pcompress/crypto/sha2/intel/sha512_sse4.asm
2013-03-07 20:26:48 +05:30

434 lines
15 KiB
NASM

;
; This file is a part of Pcompress, a chunked parallel multi-
; algorithm lossless compression and decompression program.
;
; Copyright (C) 2012-2013 Moinak Ghosh. All rights reserved.
; Use is subject to license terms.
;
; This program is free software; you can redistribute it and/or
; modify it under the terms of the GNU Lesser General Public
; License as published by the Free Software Foundation; either
; version 3 of the License, or (at your option) any later version.
;
; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
; Lesser General Public License for more details.
;
; You should have received a copy of the GNU Lesser General Public
; License along with this program.
; If not, see <http://www.gnu.org/licenses/>.
;
; moinakg@belenix.org, http://moinakg.wordpress.com/
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; NOTE:
; The code in this file is covered by the Intel Open Software License
; Agreement a copy of which is provided in the file
; open_software_license.txt
;
; This source was downloaded from the following URL:
; http://www.intel.com/content/www/us/en/intelligent-systems/crystal-forest-gladden/sha512-code-edc.html
;
; Only the Intel license terms will apply when this file is used outside
; of this software project.
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Copyright 2012 Intel Corporation All Rights Reserved.
;
; The source code contained or described herein and all documents
; related to the source code ("Material") are owned by Intel Corporation
; or its suppliers or licensors. Title to the Material remains with
; Intel Corporation or its suppliers and licensors. The Material may
; contain trade secrets and proprietary and confidential information of
; Intel Corporation and its suppliers and licensors, and is protected by
; worldwide copyright and trade secret laws and treaty provisions. No
; part of the Material may be used, copied, reproduced, modified,
; published, uploaded, posted, transmitted, distributed, or disclosed in
; any way without Intel's prior express written permission.
;
; No license under any patent, copyright, trade secret or other
; intellectual property right is granted to or conferred upon you by
; disclosure or delivery of the Materials, either expressly, by
; implication, inducement, estoppel or otherwise. Any license under such
; intellectual property rights must be express and approved by Intel in
; writing.
;
; Unless otherwise agreed by Intel in writing, you may not remove or
; alter this notice or any other notice embedded in Materials by Intel
; or Intel's suppliers or licensors in any way.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Example YASM command lines:
; Windows: yasm -f x64 -D WINABI sha512_sse4.asm
; Linux: yasm -f elf64 sha512_sse4.asm
;
; Alternative Example YASM command lines:
; Windows: yasm -Xvc -f x64 -D WINABI -rnasm -pnasm -o sha512_sse4.obj -g cv8 sha512_sse4.asm
; Linux: yasm -f x64 -f elf64 -X gnu -g dwarf2 -D LINUX -o sha512_sse4.o sha512_sse4.asm
;
BITS 64
section .text
; Virtual Registers
%ifdef WINABI
%define msg rcx ; ARG1
%define digest rdx ; ARG2
%define msglen r8 ; ARG3
%define T1 rsi
%define T2 rdi
%else
%define msg rdi ; ARG1
%define digest rsi ; ARG2
%define msglen rdx ; ARG3
%define T1 rcx
%define T2 r8
%endif
%define a_64 r9
%define b_64 r10
%define c_64 r11
%define d_64 r12
%define e_64 r13
%define f_64 r14
%define g_64 r15
%define h_64 rbx
%define tmp0 rax
; Local variables (stack frame)
; Note: frame_size must be an odd multiple of 8 bytes to XMM align RSP
struc frame
.W: resq 80 ; Message Schedule
.WK: resq 2 ; W[t] + K[t] | W[t+1] + K[t+1]
%ifdef WINABI
.GPRSAVE: resq 7
%else
.GPRSAVE: resq 5
%endif
endstruc
; Useful QWORD "arrays" for simpler memory references
%define MSG(i) msg + 8*(i) ; Input message (arg1)
%define DIGEST(i) digest + 8*(i) ; Output Digest (arg2)
%define K_t(i) K512 + 8*(i) wrt rip ; SHA Constants (static mem)
%define W_t(i) rsp + frame.W + 8*(i) ; Message Schedule (stack frame)
%define WK_2(i) rsp + frame.WK + 8*((i) % 2) ; W[t]+K[t] (stack frame)
; MSG, DIGEST, K_t, W_t are arrays
; WK_2(t) points to 1 of 2 qwords at frame.WK depdending on t being odd/even
%macro RotateState 0
; Rotate symbles a..h right
%xdefine %%TMP h_64
%xdefine h_64 g_64
%xdefine g_64 f_64
%xdefine f_64 e_64
%xdefine e_64 d_64
%xdefine d_64 c_64
%xdefine c_64 b_64
%xdefine b_64 a_64
%xdefine a_64 %%TMP
%endmacro
%macro SHA512_Round 1
%assign %%t (%1)
; Compute Round %%t
mov T1, f_64 ; T1 = f
mov tmp0, e_64 ; tmp = e
xor T1, g_64 ; T1 = f ^ g
ror tmp0, 23 ; 41 ; tmp = e ror 23
and T1, e_64 ; T1 = (f ^ g) & e
xor tmp0, e_64 ; tmp = (e ror 23) ^ e
xor T1, g_64 ; T1 = ((f ^ g) & e) ^ g = CH(e,f,g)
add T1, [WK_2(%%t)] ; W[t] + K[t] from message scheduler
ror tmp0, 4 ; 18 ; tmp = ((e ror 23) ^ e) ror 4
xor tmp0, e_64 ; tmp = (((e ror 23) ^ e) ror 4) ^ e
mov T2, a_64 ; T2 = a
add T1, h_64 ; T1 = CH(e,f,g) + W[t] + K[t] + h
ror tmp0, 14 ; 14 ; tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e)
add T1, tmp0 ; T1 = CH(e,f,g) + W[t] + K[t] + S1(e)
mov tmp0, a_64 ; tmp = a
xor T2, c_64 ; T2 = a ^ c
and tmp0, c_64 ; tmp = a & c
and T2, b_64 ; T2 = (a ^ c) & b
xor T2, tmp0 ; T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c)
mov tmp0, a_64 ; tmp = a
ror tmp0, 5 ; 39 ; tmp = a ror 5
xor tmp0, a_64 ; tmp = (a ror 5) ^ a
add d_64, T1 ; e(next_state) = d + T1
ror tmp0, 6 ; 34 ; tmp = ((a ror 5) ^ a) ror 6
xor tmp0, a_64 ; tmp = (((a ror 5) ^ a) ror 6) ^ a
lea h_64, [T1 + T2] ; a(next_state) = T1 + Maj(a,b,c)
ror tmp0, 28 ; 28 ; tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a)
add h_64, tmp0 ; a(next_state) = T1 + Maj(a,b,c) S0(a)
RotateState
%endmacro
%macro SHA512_2Sched_2Round_sse 1
%assign %%t (%1)
; Compute rounds %%t-2 and %%t-1
; Compute message schedule QWORDS %%t and %%t+1
; Two rounds are computed based on the values for K[t-2]+W[t-2] and
; K[t-1]+W[t-1] which were previously stored at WK_2 by the message
; scheduler.
; The two new schedule QWORDS are stored at [W_t(%%t)] and [W_t(%%t+1)].
; They are then added to their respective SHA512 constants at
; [K_t(%%t)] and [K_t(%%t+1)] and stored at dqword [WK_2(%%t)]
; For brievity, the comments following vectored instructions only refer to
; the first of a pair of QWORDS.
; Eg. XMM2=W[t-2] really means XMM2={W[t-2]|W[t-1]}
; The computation of the message schedule and the rounds are tightly
; stitched to take advantage of instruction-level parallelism.
; For clarity, integer instructions (for the rounds calculation) are indented
; by one tab. Vectored instructions (for the message scheduler) are indented
; by two tabs.
mov T1, f_64
movdqa xmm2, [W_t(%%t-2)] ; XMM2 = W[t-2]
xor T1, g_64
and T1, e_64
movdqa xmm0, xmm2 ; XMM0 = W[t-2]
xor T1, g_64
add T1, [WK_2(%%t)]
movdqu xmm5, [W_t(%%t-15)] ; XMM5 = W[t-15]
mov tmp0, e_64
ror tmp0, 23 ; 41
movdqa xmm3, xmm5 ; XMM3 = W[t-15]
xor tmp0, e_64
ror tmp0, 4 ; 18
psrlq xmm0, 61 - 19 ; XMM0 = W[t-2] >> 42
xor tmp0, e_64
ror tmp0, 14 ; 14
psrlq xmm3, (8 - 7) ; XMM3 = W[t-15] >> 1
add T1, tmp0
add T1, h_64
pxor xmm0, xmm2 ; XMM0 = (W[t-2] >> 42) ^ W[t-2]
mov T2, a_64
xor T2, c_64
pxor xmm3, xmm5 ; XMM3 = (W[t-15] >> 1) ^ W[t-15]
and T2, b_64
mov tmp0, a_64
psrlq xmm0, 19 - 6 ; XMM0 = ((W[t-2]>>42)^W[t-2])>>13
and tmp0, c_64
xor T2, tmp0
psrlq xmm3, (7 - 1) ; XMM3 = ((W[t-15]>>1)^W[t-15])>>6
mov tmp0, a_64
ror tmp0, 5 ; 39
pxor xmm0, xmm2 ; XMM0 = (((W[t-2]>>42)^W[t-2])>>13)^W[t-2]
xor tmp0, a_64
ror tmp0, 6 ; 34
pxor xmm3, xmm5 ; XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15]
xor tmp0, a_64
ror tmp0, 28 ; 28
psrlq xmm0, 6 ; XMM0 = ((((W[t-2]>>42)^W[t-2])>>13)^W[t-2])>>6
add T2, tmp0
add d_64, T1
psrlq xmm3, 1 ; XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15]>>1
lea h_64, [T1 + T2]
RotateState
movdqa xmm1, xmm2 ; XMM1 = W[t-2]
mov T1, f_64
xor T1, g_64
movdqa xmm4, xmm5 ; XMM4 = W[t-15]
and T1, e_64
xor T1, g_64
psllq xmm1, (64 - 19) - (64 - 61) ; XMM1 = W[t-2] << 42
add T1, [WK_2(%%t+1)]
mov tmp0, e_64
psllq xmm4, (64 - 1) - (64 - 8) ; XMM4 = W[t-15] << 7
ror tmp0, 23 ; 41
xor tmp0, e_64
pxor xmm1, xmm2 ; XMM1 = (W[t-2] << 42)^W[t-2]
ror tmp0, 4 ; 18
xor tmp0, e_64
pxor xmm4, xmm5 ; XMM4 = (W[t-15]<<7)^W[t-15]
ror tmp0, 14 ; 14
add T1, tmp0
psllq xmm1, (64 - 61) ; XMM1 = ((W[t-2] << 42)^W[t-2])<<3
add T1, h_64
mov T2, a_64
psllq xmm4, (64 - 8) ; XMM4 = ((W[t-15]<<7)^W[t-15])<<56
xor T2, c_64
and T2, b_64
pxor xmm0, xmm1 ; XMM0 = s1(W[t-2])
mov tmp0, a_64
and tmp0, c_64
movdqu xmm1, [W_t(%%t- 7)] ; XMM1 = W[t-7]
xor T2, tmp0
pxor xmm3, xmm4 ; XMM3 = s0(W[t-15])
mov tmp0, a_64
paddq xmm0, xmm3 ; XMM0 = s1(W[t-2]) + s0(W[t-15])
ror tmp0, 5 ; 39
paddq xmm0, [W_t(%%t-16)] ; XMM0 = s1(W[t-2]) + s0(W[t-15]) + W[t-16]
xor tmp0, a_64
paddq xmm0, xmm1 ; XMM0 = s1(W[t-2]) + W[t-7] + s0(W[t-15]) + W[t-16]
ror tmp0, 6 ; 34
movdqa [W_t(%%t)], xmm0 ; Store scheduled qwords
xor tmp0, a_64
paddq xmm0, [K_t(t)] ; Compute W[t]+K[t]
ror tmp0, 28 ; 28
movdqa [WK_2(t)], xmm0 ; Store W[t]+K[t] for next rounds
add T2, tmp0
add d_64, T1
lea h_64, [T1 + T2]
RotateState
%endmacro
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; void sha512_sse4(const void* M, void* D, uint64_t L);
; Purpose: Updates the SHA512 digest stored at D with the message stored in M.
; The size of the message pointed to by M must be an integer multiple of SHA512
; message blocks.
; L is the message length in SHA512 blocks.
global sha512_sse4:function
sha512_sse4:
cmp msglen, 0
je .nowork
; Allocate Stack Space
sub rsp, frame_size
; Save GPRs
mov [rsp + frame.GPRSAVE + 8 * 0], rbx
mov [rsp + frame.GPRSAVE + 8 * 1], r12
mov [rsp + frame.GPRSAVE + 8 * 2], r13
mov [rsp + frame.GPRSAVE + 8 * 3], r14
mov [rsp + frame.GPRSAVE + 8 * 4], r15
%ifdef WINABI
mov [rsp + frame.GPRSAVE + 8 * 5], rsi
mov [rsp + frame.GPRSAVE + 8 * 6], rdi
%endif
.updateblock:
; Load state variables
mov a_64, [DIGEST(0)]
mov b_64, [DIGEST(1)]
mov c_64, [DIGEST(2)]
mov d_64, [DIGEST(3)]
mov e_64, [DIGEST(4)]
mov f_64, [DIGEST(5)]
mov g_64, [DIGEST(6)]
mov h_64, [DIGEST(7)]
%assign t 0
%rep 80/2 + 1
; (80 rounds) / (2 rounds/iteration) + (1 iteration)
; +1 iteration because the scheduler leads hashing by 1 iteration
%if t < 2
; BSWAP 2 QWORDS
movdqa xmm1, [XMM_QWORD_BSWAP wrt rip]
movdqu xmm0, [MSG(t)]
pshufb xmm0, xmm1 ; BSWAP
movdqa [W_t(t)], xmm0 ; Store Scheduled Pair
paddq xmm0, [K_t(t)] ; Compute W[t]+K[t]
movdqa [WK_2(t)], xmm0 ; Store into WK for rounds
%elif t < 16
; BSWAP 2 QWORDS; Compute 2 Rounds
movdqu xmm0, [MSG(t)]
pshufb xmm0, xmm1 ; BSWAP
SHA512_Round t - 2 ; Round t-2
movdqa [W_t(t)], xmm0 ; Store Scheduled Pair
paddq xmm0, [K_t(t)] ; Compute W[t]+K[t]
SHA512_Round t - 1 ; Round t-1
movdqa [WK_2(t)], xmm0 ; Store W[t]+K[t] into WK
%elif t < 79
; Schedule 2 QWORDS; Compute 2 Rounds
SHA512_2Sched_2Round_sse t
%else
; Compute 2 Rounds
SHA512_Round t - 2
SHA512_Round t - 1
%endif
%assign t t+2
%endrep
; Update digest
add [DIGEST(0)], a_64
add [DIGEST(1)], b_64
add [DIGEST(2)], c_64
add [DIGEST(3)], d_64
add [DIGEST(4)], e_64
add [DIGEST(5)], f_64
add [DIGEST(6)], g_64
add [DIGEST(7)], h_64
; Advance to next message block
add msg, 16*8
dec msglen
jnz .updateblock
; Restore GPRs
mov rbx, [rsp + frame.GPRSAVE + 8 * 0]
mov r12, [rsp + frame.GPRSAVE + 8 * 1]
mov r13, [rsp + frame.GPRSAVE + 8 * 2]
mov r14, [rsp + frame.GPRSAVE + 8 * 3]
mov r15, [rsp + frame.GPRSAVE + 8 * 4]
%ifdef WINABI
mov rsi, [rsp + frame.GPRSAVE + 8 * 5]
mov rdi, [rsp + frame.GPRSAVE + 8 * 6]
%endif
; Restore Stack Pointer
add rsp, frame_size
.nowork:
ret
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Binary Data
section .data
ALIGN 16
; Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
XMM_QWORD_BSWAP:
ddq 0x08090a0b0c0d0e0f0001020304050607
; K[t] used in SHA512 hashing
K512:
dq 0x428a2f98d728ae22,0x7137449123ef65cd
dq 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
dq 0x3956c25bf348b538,0x59f111f1b605d019
dq 0x923f82a4af194f9b,0xab1c5ed5da6d8118
dq 0xd807aa98a3030242,0x12835b0145706fbe
dq 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
dq 0x72be5d74f27b896f,0x80deb1fe3b1696b1
dq 0x9bdc06a725c71235,0xc19bf174cf692694
dq 0xe49b69c19ef14ad2,0xefbe4786384f25e3
dq 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
dq 0x2de92c6f592b0275,0x4a7484aa6ea6e483
dq 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
dq 0x983e5152ee66dfab,0xa831c66d2db43210
dq 0xb00327c898fb213f,0xbf597fc7beef0ee4
dq 0xc6e00bf33da88fc2,0xd5a79147930aa725
dq 0x06ca6351e003826f,0x142929670a0e6e70
dq 0x27b70a8546d22ffc,0x2e1b21385c26c926
dq 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
dq 0x650a73548baf63de,0x766a0abb3c77b2a8
dq 0x81c2c92e47edaee6,0x92722c851482353b
dq 0xa2bfe8a14cf10364,0xa81a664bbc423001
dq 0xc24b8b70d0f89791,0xc76c51a30654be30
dq 0xd192e819d6ef5218,0xd69906245565a910
dq 0xf40e35855771202a,0x106aa07032bbd1b8
dq 0x19a4c116b8d2d0c8,0x1e376c085141ab53
dq 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
dq 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
dq 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
dq 0x748f82ee5defb2fc,0x78a5636f43172f60
dq 0x84c87814a1f0ab72,0x8cc702081a6439ec
dq 0x90befffa23631e28,0xa4506cebde82bde9
dq 0xbef9a3f7b2c67915,0xc67178f2e372532b
dq 0xca273eceea26619c,0xd186b8c721c0c207
dq 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
dq 0x06f067aa72176fba,0x0a637dc5a2c898a6
dq 0x113f9804bef90dae,0x1b710b35131c471b
dq 0x28db77f523047d84,0x32caab7b40c72493
dq 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
dq 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
dq 0x5fcb6fab3ad6faec,0x6c44198c4a475817