680 lines
17 KiB
C
680 lines
17 KiB
C
/*
|
|
* This file is a part of Pcompress, a chunked parallel multi-
|
|
* algorithm lossless compression and decompression program.
|
|
*
|
|
* Copyright (C) 2012 Moinak Ghosh. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 3 of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* moinakg@belenix.org, http://moinakg.wordpress.com/
|
|
*
|
|
* This program includes partly-modified public domain source
|
|
* code from the LZMA SDK: http://www.7-zip.org/sdk.html
|
|
*/
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <fcntl.h>
|
|
#include <time.h>
|
|
#include <termios.h>
|
|
#include <unistd.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <errno.h>
|
|
#include <skein.h>
|
|
#include <openssl/sha.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/hmac.h>
|
|
#include <sha256.h>
|
|
#include <crypto_aes.h>
|
|
#include <KeccakNISTInterface.h>
|
|
#include <cpuid.h>
|
|
|
|
#include "crypto_utils.h"
|
|
|
|
#define PROVIDER_OPENSSL 0
|
|
#define PROVIDER_X64_OPT 1
|
|
|
|
static void init_sha256(void);
|
|
static int geturandom_bytes(uchar_t rbytes[32]);
|
|
/*
|
|
* Checksum properties
|
|
*/
|
|
typedef void (*ckinit_func_ptr)(void);
|
|
static struct {
|
|
const char *name;
|
|
cksum_t cksum_id;
|
|
int bytes, mac_bytes;
|
|
ckinit_func_ptr init_func;
|
|
} cksum_props[] = {
|
|
{"CRC64", CKSUM_CRC64, 8, 32, NULL},
|
|
{"SKEIN256", CKSUM_SKEIN256, 32, 32, NULL},
|
|
{"SKEIN512", CKSUM_SKEIN512, 64, 64, NULL},
|
|
{"SHA256", CKSUM_SHA256, 32, 32, init_sha256},
|
|
{"SHA512", CKSUM_SHA512, 64, 64, NULL},
|
|
{"KECCAK256", CKSUM_KECCAK256, 32, 32, NULL},
|
|
{"KECCAK512", CKSUM_KECCAK512, 64, 64, NULL}
|
|
};
|
|
|
|
static int cksum_provider = PROVIDER_OPENSSL;
|
|
|
|
extern uint64_t lzma_crc64(const uint8_t *buf, uint64_t size, uint64_t crc);
|
|
extern uint64_t lzma_crc64_8bchk(const uint8_t *buf, uint64_t size,
|
|
uint64_t crc, uint64_t *cnt);
|
|
|
|
int
|
|
compute_checksum(uchar_t *cksum_buf, int cksum, uchar_t *buf, int64_t bytes)
|
|
{
|
|
DEBUG_STAT_EN(double strt, en);
|
|
|
|
DEBUG_STAT_EN(strt = get_wtime_millis());
|
|
if (cksum == CKSUM_CRC64) {
|
|
uint64_t *ck = (uint64_t *)cksum_buf;
|
|
*ck = lzma_crc64(buf, bytes, 0);
|
|
|
|
} else if (cksum == CKSUM_SKEIN256) {
|
|
Skein_512_Ctxt_t ctx;
|
|
|
|
Skein_512_Init(&ctx, 256);
|
|
Skein_512_Update(&ctx, buf, bytes);
|
|
Skein_512_Final(&ctx, cksum_buf);
|
|
|
|
} else if (cksum == CKSUM_SKEIN512) {
|
|
Skein_512_Ctxt_t ctx;
|
|
|
|
Skein_512_Init(&ctx, 512);
|
|
Skein_512_Update(&ctx, buf, bytes);
|
|
Skein_512_Final(&ctx, cksum_buf);
|
|
|
|
} else if (cksum == CKSUM_SHA256) {
|
|
if (cksum_provider == PROVIDER_OPENSSL) {
|
|
SHA256_CTX ctx;
|
|
|
|
SHA256_Init(&ctx);
|
|
SHA256_Update(&ctx, buf, bytes);
|
|
SHA256_Final(cksum_buf, &ctx);
|
|
} else {
|
|
SHA256_Context ctx;
|
|
|
|
opt_SHA256_Init(&ctx);
|
|
opt_SHA256_Update(&ctx, buf, bytes);
|
|
opt_SHA256_Final(&ctx, cksum_buf);
|
|
}
|
|
} else if (cksum == CKSUM_SHA512) {
|
|
SHA512_CTX ctx;
|
|
|
|
SHA512_Init(&ctx);
|
|
SHA512_Update(&ctx, buf, bytes);
|
|
SHA512_Final(cksum_buf, &ctx);
|
|
|
|
} else if (cksum == CKSUM_KECCAK256) {
|
|
if (Keccak_Hash(256, buf, bytes * 8, cksum_buf) != 0)
|
|
return (-1);
|
|
|
|
} else if (cksum == CKSUM_KECCAK512) {
|
|
if (Keccak_Hash(512, buf, bytes * 8, cksum_buf) != 0)
|
|
return (-1);
|
|
} else {
|
|
return (-1);
|
|
}
|
|
DEBUG_STAT_EN(en = get_wtime_millis());
|
|
DEBUG_STAT_EN(fprintf(stderr, "Checksum computed at %.3f MB/s\n", get_mb_s(bytes, strt, en)));
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
init_sha256(void)
|
|
{
|
|
#ifdef WORDS_BIGENDIAN
|
|
cksum_provider = PROVIDER_OPENSSL;
|
|
#else
|
|
#ifdef __x86_64__
|
|
processor_info_t pc;
|
|
|
|
cksum_provider = PROVIDER_OPENSSL;
|
|
cpuid_basic_identify(&pc);
|
|
if (pc.proc_type == PROC_X64_INTEL || pc.proc_type == PROC_X64_AMD) {
|
|
if (opt_Init_SHA(&pc) == 0) {
|
|
cksum_provider = PROVIDER_X64_OPT;
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Check if either the given checksum name or id is valid and
|
|
* return it's properties.
|
|
*/
|
|
int
|
|
get_checksum_props(const char *name, int *cksum, int *cksum_bytes, int *mac_bytes)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i<sizeof (cksum_props); i++) {
|
|
if ((name != NULL && strcmp(name, cksum_props[i].name) == 0) ||
|
|
(*cksum != 0 && *cksum == cksum_props[i].cksum_id)) {
|
|
*cksum = cksum_props[i].cksum_id;
|
|
*cksum_bytes = cksum_props[i].bytes;
|
|
*mac_bytes = cksum_props[i].mac_bytes;
|
|
if (cksum_props[i].init_func)
|
|
cksum_props[i].init_func();
|
|
return (0);
|
|
}
|
|
}
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Endian independent way of storing the checksum bytes. This is actually
|
|
* storing in little endian format and a copy can be avoided in x86 land.
|
|
* However unsightly ifdefs are avoided here since this is not so performance
|
|
* critical.
|
|
*/
|
|
void
|
|
serialize_checksum(uchar_t *checksum, uchar_t *buf, int cksum_bytes)
|
|
{
|
|
int i,j;
|
|
|
|
j = 0;
|
|
for (i=cksum_bytes; i>0; i--) {
|
|
buf[j] = checksum[i-1];
|
|
j++;
|
|
}
|
|
}
|
|
|
|
void
|
|
deserialize_checksum(uchar_t *checksum, uchar_t *buf, int cksum_bytes)
|
|
{
|
|
int i,j;
|
|
|
|
j = 0;
|
|
for (i=cksum_bytes; i>0; i--) {
|
|
checksum[i-1] = buf[j];
|
|
j++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Perform keyed hashing. With Skein, HMAC is not used, rather Skein's
|
|
* native MAC is used which is more optimal than HMAC.
|
|
*/
|
|
int
|
|
hmac_init(mac_ctx_t *mctx, int cksum, crypto_ctx_t *cctx)
|
|
{
|
|
aes_ctx_t *actx = (aes_ctx_t *)(cctx->crypto_ctx);
|
|
mctx->mac_cksum = cksum;
|
|
|
|
if (cksum == CKSUM_SKEIN256) {
|
|
Skein_512_Ctxt_t *ctx = (Skein_512_Ctxt_t *)malloc(sizeof (Skein_512_Ctxt_t));
|
|
if (!ctx) return (-1);
|
|
Skein_512_InitExt(ctx, 256, SKEIN_CFG_TREE_INFO_SEQUENTIAL,
|
|
actx->pkey, KEYLEN);
|
|
mctx->mac_ctx = ctx;
|
|
ctx = (Skein_512_Ctxt_t *)malloc(sizeof (Skein_512_Ctxt_t));
|
|
if (!ctx) {
|
|
free(mctx->mac_ctx);
|
|
return (-1);
|
|
}
|
|
memcpy(ctx, mctx->mac_ctx, sizeof (Skein_512_Ctxt_t));
|
|
mctx->mac_ctx_reinit = ctx;
|
|
|
|
} else if (cksum == CKSUM_SKEIN512) {
|
|
Skein_512_Ctxt_t *ctx = (Skein_512_Ctxt_t *)malloc(sizeof (Skein_512_Ctxt_t));
|
|
if (!ctx) return (-1);
|
|
Skein_512_InitExt(ctx, 512, SKEIN_CFG_TREE_INFO_SEQUENTIAL,
|
|
actx->pkey, KEYLEN);
|
|
mctx->mac_ctx = ctx;
|
|
ctx = (Skein_512_Ctxt_t *)malloc(sizeof (Skein_512_Ctxt_t));
|
|
if (!ctx) {
|
|
free(mctx->mac_ctx);
|
|
return (-1);
|
|
}
|
|
memcpy(ctx, mctx->mac_ctx, sizeof (Skein_512_Ctxt_t));
|
|
mctx->mac_ctx_reinit = ctx;
|
|
|
|
} else if (cksum == CKSUM_SHA256 || cksum == CKSUM_CRC64) {
|
|
if (cksum_provider == PROVIDER_OPENSSL) {
|
|
HMAC_CTX *ctx = (HMAC_CTX *)malloc(sizeof (HMAC_CTX));
|
|
if (!ctx) return (-1);
|
|
HMAC_CTX_init(ctx);
|
|
HMAC_Init_ex(ctx, actx->pkey, KEYLEN, EVP_sha256(), NULL);
|
|
mctx->mac_ctx = ctx;
|
|
|
|
ctx = (HMAC_CTX *)malloc(sizeof (HMAC_CTX));
|
|
if (!ctx) {
|
|
free(mctx->mac_ctx);
|
|
return (-1);
|
|
}
|
|
if (!HMAC_CTX_copy(ctx, (HMAC_CTX *)(mctx->mac_ctx))) {
|
|
free(ctx);
|
|
free(mctx->mac_ctx);
|
|
return (-1);
|
|
}
|
|
mctx->mac_ctx_reinit = ctx;
|
|
} else {
|
|
HMAC_SHA256_Context *ctx = (HMAC_SHA256_Context *)malloc(sizeof (HMAC_SHA256_Context));
|
|
if (!ctx) return (-1);
|
|
opt_HMAC_SHA256_Init(ctx, actx->pkey, KEYLEN);
|
|
mctx->mac_ctx = ctx;
|
|
|
|
ctx = (HMAC_SHA256_Context *)malloc(sizeof (HMAC_SHA256_Context));
|
|
if (!ctx) {
|
|
free(mctx->mac_ctx);
|
|
return (-1);
|
|
}
|
|
memcpy(ctx, mctx->mac_ctx, sizeof (HMAC_SHA256_Context));
|
|
mctx->mac_ctx_reinit = ctx;
|
|
}
|
|
} else if (cksum == CKSUM_SHA512) {
|
|
HMAC_CTX *ctx = (HMAC_CTX *)malloc(sizeof (HMAC_CTX));
|
|
if (!ctx) return (-1);
|
|
HMAC_CTX_init(ctx);
|
|
HMAC_Init_ex(ctx, actx->pkey, KEYLEN, EVP_sha512(), NULL);
|
|
mctx->mac_ctx = ctx;
|
|
|
|
ctx = (HMAC_CTX *)malloc(sizeof (HMAC_CTX));
|
|
if (!ctx) {
|
|
free(mctx->mac_ctx);
|
|
return (-1);
|
|
}
|
|
if (!HMAC_CTX_copy(ctx, (HMAC_CTX *)(mctx->mac_ctx))) {
|
|
free(ctx);
|
|
free(mctx->mac_ctx);
|
|
return (-1);
|
|
}
|
|
mctx->mac_ctx_reinit = ctx;
|
|
|
|
} else if (cksum == CKSUM_KECCAK256 || cksum == CKSUM_KECCAK512) {
|
|
hashState *ctx = (hashState *)malloc(sizeof (hashState));
|
|
if (!ctx) return (-1);
|
|
|
|
if (cksum == CKSUM_KECCAK256) {
|
|
if (Keccak_Init(ctx, 256) != 0)
|
|
return (-1);
|
|
} else {
|
|
if (Keccak_Init(ctx, 512) != 0)
|
|
return (-1);
|
|
}
|
|
if (Keccak_Update(ctx, actx->pkey, KEYLEN << 3) != 0)
|
|
return (-1);
|
|
mctx->mac_ctx = ctx;
|
|
|
|
ctx = (hashState *)malloc(sizeof (hashState));
|
|
if (!ctx) {
|
|
free(mctx->mac_ctx);
|
|
return (-1);
|
|
}
|
|
memcpy(ctx, mctx->mac_ctx, sizeof (hashState));
|
|
mctx->mac_ctx_reinit = ctx;
|
|
} else {
|
|
return (-1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
hmac_reinit(mac_ctx_t *mctx)
|
|
{
|
|
int cksum = mctx->mac_cksum;
|
|
|
|
if (cksum == CKSUM_SKEIN256 || cksum == CKSUM_SKEIN512) {
|
|
memcpy(mctx->mac_ctx, mctx->mac_ctx_reinit, sizeof (Skein_512_Ctxt_t));
|
|
|
|
} else if (cksum == CKSUM_SHA256 || cksum == CKSUM_CRC64) {
|
|
if (cksum_provider == PROVIDER_OPENSSL) {
|
|
HMAC_CTX_copy((HMAC_CTX *)(mctx->mac_ctx),
|
|
(HMAC_CTX *)(mctx->mac_ctx_reinit));
|
|
} else {
|
|
memcpy(mctx->mac_ctx, mctx->mac_ctx_reinit, sizeof (HMAC_SHA256_Context));
|
|
}
|
|
} else if (cksum == CKSUM_SHA512) {
|
|
HMAC_CTX_copy((HMAC_CTX *)(mctx->mac_ctx), (HMAC_CTX *)(mctx->mac_ctx_reinit));
|
|
|
|
} else if (cksum == CKSUM_KECCAK256 || cksum == CKSUM_KECCAK512) {
|
|
memcpy(mctx->mac_ctx, mctx->mac_ctx_reinit, sizeof (hashState));
|
|
} else {
|
|
return (-1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
hmac_update(mac_ctx_t *mctx, uchar_t *data, uint64_t len)
|
|
{
|
|
int cksum = mctx->mac_cksum;
|
|
|
|
if (cksum == CKSUM_SKEIN256 || cksum == CKSUM_SKEIN512) {
|
|
Skein_512_Update((Skein_512_Ctxt_t *)(mctx->mac_ctx), data, len);
|
|
|
|
} else if (cksum == CKSUM_SHA256 || cksum == CKSUM_CRC64) {
|
|
if (cksum_provider == PROVIDER_OPENSSL) {
|
|
if (HMAC_Update((HMAC_CTX *)(mctx->mac_ctx), data, len) == 0)
|
|
return (-1);
|
|
} else {
|
|
opt_HMAC_SHA256_Update((HMAC_SHA256_Context *)(mctx->mac_ctx), data, len);
|
|
}
|
|
} else if (cksum == CKSUM_SHA512) {
|
|
if (HMAC_Update((HMAC_CTX *)(mctx->mac_ctx), data, len) == 0)
|
|
return (-1);
|
|
|
|
} else if (cksum == CKSUM_KECCAK256 || cksum == CKSUM_KECCAK512) {
|
|
// Keccak takes data length in bits so we have to scale
|
|
while (len > KECCAK_MAX_SEG) {
|
|
uint64_t blen;
|
|
|
|
blen = KECCAK_MAX_SEG;
|
|
if (Keccak_Update((hashState *)(mctx->mac_ctx), data, blen << 3) != 0)
|
|
return (-1);
|
|
len -= KECCAK_MAX_SEG;
|
|
}
|
|
if (Keccak_Update((hashState *)(mctx->mac_ctx), data, len << 3) != 0)
|
|
return (-1);
|
|
} else {
|
|
return (-1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
hmac_final(mac_ctx_t *mctx, uchar_t *hash, unsigned int *len)
|
|
{
|
|
int cksum = mctx->mac_cksum;
|
|
|
|
if (cksum == CKSUM_SKEIN256) {
|
|
Skein_512_Final((Skein_512_Ctxt_t *)(mctx->mac_ctx), hash);
|
|
*len = 32;
|
|
|
|
} else if (cksum == CKSUM_SKEIN512) {
|
|
Skein_512_Final((Skein_512_Ctxt_t *)(mctx->mac_ctx), hash);
|
|
*len = 64;
|
|
|
|
} else if (cksum == CKSUM_SHA256 || cksum == CKSUM_CRC64) {
|
|
if (cksum_provider == PROVIDER_OPENSSL) {
|
|
HMAC_Final((HMAC_CTX *)(mctx->mac_ctx), hash, len);
|
|
} else {
|
|
opt_HMAC_SHA256_Final((HMAC_SHA256_Context *)(mctx->mac_ctx), hash);
|
|
*len = 32;
|
|
}
|
|
} else if (cksum == CKSUM_SHA512) {
|
|
HMAC_Final((HMAC_CTX *)(mctx->mac_ctx), hash, len);
|
|
|
|
} else if (cksum == CKSUM_KECCAK256 || cksum == CKSUM_KECCAK512) {
|
|
if (Keccak_Final((hashState *)(mctx->mac_ctx), hash) != 0)
|
|
return (-1);
|
|
if (cksum == CKSUM_KECCAK256)
|
|
*len = 32;
|
|
else
|
|
*len = 64;
|
|
} else {
|
|
return (-1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
hmac_cleanup(mac_ctx_t *mctx)
|
|
{
|
|
int cksum = mctx->mac_cksum;
|
|
|
|
if (cksum == CKSUM_SKEIN256 || cksum == CKSUM_SKEIN512) {
|
|
memset(mctx->mac_ctx, 0, sizeof (Skein_512_Ctxt_t));
|
|
memset(mctx->mac_ctx_reinit, 0, sizeof (Skein_512_Ctxt_t));
|
|
|
|
} else if (cksum == CKSUM_SHA256 || cksum == CKSUM_CRC64) {
|
|
if (cksum_provider == PROVIDER_OPENSSL) {
|
|
HMAC_CTX_cleanup((HMAC_CTX *)(mctx->mac_ctx));
|
|
HMAC_CTX_cleanup((HMAC_CTX *)(mctx->mac_ctx_reinit));
|
|
} else {
|
|
memset(mctx->mac_ctx, 0, sizeof (HMAC_SHA256_Context));
|
|
memset(mctx->mac_ctx_reinit, 0, sizeof (HMAC_SHA256_Context));
|
|
}
|
|
} else if (cksum == CKSUM_SHA512) {
|
|
HMAC_CTX_cleanup((HMAC_CTX *)(mctx->mac_ctx));
|
|
HMAC_CTX_cleanup((HMAC_CTX *)(mctx->mac_ctx_reinit));
|
|
|
|
} else if (cksum == CKSUM_KECCAK256 || cksum == CKSUM_KECCAK512) {
|
|
memset(mctx->mac_ctx, 0, sizeof (hashState));
|
|
memset(mctx->mac_ctx_reinit, 0, sizeof (hashState));
|
|
} else {
|
|
return (-1);
|
|
}
|
|
mctx->mac_cksum = 0;
|
|
free(mctx->mac_ctx);
|
|
free(mctx->mac_ctx_reinit);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
init_crypto(crypto_ctx_t *cctx, uchar_t *pwd, int pwd_len, int crypto_alg,
|
|
uchar_t *salt, int saltlen, uint64_t nonce, int enc_dec)
|
|
{
|
|
if (crypto_alg == CRYPTO_ALG_AES) {
|
|
aes_ctx_t *actx = (aes_ctx_t *)malloc(sizeof (aes_ctx_t));
|
|
|
|
if (enc_dec) {
|
|
/*
|
|
* Encryption init.
|
|
*/
|
|
cctx->salt = (uchar_t *)malloc(32);
|
|
salt = cctx->salt;
|
|
cctx->saltlen = 32;
|
|
if (RAND_status() != 1 || RAND_bytes(salt, 32) != 1) {
|
|
if (geturandom_bytes(salt) != 0) {
|
|
uchar_t sb[64];
|
|
int b;
|
|
struct timespec tp;
|
|
|
|
b = 0;
|
|
/* No good random pool is populated/available. What to do ? */
|
|
if (clock_gettime(CLOCK_MONOTONIC, &tp) == -1) {
|
|
time((time_t *)&sb[b]);
|
|
b += 8;
|
|
} else {
|
|
uint64_t v;
|
|
v = tp.tv_sec * 1000UL + tp.tv_nsec;
|
|
*((uint64_t *)&sb[b]) = v;
|
|
b += 8;
|
|
}
|
|
*((uint32_t *)&sb[b]) = rand();
|
|
b += 4;
|
|
*((uint32_t *)&sb[b]) = getpid();
|
|
b += 4;
|
|
compute_checksum(&sb[b], CKSUM_SHA256, sb, b);
|
|
b = 8 + 4;
|
|
*((uint32_t *)&sb[b]) = rand();
|
|
compute_checksum(salt, CKSUM_SHA256, &sb[b], 32 + 4);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Zero nonce (arg #6) since it will be generated.
|
|
*/
|
|
if (aes_init(actx, salt, 32, pwd, pwd_len, 0, enc_dec) != 0) {
|
|
fprintf(stderr, "Failed to initialize AES context\n");
|
|
return (-1);
|
|
}
|
|
} else {
|
|
/*
|
|
* Decryption init.
|
|
* Pass given nonce and salt.
|
|
*/
|
|
if (saltlen > MAX_SALTLEN) {
|
|
fprintf(stderr, "Salt too long. Max allowed length is %d\n",
|
|
MAX_SALTLEN);
|
|
return (-1);
|
|
}
|
|
cctx->salt = (uchar_t *)malloc(saltlen);
|
|
memcpy(cctx->salt, salt, saltlen);
|
|
|
|
if (aes_init(actx, cctx->salt, saltlen, pwd, pwd_len, nonce,
|
|
enc_dec) != 0) {
|
|
fprintf(stderr, "Failed to initialize AES context\n");
|
|
return (-1);
|
|
}
|
|
}
|
|
cctx->crypto_ctx = actx;
|
|
cctx->crypto_alg = crypto_alg;
|
|
cctx->enc_dec = enc_dec;
|
|
} else {
|
|
fprintf(stderr, "Unrecognized algorithm code: %d\n", crypto_alg);
|
|
return (-1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
crypto_buf(crypto_ctx_t *cctx, uchar_t *from, uchar_t *to, int64_t bytes, uint64_t id)
|
|
{
|
|
if (cctx->crypto_alg == CRYPTO_ALG_AES) {
|
|
if (cctx->enc_dec == ENCRYPT_FLAG) {
|
|
return (aes_encrypt((aes_ctx_t *)(cctx->crypto_ctx), from, to, bytes, id));
|
|
} else {
|
|
return (aes_decrypt((aes_ctx_t *)(cctx->crypto_ctx), from, to, bytes, id));
|
|
}
|
|
} else {
|
|
fprintf(stderr, "Unrecognized algorithm code: %d\n", cctx->crypto_alg);
|
|
return (-1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
uint64_t
|
|
crypto_nonce(crypto_ctx_t *cctx)
|
|
{
|
|
return (aes_nonce((aes_ctx_t *)(cctx->crypto_ctx)));
|
|
}
|
|
|
|
void
|
|
crypto_clean_pkey(crypto_ctx_t *cctx)
|
|
{
|
|
aes_clean_pkey((aes_ctx_t *)(cctx->crypto_ctx));
|
|
}
|
|
|
|
void
|
|
cleanup_crypto(crypto_ctx_t *cctx)
|
|
{
|
|
aes_cleanup((aes_ctx_t *)(cctx->crypto_ctx));
|
|
memset(cctx->salt, 0, 32);
|
|
free(cctx->salt);
|
|
free(cctx);
|
|
}
|
|
|
|
static int
|
|
geturandom_bytes(uchar_t rbytes[32])
|
|
{
|
|
int fd;
|
|
int64_t lenread;
|
|
uchar_t * buf = rbytes;
|
|
uint64_t buflen = 32;
|
|
|
|
/* Open /dev/urandom. */
|
|
if ((fd = open("/dev/urandom", O_RDONLY)) == -1)
|
|
goto err0;
|
|
|
|
/* Read bytes until we have filled the buffer. */
|
|
while (buflen > 0) {
|
|
if ((lenread = read(fd, buf, buflen)) == -1)
|
|
goto err1;
|
|
|
|
/* The random device should never EOF. */
|
|
if (lenread == 0)
|
|
goto err1;
|
|
|
|
/* We're partly done. */
|
|
buf += lenread;
|
|
buflen -= lenread;
|
|
}
|
|
|
|
/* Close the device. */
|
|
while (close(fd) == -1) {
|
|
if (errno != EINTR)
|
|
goto err0;
|
|
}
|
|
|
|
/* Success! */
|
|
return (0);
|
|
err1:
|
|
close(fd);
|
|
err0:
|
|
/* Failure! */
|
|
return (4);
|
|
}
|
|
|
|
int
|
|
get_pw_string(uchar_t pw[MAX_PW_LEN], const char *prompt, int twice)
|
|
{
|
|
int fd, len;
|
|
FILE *input, *strm;
|
|
struct termios oldt, newt;
|
|
char pw1[MAX_PW_LEN], pw2[MAX_PW_LEN], *s;
|
|
|
|
// Try TTY first
|
|
fd = open("/dev/tty", O_RDWR | O_NOCTTY);
|
|
if (fd != -1) {
|
|
input = fdopen(fd, "w+");
|
|
strm = input;
|
|
} else {
|
|
// Fall back to stdin
|
|
fd = STDIN_FILENO;
|
|
input = stdin;
|
|
strm = stderr;
|
|
}
|
|
tcgetattr(fd, &oldt);
|
|
newt = oldt;
|
|
newt.c_lflag &= ~ECHO;
|
|
tcsetattr(fd, TCSANOW, &newt);
|
|
|
|
fprintf(stderr, "%s: ", prompt);
|
|
fflush(stderr);
|
|
s = fgets(pw1, MAX_PW_LEN, input);
|
|
fputs("\n", stderr);
|
|
|
|
if (s == NULL) {
|
|
tcsetattr(fd, TCSANOW, &oldt);
|
|
fflush(strm);
|
|
return (-1);
|
|
}
|
|
|
|
if (twice) {
|
|
fprintf(stderr, "%s (once more): ", prompt);
|
|
fflush(stderr);
|
|
s = fgets(pw2, MAX_PW_LEN, input);
|
|
tcsetattr(fd, TCSANOW, &oldt);
|
|
fflush(strm);
|
|
fputs("\n", stderr);
|
|
|
|
if (s == NULL) {
|
|
return (-1);
|
|
}
|
|
|
|
if (strcmp(pw1, pw2) != 0) {
|
|
fprintf(stderr, "Passwords do not match!\n");
|
|
memset(pw1, 0, MAX_PW_LEN);
|
|
memset(pw2, 0, MAX_PW_LEN);
|
|
return (-1);
|
|
}
|
|
} else {
|
|
tcsetattr(fd, TCSANOW, &oldt);
|
|
fflush(strm);
|
|
fputs("\n", stderr);
|
|
}
|
|
|
|
len = strlen(pw1);
|
|
pw1[len-1] = '\0';
|
|
strcpy((char *)pw, (const char *)pw1);
|
|
memset(pw1, 0, MAX_PW_LEN);
|
|
memset(pw2, 0, MAX_PW_LEN);
|
|
return (len);
|
|
}
|