) {
int typ;
if (rbytes == -1) break;
archive_entry_copy_sourcepath(entry, fpath);
if (archive_read_disk_entry_from_file(ard, entry, -1, NULL) != ARCHIVE_OK) {
log_msg(LOG_WARN, 1, "archive_read_disk_entry_from_file:\n %s", archive_error_string(ard));
archive_entry_clear(entry);
continue;
}
typ = TYPE_UNKNOWN;
if (archive_entry_filetype(entry) == AE_IFREG) {
if ((typ = detect_type_by_ext(fpath, fpathlen)) != TYPE_UNKNOWN)
pctx->ctype = typ;
}
/*
* Strip leading '/' or '../' or '/../' from member name.
*/
name = fpath;
while (name[0] == '/' || name[0] == '\\') {
if (warn) {
log_msg(LOG_WARN, 0, "Converting absolute paths.");
warn = 0;
}
if (name[1] == '.' && name[2] == '.' && (name[3] == '/' || name[3] == '\\')) {
name += 3; /* /.. is removed here and / is removed next. */
} else {
name += 1;
}
}
#ifndef __APPLE__
/*
* Workaround for libarchive weirdness on Non MAC OS X platforms. The files
* with names matching pattern: ._* are MAC OS X resource forks which contain
* extended attributes, ACLs etc. They should be handled accordingly on MAC
* platforms and treated as normal files on others. For some reason beyond me
* libarchive refuses to extract these files on Linux, no matter what I try.
* Bug?
*
* In this case the file basename is changed and a custom flag is set to
* indicate extraction to change it back.
*/
if (bnchars[0] == '.' && bnchars[1] == '_' && archive_entry_filetype(entry) == AE_IFREG) {
char *pos = strstr(name, "._");
char name[] = "@.", value[] = "m";
if (pos) {
*pos = '|';
archive_entry_xattr_add_entry(entry, name, value, strlen(value));
}
}
#endif
if (name != archive_entry_pathname(entry))
archive_entry_copy_pathname(entry, name);
if (archive_entry_filetype(entry) != AE_IFREG) {
archive_entry_set_size(entry, 0);
} else {
archive_entry_set_size(entry, archive_entry_size(entry));
}
if (pctx->verbose)
log_msg(LOG_INFO, 0, "%5d/%5d %8d %s", ctr, pctx->archive_members_count,
archive_entry_size(entry), name);
archive_entry_linkify(resolver, &entry, &spare_entry);
ent = entry;
while (ent != NULL) {
if (write_entry(pctx, arc, ent, typ) != 0) {
goto done;
}
ent = spare_entry;
spare_entry = NULL;
}
archive_write_finish_entry(arc);
archive_entry_clear(entry);
ctr++;
}
done:
if (pctx->temp_mmap_len > 0)
munmap(pctx->temp_mmap_buf, pctx->temp_mmap_len);
archive_entry_free(entry);
archive_entry_linkresolver_free(resolver);
archive_read_free(ard);
archive_write_free(arc);
close(pctx->archive_members_fd);
unlink(pctx->archive_members_file);
return (NULL);
}
int
start_archiver(pc_ctx_t *pctx) {
return (pthread_create(&(pctx->archive_thread), NULL, archiver_thread_func, (void *)pctx));
}
/*
* The next two functions are from libArchive source/example:
* https://github.com/libarchive/libarchive/wiki/Examples#wiki-A_Complete_Extractor
*
* We have to use low-level APIs to extract entries to disk. Normally one would use
* archive_read_extract2() but LibArchive has no option to set user-defined filter
* routines, so we have to handle here.
*/
static int
copy_data_out(struct archive *ar, struct archive *aw, struct archive_entry *entry,
int typ)
{
int64_t offset;
const void *buff;
size_t size;
int r;
if (typ != TYPE_UNKNOWN) {
if (typetab[(typ >> 3)].filter_func != NULL) {
int64_t rv;
rv = process_by_filter(-1, typ, aw, ar, entry, 0);
if (rv == FILTER_RETURN_ERROR) {
archive_set_error(ar, archive_errno(aw),
"%s", archive_error_string(aw));
return (ARCHIVE_FATAL);
} else if (rv == FILTER_RETURN_SKIP) {
log_msg(LOG_WARN, 0, "Filter function failed for entry.");
return (ARCHIVE_WARN);
} else {
return (ARCHIVE_OK);
}
}
}
for (;;) {
r = archive_read_data_block(ar, &buff, &size, &offset);
if (r == ARCHIVE_EOF)
return (ARCHIVE_OK);
if (r != ARCHIVE_OK)
return (r);
r = (int)archive_write_data_block(aw, buff, size, offset);
if (r < ARCHIVE_WARN)
r = ARCHIVE_WARN;
if (r != ARCHIVE_OK) {
archive_set_error(ar, archive_errno(aw),
"%s", archive_error_string(aw));
return (r);
}
}
}
static int
archive_extract_entry(struct archive *a, struct archive_entry *entry,
struct archive *ad, int typ)
{
int r, r2;
r = archive_write_header(ad, entry);
if (r < ARCHIVE_WARN)
r = ARCHIVE_WARN;
if (r != ARCHIVE_OK) {
/* If _write_header failed, copy the error. */
archive_copy_error(a, ad);
} else if (!archive_entry_size_is_set(entry) || archive_entry_size(entry) > 0) {
/* Otherwise, pour data into the entry. */
r = copy_data_out(a, ad, entry, typ);
}
r2 = archive_write_finish_entry(ad);
if (r2 < ARCHIVE_WARN)
r2 = ARCHIVE_WARN;
/* Use the first message. */
if (r2 != ARCHIVE_OK && r == ARCHIVE_OK)
archive_copy_error(a, ad);
/* Use the worst error return. */
if (r2 < r)
r = r2;
return (r);
}
/*
* Extract Thread function. Read an uncompressed archive from the decompressor stage
* and extract members to disk.
*/
static void *
extractor_thread_func(void *dat) {
pc_ctx_t *pctx = (pc_ctx_t *)dat;
char cwd[PATH_MAX], got_cwd;
int flags, rv;
uint32_t ctr;
struct archive_entry *entry;
struct archive *awd, *arc;
flags = ARCHIVE_EXTRACT_TIME;
flags |= ARCHIVE_EXTRACT_SECURE_SYMLINKS;
flags |= ARCHIVE_EXTRACT_SECURE_NODOTDOT;
flags |= ARCHIVE_EXTRACT_SPARSE;
/*
* Extract all security attributes if we are root.
*/
if (pctx->force_archive_perms || geteuid() == 0) {
flags |= ARCHIVE_EXTRACT_OWNER;
flags |= ARCHIVE_EXTRACT_PERM;
flags |= ARCHIVE_EXTRACT_ACL;
flags |= ARCHIVE_EXTRACT_XATTR;
flags |= ARCHIVE_EXTRACT_FFLAGS;
flags |= ARCHIVE_EXTRACT_MAC_METADATA;
}
if (pctx->no_overwrite_newer)
flags |= ARCHIVE_EXTRACT_NO_OVERWRITE_NEWER;
got_cwd = 1;
if (getcwd(cwd, PATH_MAX) == NULL) {
log_msg(LOG_WARN, 1, "Cannot get current directory.");
got_cwd = 0;
}
ctr = 1;
awd = archive_write_disk_new();
archive_write_disk_set_options(awd, flags);
archive_write_disk_set_standard_lookup(awd);
arc = (struct archive *)(pctx->archive_ctx);
archive_read_open(arc, pctx, arc_open_callback, extract_read_callback, extract_close_callback);
/*
* Change directory after opening the archive, otherwise archive_read_open() can fail
* for relative paths.
*/
if (chdir(pctx->to_filename) == -1) {
log_msg(LOG_ERR, 1, "Cannot change to dir: %s", pctx->to_filename);
goto done;
}
/*
* Read archive entries and extract to disk.
*/
while ((rv = archive_read_next_header(arc, &entry)) != ARCHIVE_EOF) {
const char *xt_name, *xt_value;
size_t xt_size;
int typ;
if (rv != ARCHIVE_OK)
log_msg(LOG_WARN, 0, "%s", archive_error_string(arc));
if (rv == ARCHIVE_FATAL) {
log_msg(LOG_ERR, 0, "Fatal error aborting extraction.");
break;
}
if (rv == ARCHIVE_RETRY) {
log_msg(LOG_INFO, 0, "Retrying extractor read ...");
continue;
}
typ = TYPE_UNKNOWN;
if (archive_entry_filetype(entry) == AE_IFREG) {
const char *fpath = archive_entry_pathname(entry);
typ = detect_type_by_ext(fpath, strlen(fpath));
}
/*
* Workaround for libarchive weirdness on Non MAC OS X platforms for filenames
* starting with '._'. See above ...
*/
#ifndef __APPLE__
if (archive_entry_xattr_reset(entry) > 0) {
while (archive_entry_xattr_next(entry, &xt_name, (const void **)&xt_value,
&xt_size) == ARCHIVE_OK) {
if (xt_name[0] == '@' && xt_name[1] == '.' && xt_value[0] == 'm') {
const char *name;
char *pos;
name = archive_entry_pathname(entry);
pos = strstr(name, "|_");
if (pos) {
*pos = '.';
archive_entry_set_pathname(entry, name);
}
archive_entry_xattr_clear(entry);
break;
}
}
}
#endif
rv = archive_extract_entry(arc, entry, awd, typ);
if (rv != ARCHIVE_OK) {
log_msg(LOG_WARN, 0, "%s: %s", archive_entry_pathname(entry),
archive_error_string(arc));
} else if (pctx->verbose) {
log_msg(LOG_INFO, 0, "%5d %8d %s", ctr, archive_entry_size(entry),
archive_entry_pathname(entry));
}
if (rv == ARCHIVE_FATAL) {
log_msg(LOG_ERR, 0, "Fatal error aborting extraction.");
break;
}
ctr++;
}
if (got_cwd) {
rv = chdir(cwd);
}
archive_read_free(arc);
archive_write_free(awd);
done:
return (NULL);
}
int
start_extractor(pc_ctx_t *pctx) {
return (pthread_create(&(pctx->archive_thread), NULL, extractor_thread_func, (void *)pctx));
}
/*
* Initialize the hash table of known extensions and types. Bob Jenkins Minimal Perfect Hash
* is used to get a perfect hash function for the set of known extensions. See:
* http://burtleburtle.net/bob/hash/perfect.html
*/
int
init_archive_mod() {
int rv = 0;
pthread_mutex_lock(&init_mutex);
if (!inited) {
int i, j;
exthtab = malloc(PHASHNKEYS * sizeof (struct ext_hash_entry));
if (exthtab != NULL) {
for (i = 0; i < PHASHNKEYS; i++) {
uint64_t extnum;
ub4 slot = phash(extlist[i].ext, extlist[i].len);
extnum = 0;
/*
* Since extensions are less than 8 bytes (or truncated otherwise),
* each extension string is packed into a 64-bit integer for quick
* comparison.
*/
for (j = 0; j < extlist[i].len; j++)
extnum = (extnum << 8) | extlist[i].ext[j];
exthtab[slot].extnum = extnum;
exthtab[slot].type = extlist[i].type;
}
memset(typetab, 0, sizeof (typetab));
inited = 1;
} else {
rv = 1;
}
}
pthread_mutex_unlock(&init_mutex);
return (rv);
}
void
init_filters(struct filter_flags *ff)
{
pthread_mutex_lock(&init_mutex);
if (!filters_inited) {
add_filters_by_type(typetab, ff);
filters_inited = 1;
}
pthread_mutex_unlock(&init_mutex);
}
/*
* Identify file type based on extension. Lookup is fast as we have a perfect hash function.
* If the given extension maps to a slot which has a different extension or maps to a slot
* outside the hash table range then the function returns unknown type.
*/
static int
detect_type_by_ext(const char *path, int pathlen)
{
const char *ext = NULL;
ub4 slot;
int i, len;
uint64_t extnum;
char extl[8];
for (i = pathlen-1; i > 0 && path[i] != '.' && path[i] != PATHSEP_CHAR; i--);
if (i == 0 || path[i] != '.') goto out; // If extension not found give up
len = pathlen - i - 1;
if (len == 0 || len > 8) goto out; // If extension is empty give up
ext = &path[i+1];
for (i = 0; i < len; i++) extl[i] = tolower(ext[i]);
slot = phash(extl, len);
if (slot >= PHASHNKEYS) goto out; // Extension maps outside hash table range, give up
extnum = 0;
/*
* Pack given extension into 64-bit integer.
*/
for (i = 0; i < len; i++)
extnum = (extnum << 8) | tolower(ext[i]);
if (exthtab[slot].extnum == extnum)
return (exthtab[slot].type);
out:
return (TYPE_UNKNOWN);
}
#ifdef WORDS_BIGENDIAN
/* 0x7fELF packed into 32-bit integer. */
# define ELFINT (0x7f454c46U)
/* TZif packed into 32-bit integer. */
# define TZSINT (0x545a6966U)
/* PPMZ packed into 32-bit integer. */
# define PPMINT (0x50504d5aU)
/* wvpk packed into 32-bit integer. */
# define WVPK (0x7776706b)
/* TTA1 packed into 32-bit integer. */
# define TTA1 (0x54544131)
/* Magic for different MSDOS COM file types. */
# define COM_MAGIC (0xcd21)
#else
/* 0x7fELF packed into 32-bit integer. */
# define ELFINT (0x464c457fU)
/* TZif packed into 32-bit integer. */
# define TZINT (0x66695a54U)
/* PPMZ packed into 32-bit integer. */
# define PPMINT (0x5a4d5050U)
/* wvpk packed into 32-bit integer. */
# define WVPK (0x6b707677)
/* TTA1 packed into 32-bit integer. */
# define TTA1 (0x31415454)
/* Magic for different MSDOS COM file types. */
# define COM_MAGIC (0x21cd)
#endif
/*
* Detect a few file types from looking at magic signatures.
* NOTE: Jpeg files must be detected via '.jpg' or '.jpeg' (case-insensitive)
* extensions. Do not add Jpeg header detection here. it will break
* context based PackJPG processing. Jpeg files not have proper
* extension must not be processed via PackJPG.
*/
static int
detect_type_by_data(uchar_t *buf, size_t len)
{
// At least a few bytes.
if (len < 16) return (TYPE_UNKNOWN);
if (memcmp(buf, "!\n", 8) == 0)
return (TYPE_BINARY|TYPE_ARCHIVE_AR);
if (U32_P(buf) == ELFINT) { // Regular ELF, check for 32/64-bit, core dump
if (*(buf + 16) != 4) {
if (*(buf + 4) == 2) {
return (TYPE_BINARY|TYPE_EXE64);
} else {
return (TYPE_BINARY|TYPE_EXE32);
}
} else {
return (TYPE_BINARY);
}
}
if (buf[1] == 'Z') {
// Check for MSDOS/Windows Exe types
if (buf[0] == 'L') {
return (TYPE_BINARY|TYPE_EXE32);
} else if (buf[0] == 'M') {
// If relocation table is less than 0x40 bytes into file then
// it is a 32-bit MSDOS exe.
if (LE16(U16_P(buf + 0x18)) < 0x40) {
return (TYPE_BINARY|TYPE_EXE32);
} else {
uint32_t off = LE32(U32_P(buf + 0x3c));
// This is non-MSDOS, check whether PE
if (off < len - 3) {
if (buf[off] == 'P' && buf[off+1] == 'E' &&
buf[off+2] == '\0' && buf[off+3] == '\0') {
// This is a PE executable.
// Check 32/64-bit.
off = LE32(U32_P(buf + 0x3c))+4;
if (LE16(U16_P(buf + off)) == 0x8664) {
return (TYPE_BINARY|TYPE_EXE64);
} else {
return (TYPE_BINARY|TYPE_EXE32);
}
} else {
return (TYPE_BINARY|TYPE_EXE32);
}
}
}
}
}
// BMP Files
if (buf[0] == 'B' && buf[1] == 'M') {
uint16_t typ = LE16(U16_P(buf + 14));
if (typ == 12 || typ == 64 || typ == 40 || typ == 128)
return (TYPE_BINARY|TYPE_BMP);
}
if (U32_P(buf) == TZINT)
return (TYPE_BINARY); // Timezone data
if (U32_P(buf) == PPMINT)
return (TYPE_BINARY|TYPE_COMPRESSED|TYPE_COMPRESSED_PPMD); // PPM Compressed archive
if (U32_P(buf) == WVPK || U32_P(buf) == TTA1)
return (TYPE_BINARY|TYPE_COMPRESSED|TYPE_AUDIO_COMPRESSED);
// MSDOS COM types, two byte and one byte magic numbers are checked
// after all other multi-byte magic number checks.
if (buf[0] == 0xe9 || buf[0] == 0xeb) {
if (LE16(U16_P(buf + 0x1fe)) == 0xaa55)
return (TYPE_BINARY|TYPE_EXE32); // MSDOS COM
else
return (TYPE_BINARY);
}
if (U16_P(buf + 2) == COM_MAGIC || U16_P(buf + 4) == COM_MAGIC ||
U16_P(buf + 4) == COM_MAGIC || U16_P(buf + 5) == COM_MAGIC ||
U16_P(buf + 13) == COM_MAGIC || U16_P(buf + 18) == COM_MAGIC ||
U16_P(buf + 23) == COM_MAGIC || U16_P(buf + 30) == COM_MAGIC ||
U16_P(buf + 70) == COM_MAGIC) {
return (TYPE_BINARY|TYPE_EXE32); // MSDOS COM
}
return (TYPE_UNKNOWN);
}