pcompress/rabin/global/index.c
2013-04-18 22:55:49 +05:30

467 lines
12 KiB
C

/*
* This file is a part of Pcompress, a chunked parallel multi-
* algorithm lossless compression and decompression program.
*
* Copyright (C) 2012-2013 Moinak Ghosh. All rights reserved.
* Use is subject to license terms.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*
* moinakg@belenix.org, http://moinakg.wordpress.com/
*/
#include <sys/types.h>
#include <sys/param.h>
#include <fcntl.h>
#include <time.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <utils.h>
#include <allocator.h>
#include <pthread.h>
#include <xxhash.h>
#include <sys/mman.h>
#include "index.h"
/*
* Hashtable structures for in-memory index.
*/
typedef struct {
hash_entry_t **tab;
} htab_t;
typedef struct {
htab_t *list;
uint64_t memlimit;
uint64_t memused;
int hash_entry_size, intervals, hash_slots;
} index_t;
archive_config_t *
init_global_db(char *configfile)
{
archive_config_t *cfg;
int rv;
cfg = calloc(1, sizeof (archive_config_t));
if (!cfg) {
fprintf(stderr, "Memory allocation failure\n");
return (NULL);
}
rv = read_config(configfile, cfg);
if (rv != 0)
return (NULL);
return (cfg);
}
void
static cleanup_indx(index_t *indx)
{
int i, j;
if (indx) {
if (indx->list) {
for (i = 0; i < indx->intervals; i++) {
if (indx->list[i].tab) {
for (j=0; j<indx->hash_slots; j++) {
hash_entry_t *he, *nxt;
he = indx->list[i].tab[j];
while (he) {
nxt = he->next;
free(he);
he = nxt;
}
}
free(indx->list[i].tab);
}
}
free(indx->list);
}
free(indx);
}
}
#define MEM_PER_UNIT(ent_sz) ( (ent_sz + sizeof (hash_entry_t *) + \
(sizeof (hash_entry_t *)) / 2) + sizeof (hash_entry_t **) )
#define MEM_REQD(hslots, ent_sz) (hslots * MEM_PER_UNIT(ent_sz))
#define SLOTS_FOR_MEM(memlimit, ent_sz) (memlimit / MEM_PER_UNIT(ent_sz) - 5)
int
setup_db_config_s(archive_config_t *cfg, uint32_t chunksize, uint64_t *user_chunk_sz,
int *pct_interval, const char *algo, cksum_t ck, cksum_t ck_sim,
size_t file_sz, uint32_t *hash_slots, int *hash_entry_size,
uint64_t *memreqd, size_t memlimit)
{
int rv, set_user;
/*
* file_sz = 0 and pct_interval = 0 means we are in pipe mode and want a simple
* index. Set pct_interval to 100 to indicate that we need to use all of memlimit
* for the simple index.
*
* If file_sz != 0 but pct_interval = 0 then we need to create a simple index
* sized for the given file. If the available memory is not sufficient for a full
* index and required index size is 1.25x of availble mem then switch to a
* segmented index.
*
* If file_sz != 0 and pct_interval != 0 then we explicitly want to create a segmented
* index. This option is auto-selected to support the previous behavior.
*
* If file_sz = 0 and pct_interval != 0 then we are in pipe mode and want a segmented
* index. This is typically for WAN deduplication of large data transfers.
*/
if (pct_interval != 0)
set_user = 0;
else
set_user = 1;
if (file_sz == 0 && *pct_interval == 0)
*pct_interval = 100;
set_cfg:
rv = set_config_s(cfg, algo, ck, ck_sim, chunksize, file_sz, *user_chunk_sz, *pct_interval);
if (cfg->dedupe_mode == MODE_SIMPLE) {
if (*pct_interval != 100)
*pct_interval = 0;
cfg->pct_interval = 0;
}
/*
* Adjust user_chunk_sz if indicated.
*/
if (set_user) {
if (*user_chunk_sz < cfg->segment_sz_bytes) {
*user_chunk_sz = cfg->segment_sz_bytes + (cfg->segment_sz_bytes >> 1);
} else {
*user_chunk_sz = (*user_chunk_sz / cfg->segment_sz_bytes) * cfg->segment_sz_bytes;
}
}
// Compute total hashtable entries first
*hash_entry_size = sizeof (hash_entry_t) + cfg->similarity_cksum_sz - 1;
if (*pct_interval == 0) {
cfg->intervals = 1;
cfg->sub_intervals = 0;
*hash_slots = file_sz / cfg->chunk_sz_bytes + 1;
} else if (*pct_interval == 100) {
cfg->intervals = 1;
cfg->sub_intervals = 0;
*hash_slots = SLOTS_FOR_MEM(memlimit, *hash_entry_size);
*pct_interval = 0;
} else {
cfg->intervals = 100 / *pct_interval;
cfg->sub_intervals = (cfg->segment_sz + 1) / cfg->intervals;
*hash_slots = file_sz / cfg->segment_sz_bytes + 1;
*hash_slots *= (cfg->intervals + cfg->sub_intervals);
}
/*
* Compute memory required to hold all hash entries assuming worst case 50%
* occupancy.
*/
*memreqd = MEM_REQD(*hash_slots, *hash_entry_size);
/*
* If memory required is more than twice the indicated memory limit then
* we switch to Segmented Cumulative Similarity based dedupe.
*/
if (*memreqd > (memlimit * 2) && cfg->dedupe_mode == MODE_SIMPLE &&
*pct_interval == 0) {
*pct_interval = DEFAULT_PCT_INTERVAL;
set_user = 1;
goto set_cfg;
}
return (rv);
}
archive_config_t *
init_global_db_s(char *path, char *tmppath, uint32_t chunksize, uint64_t user_chunk_sz,
int pct_interval, const char *algo, cksum_t ck, cksum_t ck_sim,
size_t file_sz, size_t memlimit, int nthreads)
{
archive_config_t *cfg;
int rv, orig_pct;
uint32_t hash_slots, intervals, i;
uint64_t memreqd;
int hash_entry_size;
index_t *indx;
if (path != NULL) {
fprintf(stderr, "Disk based index not yet implemented.\n");
return (NULL);
}
orig_pct = pct_interval;
cfg = calloc(1, sizeof (archive_config_t));
rv = setup_db_config_s(cfg, chunksize, &user_chunk_sz, &pct_interval, algo, ck, ck_sim,
file_sz, &hash_slots, &hash_entry_size, &memreqd, memlimit);
// Reduce hash_slots to remain within memlimit
while (memreqd > memlimit) {
hash_slots--;
memreqd = hash_slots * MEM_PER_UNIT(hash_entry_size);
}
/*
* Now create as many hash tables as there are similarity match intervals
* each having hash_slots / intervals slots.
*/
indx = calloc(1, sizeof (index_t));
if (!indx) {
free(cfg);
return (NULL);
}
cfg->nthreads = nthreads;
intervals = cfg->intervals + cfg->sub_intervals;
indx->memlimit = memlimit - (hash_entry_size << 2);
indx->list = (htab_t *)calloc(intervals, sizeof (htab_t));
indx->hash_entry_size = hash_entry_size;
indx->intervals = intervals;
indx->hash_slots = hash_slots / intervals;
for (i = 0; i < intervals; i++) {
indx->list[i].tab = (hash_entry_t **)calloc(indx->hash_slots, sizeof (hash_entry_t *));
if (!(indx->list[i].tab)) {
cleanup_indx(indx);
free(cfg);
return (NULL);
}
indx->memused += ((indx->hash_slots) * (sizeof (hash_entry_t *)));
}
if (pct_interval > 0) {
strcpy(cfg->rootdir, tmppath);
strcat(cfg->rootdir, "/.segXXXXXX");
cfg->seg_fd_w = mkstemp(cfg->rootdir);
cfg->seg_fd_r = (struct seg_map_fd *)malloc(sizeof (struct seg_map_fd) * nthreads);
if (cfg->seg_fd_w == -1 || cfg->seg_fd_r == NULL) {
cleanup_indx(indx);
if (cfg->seg_fd_r)
free(cfg->seg_fd_r);
free(cfg);
return (NULL);
}
for (i = 0; i < nthreads; i++) {
cfg->seg_fd_r[i].fd = open(cfg->rootdir, O_RDONLY);
cfg->seg_fd_r[i].mapping = NULL;
}
}
cfg->segcache_pos = 0;
cfg->dbdata = indx;
return (cfg);
}
/*
* Functions to handle segment metadata cache for segmented similarity based deduplication.
* These functions are not thread-safe by design. The caller must ensure thread safety.
*/
/*
* Add new segment block list array into the metadata cache. Once added the entry is
* not removed till the program exits.
*/
#define SEGCACHE_HDR_SZ 12
int
db_segcache_write(archive_config_t *cfg, int tid, uchar_t *buf, uint32_t len, uint32_t blknum,
uint64_t file_offset)
{
int64_t w;
uchar_t hdr[SEGCACHE_HDR_SZ];
*((uint32_t *)(hdr)) = blknum;
*((uint64_t *)(hdr + 4)) = file_offset;
w = Write(cfg->seg_fd_w, hdr, sizeof (hdr));
if (w < sizeof (hdr))
return (-1);
cfg->segcache_pos += w;
w = Write(cfg->seg_fd_w, buf, len);
if (w < len)
return (-1);
cfg->segcache_pos += w;
return (0);
}
/*
* Get the current file pointer position of the metadata file. This indicates the
* position where the next entry will be added.
*/
int
db_segcache_pos(archive_config_t *cfg, int tid)
{
return (cfg->segcache_pos);
}
/*
* Mmap the requested segment metadata array.
*/
int
db_segcache_map(archive_config_t *cfg, int tid, uint32_t *blknum, uint64_t *offset, uchar_t *blocks)
{
uchar_t *mapbuf, *hdr;
int fd;
uint32_t len, adj;
uint64_t pos;
/*
* Ensure previous mapping is removed.
*/
db_segcache_unmap(cfg, tid);
fd = cfg->seg_fd_r[tid].fd;
if (lseek(fd, *offset, SEEK_SET) != *offset)
return (-1);
/*
* Mmap hdr and blocks. We assume max # of rabin block entries and mmap (unless remaining
* file length is less). The header contains actual number of block entries so mmap-ing
* extra has no consequence other than address space usage.
*/
len = cfg->segment_sz * sizeof (global_blockentry_t) + SEGCACHE_HDR_SZ;
pos = cfg->segcache_pos;
if (pos - *offset < len)
len = pos - *offset;
adj = *offset % cfg->pagesize;
mapbuf = mmap(NULL, len + adj, PROT_READ, MAP_SHARED, fd, *offset - adj);
if (mapbuf == MAP_FAILED)
return (-1);
hdr = mapbuf + adj;
*blknum = *((uint32_t *)(hdr));
*offset = *((uint64_t *)(hdr + 4));
memcpy(blocks, hdr + SEGCACHE_HDR_SZ, *blknum * sizeof (global_blockentry_t));
cfg->seg_fd_r[tid].mapping = mapbuf;
cfg->seg_fd_r[tid].len = len + adj;
return (0);
}
/*
* Remove the metadata mapping.
*/
int
db_segcache_unmap(archive_config_t *cfg, int tid)
{
if (cfg->seg_fd_r[tid].mapping) {
munmap(cfg->seg_fd_r[tid].mapping, cfg->seg_fd_r[tid].len);
cfg->seg_fd_r[tid].mapping = NULL;
}
return (0);
}
static inline int
mycmp(uchar_t *a, uchar_t *b, int sz)
{
size_t val1, val2;
uchar_t *v1 = a;
uchar_t *v2 = b;
int len;
len = 0;
do {
val1 = *((size_t *)v1);
val2 = *((size_t *)v2);
if (val1 != val2) {
return (1);
}
v1 += sizeof (size_t);
v2 += sizeof (size_t);
len += sizeof (size_t);
} while (len < sz);
return (0);
}
/*
* Lookup and insert item if indicated. Not thread-safe by design. Caller needs to
* ensure thread-safety.
*/
hash_entry_t *
db_lookup_insert_s(archive_config_t *cfg, uchar_t *sim_cksum, int interval,
uint64_t item_offset, uint32_t item_size, int do_insert)
{
uint32_t htab_entry;
index_t *indx = (index_t *)(cfg->dbdata);
hash_entry_t **htab, *ent, **pent;
assert((cfg->similarity_cksum_sz & (sizeof (size_t) - 1)) == 0);
htab_entry = XXH32(sim_cksum, cfg->similarity_cksum_sz, 0);
htab_entry ^= (htab_entry / cfg->similarity_cksum_sz);
htab_entry = htab_entry % indx->hash_slots;
htab = indx->list[interval].tab;
pent = &(htab[htab_entry]);
ent = htab[htab_entry];
if (cfg->pct_interval == 0) { // Global dedupe with simple index
while (ent) {
if (mycmp(sim_cksum, ent->cksum, cfg->similarity_cksum_sz) == 0 &&
ent->item_size == item_size) {
return (ent);
}
pent = &(ent->next);
ent = ent->next;
}
} else {
while (ent) {
if (mycmp(sim_cksum, ent->cksum, cfg->similarity_cksum_sz) == 0) {
return (ent);
}
pent = &(ent->next);
ent = ent->next;
}
}
if (do_insert) {
if (indx->memused + indx->hash_entry_size >= indx->memlimit && htab[htab_entry] != NULL) {
ent = htab[htab_entry];
htab[htab_entry] = htab[htab_entry]->next;
} else {
ent = (hash_entry_t *)malloc(indx->hash_entry_size);
indx->memused += indx->hash_entry_size;
}
ent->item_offset = item_offset;
ent->item_size = item_size;
ent->next = 0;
memcpy(ent->cksum, sim_cksum, cfg->similarity_cksum_sz);
*pent = ent;
}
return (NULL);
}
void
destroy_global_db_s(archive_config_t *cfg)
{
int i;
index_t *indx = (index_t *)(cfg->dbdata);
cleanup_indx(indx);
if (cfg->pct_interval > 0) {
for (i = 0; i < cfg->nthreads; i++) {
close(cfg->seg_fd_r[i].fd);
}
free(cfg->seg_fd_r);
close(cfg->seg_fd_w);
unlink(cfg->rootdir);
}
}