pcompress/crypto/sha2/intel/sha256_avx1.asm
Moinak Ghosh 21cbef6d60 Incorporate SSE/AVX optimized Intel SHA-256 implementation.
Add support for runtime cpuid detection.
2012-10-06 20:51:23 +05:30

577 lines
16 KiB
NASM

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Copyright 2012 Intel Corporation All Rights Reserved.
;
; The source code contained or described herein and all documents
; related to the source code ("Material") are owned by Intel Corporation
; or its suppliers or licensors. Title to the Material remains with
; Intel Corporation or its suppliers and licensors. The Material may
; contain trade secrets and proprietary and confidential information of
; Intel Corporation and its suppliers and licensors, and is protected by
; worldwide copyright and trade secret laws and treaty provisions. No
; part of the Material may be used, copied, reproduced, modified,
; published, uploaded, posted, transmitted, distributed, or disclosed in
; any way without Intel's prior express written permission.
;
; No license under any patent, copyright, trade secret or other
; intellectual property right is granted to or conferred upon you by
; disclosure or delivery of the Materials, either expressly, by
; implication, inducement, estoppel or otherwise. Any license under such
; intellectual property rights must be express and approved by Intel in
; writing.
;
; Unless otherwise agreed by Intel in writing, you may not remove or
; alter this notice or any other notice embedded in Materials by Intel
; or Intel's suppliers or licensors in any way.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Example YASM command lines:
; Windows: yasm -Xvc -f x64 -rnasm -pnasm -o sha256_avx1.obj -g cv8 sha256_avx1.asm
; Linux: yasm -f x64 -f elf64 -X gnu -g dwarf2 -D LINUX -o sha256_avx1.o sha256_avx1.asm
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; This code is described in an Intel White-Paper:
; "Fast SHA-256 Implementations on Intel Architecture Processors"
;
; To find it, surf to http://www.intel.com/p/en_US/embedded
; and search for that title.
; The paper is expected to be released roughly at the end of April, 2012
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; This code schedules 1 blocks at a time, with 4 lanes per block
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%define VMOVDQ vmovdqu ;; assume buffers not aligned
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Define Macros
; addm [mem], reg
; Add reg to mem using reg-mem add and store
%macro addm 2
add %2, %1
mov %1, %2
%endm
%macro MY_ROR 2
shld %1,%1,(32-(%2))
%endm
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; COPY_XMM_AND_BSWAP xmm, [mem], byte_flip_mask
; Load xmm with mem and byte swap each dword
%macro COPY_XMM_AND_BSWAP 3
VMOVDQ %1, %2
vpshufb %1, %1, %3
%endmacro
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%define X0 xmm4
%define X1 xmm5
%define X2 xmm6
%define X3 xmm7
%define XTMP0 xmm0
%define XTMP1 xmm1
%define XTMP2 xmm2
%define XTMP3 xmm3
%define XTMP4 xmm8
%define XFER xmm9
%define XTMP5 xmm11
%define SHUF_00BA xmm10 ; shuffle xBxA -> 00BA
%define SHUF_DC00 xmm12 ; shuffle xDxC -> DC00
%define BYTE_FLIP_MASK xmm13
%ifdef LINUX
%define NUM_BLKS rdx ; 3rd arg
%define CTX rsi ; 2nd arg
%define INP rdi ; 1st arg
%define SRND rdi ; clobbers INP
%define c ecx
%define d r8d
%define e edx
%else
%define NUM_BLKS r8 ; 3rd arg
%define CTX rdx ; 2nd arg
%define INP rcx ; 1st arg
%define SRND rcx ; clobbers INP
%define c edi
%define d esi
%define e r8d
%endif
%define TBL rbp
%define a eax
%define b ebx
%define f r9d
%define g r10d
%define h r11d
%define y0 r13d
%define y1 r14d
%define y2 r15d
_INP_END_SIZE equ 8
_INP_SIZE equ 8
_XFER_SIZE equ 8
%ifdef LINUX
_XMM_SAVE_SIZE equ 0
%else
_XMM_SAVE_SIZE equ 8*16
%endif
; STACK_SIZE plus pushes must be an odd multiple of 8
_ALIGN_SIZE equ 8
_INP_END equ 0
_INP equ _INP_END + _INP_END_SIZE
_XFER equ _INP + _INP_SIZE
_XMM_SAVE equ _XFER + _XFER_SIZE + _ALIGN_SIZE
STACK_SIZE equ _XMM_SAVE + _XMM_SAVE_SIZE
; rotate_Xs
; Rotate values of symbols X0...X3
%macro rotate_Xs 0
%xdefine X_ X0
%xdefine X0 X1
%xdefine X1 X2
%xdefine X2 X3
%xdefine X3 X_
%endm
; ROTATE_ARGS
; Rotate values of symbols a...h
%macro ROTATE_ARGS 0
%xdefine TMP_ h
%xdefine h g
%xdefine g f
%xdefine f e
%xdefine e d
%xdefine d c
%xdefine c b
%xdefine b a
%xdefine a TMP_
%endm
%macro FOUR_ROUNDS_AND_SCHED 0
;; compute s0 four at a time and s1 two at a time
;; compute W[-16] + W[-7] 4 at a time
;vmovdqa XTMP0, X3
mov y0, e ; y0 = e
MY_ROR y0, (25-11) ; y0 = e >> (25-11)
mov y1, a ; y1 = a
vpalignr XTMP0, X3, X2, 4 ; XTMP0 = W[-7]
MY_ROR y1, (22-13) ; y1 = a >> (22-13)
xor y0, e ; y0 = e ^ (e >> (25-11))
mov y2, f ; y2 = f
MY_ROR y0, (11-6) ; y0 = (e >> (11-6)) ^ (e >> (25-6))
;vmovdqa XTMP1, X1
xor y1, a ; y1 = a ^ (a >> (22-13)
xor y2, g ; y2 = f^g
vpaddd XTMP0, XTMP0, X0 ; XTMP0 = W[-7] + W[-16]
xor y0, e ; y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
and y2, e ; y2 = (f^g)&e
MY_ROR y1, (13-2) ; y1 = (a >> (13-2)) ^ (a >> (22-2))
;; compute s0
vpalignr XTMP1, X1, X0, 4 ; XTMP1 = W[-15]
xor y1, a ; y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
MY_ROR y0, 6 ; y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
xor y2, g ; y2 = CH = ((f^g)&e)^g
MY_ROR y1, 2 ; y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
add y2, y0 ; y2 = S1 + CH
add y2, [rsp + _XFER + 0*4] ; y2 = k + w + S1 + CH
mov y0, a ; y0 = a
add h, y2 ; h = h + S1 + CH + k + w
mov y2, a ; y2 = a
vpsrld XTMP2, XTMP1, 7
or y0, c ; y0 = a|c
add d, h ; d = d + h + S1 + CH + k + w
and y2, c ; y2 = a&c
vpslld XTMP3, XTMP1, (32-7)
and y0, b ; y0 = (a|c)&b
add h, y1 ; h = h + S1 + CH + k + w + S0
vpor XTMP3, XTMP3, XTMP2 ; XTMP1 = W[-15] MY_ROR 7
or y0, y2 ; y0 = MAJ = (a|c)&b)|(a&c)
add h, y0 ; h = h + S1 + CH + k + w + S0 + MAJ
ROTATE_ARGS
mov y0, e ; y0 = e
mov y1, a ; y1 = a
MY_ROR y0, (25-11) ; y0 = e >> (25-11)
xor y0, e ; y0 = e ^ (e >> (25-11))
mov y2, f ; y2 = f
MY_ROR y1, (22-13) ; y1 = a >> (22-13)
vpsrld XTMP2, XTMP1,18
xor y1, a ; y1 = a ^ (a >> (22-13)
MY_ROR y0, (11-6) ; y0 = (e >> (11-6)) ^ (e >> (25-6))
xor y2, g ; y2 = f^g
vpsrld XTMP4, XTMP1, 3 ; XTMP4 = W[-15] >> 3
MY_ROR y1, (13-2) ; y1 = (a >> (13-2)) ^ (a >> (22-2))
xor y0, e ; y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
and y2, e ; y2 = (f^g)&e
MY_ROR y0, 6 ; y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
vpslld XTMP1, XTMP1, (32-18)
xor y1, a ; y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
xor y2, g ; y2 = CH = ((f^g)&e)^g
vpxor XTMP3, XTMP3, XTMP1
add y2, y0 ; y2 = S1 + CH
add y2, [rsp + _XFER + 1*4] ; y2 = k + w + S1 + CH
MY_ROR y1, 2 ; y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
vpxor XTMP3, XTMP3, XTMP2 ; XTMP1 = W[-15] MY_ROR 7 ^ W[-15] MY_ROR 18
mov y0, a ; y0 = a
add h, y2 ; h = h + S1 + CH + k + w
mov y2, a ; y2 = a
vpxor XTMP1, XTMP3, XTMP4 ; XTMP1 = s0
or y0, c ; y0 = a|c
add d, h ; d = d + h + S1 + CH + k + w
and y2, c ; y2 = a&c
;; compute low s1
vpshufd XTMP2, X3, 11111010b ; XTMP2 = W[-2] {BBAA}
and y0, b ; y0 = (a|c)&b
add h, y1 ; h = h + S1 + CH + k + w + S0
vpaddd XTMP0, XTMP0, XTMP1 ; XTMP0 = W[-16] + W[-7] + s0
or y0, y2 ; y0 = MAJ = (a|c)&b)|(a&c)
add h, y0 ; h = h + S1 + CH + k + w + S0 + MAJ
ROTATE_ARGS
;vmovdqa XTMP3, XTMP2 ; XTMP3 = W[-2] {BBAA}
mov y0, e ; y0 = e
mov y1, a ; y1 = a
MY_ROR y0, (25-11) ; y0 = e >> (25-11)
;vmovdqa XTMP4, XTMP2 ; XTMP4 = W[-2] {BBAA}
xor y0, e ; y0 = e ^ (e >> (25-11))
MY_ROR y1, (22-13) ; y1 = a >> (22-13)
mov y2, f ; y2 = f
xor y1, a ; y1 = a ^ (a >> (22-13)
MY_ROR y0, (11-6) ; y0 = (e >> (11-6)) ^ (e >> (25-6))
vpsrld XTMP4, XTMP2, 10 ; XTMP4 = W[-2] >> 10 {BBAA}
xor y2, g ; y2 = f^g
vpsrlq XTMP3, XTMP2, 19 ; XTMP3 = W[-2] MY_ROR 19 {xBxA}
xor y0, e ; y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
and y2, e ; y2 = (f^g)&e
vpsrlq XTMP2, XTMP2, 17 ; XTMP2 = W[-2] MY_ROR 17 {xBxA}
MY_ROR y1, (13-2) ; y1 = (a >> (13-2)) ^ (a >> (22-2))
xor y1, a ; y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
xor y2, g ; y2 = CH = ((f^g)&e)^g
MY_ROR y0, 6 ; y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
vpxor XTMP2, XTMP2, XTMP3
add y2, y0 ; y2 = S1 + CH
MY_ROR y1, 2 ; y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
add y2, [rsp + _XFER + 2*4] ; y2 = k + w + S1 + CH
vpxor XTMP4, XTMP4, XTMP2 ; XTMP4 = s1 {xBxA}
mov y0, a ; y0 = a
add h, y2 ; h = h + S1 + CH + k + w
mov y2, a ; y2 = a
vpshufb XTMP4, XTMP4, SHUF_00BA ; XTMP4 = s1 {00BA}
or y0, c ; y0 = a|c
add d, h ; d = d + h + S1 + CH + k + w
and y2, c ; y2 = a&c
vpaddd XTMP0, XTMP0, XTMP4 ; XTMP0 = {..., ..., W[1], W[0]}
and y0, b ; y0 = (a|c)&b
add h, y1 ; h = h + S1 + CH + k + w + S0
;; compute high s1
vpshufd XTMP2, XTMP0, 01010000b ; XTMP2 = W[-2] {DDCC}
or y0, y2 ; y0 = MAJ = (a|c)&b)|(a&c)
add h, y0 ; h = h + S1 + CH + k + w + S0 + MAJ
ROTATE_ARGS
;vmovdqa XTMP3, XTMP2 ; XTMP3 = W[-2] {DDCC}
mov y0, e ; y0 = e
MY_ROR y0, (25-11) ; y0 = e >> (25-11)
mov y1, a ; y1 = a
;vmovdqa XTMP5, XTMP2 ; XTMP5 = W[-2] {DDCC}
MY_ROR y1, (22-13) ; y1 = a >> (22-13)
xor y0, e ; y0 = e ^ (e >> (25-11))
mov y2, f ; y2 = f
MY_ROR y0, (11-6) ; y0 = (e >> (11-6)) ^ (e >> (25-6))
vpsrld XTMP5, XTMP2, 10 ; XTMP5 = W[-2] >> 10 {DDCC}
xor y1, a ; y1 = a ^ (a >> (22-13)
xor y2, g ; y2 = f^g
vpsrlq XTMP3, XTMP2, 19 ; XTMP3 = W[-2] MY_ROR 19 {xDxC}
xor y0, e ; y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
and y2, e ; y2 = (f^g)&e
MY_ROR y1, (13-2) ; y1 = (a >> (13-2)) ^ (a >> (22-2))
vpsrlq XTMP2, XTMP2, 17 ; XTMP2 = W[-2] MY_ROR 17 {xDxC}
xor y1, a ; y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
MY_ROR y0, 6 ; y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
xor y2, g ; y2 = CH = ((f^g)&e)^g
vpxor XTMP2, XTMP2, XTMP3
MY_ROR y1, 2 ; y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
add y2, y0 ; y2 = S1 + CH
add y2, [rsp + _XFER + 3*4] ; y2 = k + w + S1 + CH
vpxor XTMP5, XTMP5, XTMP2 ; XTMP5 = s1 {xDxC}
mov y0, a ; y0 = a
add h, y2 ; h = h + S1 + CH + k + w
mov y2, a ; y2 = a
vpshufb XTMP5, XTMP5, SHUF_DC00 ; XTMP5 = s1 {DC00}
or y0, c ; y0 = a|c
add d, h ; d = d + h + S1 + CH + k + w
and y2, c ; y2 = a&c
vpaddd X0, XTMP5, XTMP0 ; X0 = {W[3], W[2], W[1], W[0]}
and y0, b ; y0 = (a|c)&b
add h, y1 ; h = h + S1 + CH + k + w + S0
or y0, y2 ; y0 = MAJ = (a|c)&b)|(a&c)
add h, y0 ; h = h + S1 + CH + k + w + S0 + MAJ
ROTATE_ARGS
rotate_Xs
%endm
;; input is [rsp + _XFER + %1 * 4]
%macro DO_ROUND 1
mov y0, e ; y0 = e
MY_ROR y0, (25-11) ; y0 = e >> (25-11)
mov y1, a ; y1 = a
xor y0, e ; y0 = e ^ (e >> (25-11))
MY_ROR y1, (22-13) ; y1 = a >> (22-13)
mov y2, f ; y2 = f
xor y1, a ; y1 = a ^ (a >> (22-13)
MY_ROR y0, (11-6) ; y0 = (e >> (11-6)) ^ (e >> (25-6))
xor y2, g ; y2 = f^g
xor y0, e ; y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
MY_ROR y1, (13-2) ; y1 = (a >> (13-2)) ^ (a >> (22-2))
and y2, e ; y2 = (f^g)&e
xor y1, a ; y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
MY_ROR y0, 6 ; y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
xor y2, g ; y2 = CH = ((f^g)&e)^g
add y2, y0 ; y2 = S1 + CH
MY_ROR y1, 2 ; y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
add y2, [rsp + _XFER + %1 * 4] ; y2 = k + w + S1 + CH
mov y0, a ; y0 = a
add h, y2 ; h = h + S1 + CH + k + w
mov y2, a ; y2 = a
or y0, c ; y0 = a|c
add d, h ; d = d + h + S1 + CH + k + w
and y2, c ; y2 = a&c
and y0, b ; y0 = (a|c)&b
add h, y1 ; h = h + S1 + CH + k + w + S0
or y0, y2 ; y0 = MAJ = (a|c)&b)|(a&c)
add h, y0 ; h = h + S1 + CH + k + w + S0 + MAJ
ROTATE_ARGS
%endm
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; void sha256_avx(void *input_data, UINT32 digest[8], UINT64 num_blks)
;; arg 1 : pointer to input data
;; arg 2 : pointer to digest
;; arg 3 : Num blocks
section .text
global sha256_avx
align 32
sha256_avx:
push rbx
%ifndef LINUX
push rsi
push rdi
%endif
push rbp
push r13
push r14
push r15
sub rsp,STACK_SIZE
%ifndef LINUX
vmovdqa [rsp + _XMM_SAVE + 0*16],xmm6
vmovdqa [rsp + _XMM_SAVE + 1*16],xmm7
vmovdqa [rsp + _XMM_SAVE + 2*16],xmm8
vmovdqa [rsp + _XMM_SAVE + 3*16],xmm9
vmovdqa [rsp + _XMM_SAVE + 4*16],xmm10
vmovdqa [rsp + _XMM_SAVE + 5*16],xmm11
vmovdqa [rsp + _XMM_SAVE + 6*16],xmm12
vmovdqa [rsp + _XMM_SAVE + 7*16],xmm13
%endif
shl NUM_BLKS, 6 ; convert to bytes
jz done_hash
add NUM_BLKS, INP ; pointer to end of data
mov [rsp + _INP_END], NUM_BLKS
;; load initial digest
mov a,[4*0 + CTX]
mov b,[4*1 + CTX]
mov c,[4*2 + CTX]
mov d,[4*3 + CTX]
mov e,[4*4 + CTX]
mov f,[4*5 + CTX]
mov g,[4*6 + CTX]
mov h,[4*7 + CTX]
vmovdqa BYTE_FLIP_MASK, [PSHUFFLE_BYTE_FLIP_MASK wrt rip]
vmovdqa SHUF_00BA, [_SHUF_00BA wrt rip]
vmovdqa SHUF_DC00, [_SHUF_DC00 wrt rip]
loop0:
lea TBL,[K256 wrt rip]
;; byte swap first 16 dwords
COPY_XMM_AND_BSWAP X0, [INP + 0*16], BYTE_FLIP_MASK
COPY_XMM_AND_BSWAP X1, [INP + 1*16], BYTE_FLIP_MASK
COPY_XMM_AND_BSWAP X2, [INP + 2*16], BYTE_FLIP_MASK
COPY_XMM_AND_BSWAP X3, [INP + 3*16], BYTE_FLIP_MASK
mov [rsp + _INP], INP
;; schedule 48 input dwords, by doing 3 rounds of 16 each
mov SRND, 3
align 16
loop1:
vpaddd XFER, X0, [TBL + 0*16]
vmovdqa [rsp + _XFER], XFER
FOUR_ROUNDS_AND_SCHED
vpaddd XFER, X0, [TBL + 1*16]
vmovdqa [rsp + _XFER], XFER
FOUR_ROUNDS_AND_SCHED
vpaddd XFER, X0, [TBL + 2*16]
vmovdqa [rsp + _XFER], XFER
FOUR_ROUNDS_AND_SCHED
vpaddd XFER, X0, [TBL + 3*16]
vmovdqa [rsp + _XFER], XFER
add TBL, 4*16
FOUR_ROUNDS_AND_SCHED
sub SRND, 1
jne loop1
mov SRND, 2
loop2:
vpaddd XFER, X0, [TBL + 0*16]
vmovdqa [rsp + _XFER], XFER
DO_ROUND 0
DO_ROUND 1
DO_ROUND 2
DO_ROUND 3
vpaddd XFER, X1, [TBL + 1*16]
vmovdqa [rsp + _XFER], XFER
add TBL, 2*16
DO_ROUND 0
DO_ROUND 1
DO_ROUND 2
DO_ROUND 3
vmovdqa X0, X2
vmovdqa X1, X3
sub SRND, 1
jne loop2
addm [4*0 + CTX],a
addm [4*1 + CTX],b
addm [4*2 + CTX],c
addm [4*3 + CTX],d
addm [4*4 + CTX],e
addm [4*5 + CTX],f
addm [4*6 + CTX],g
addm [4*7 + CTX],h
mov INP, [rsp + _INP]
add INP, 64
cmp INP, [rsp + _INP_END]
jne loop0
done_hash:
%ifndef LINUX
vmovdqa xmm6,[rsp + _XMM_SAVE + 0*16]
vmovdqa xmm7,[rsp + _XMM_SAVE + 1*16]
vmovdqa xmm8,[rsp + _XMM_SAVE + 2*16]
vmovdqa xmm9,[rsp + _XMM_SAVE + 3*16]
vmovdqa xmm10,[rsp + _XMM_SAVE + 4*16]
vmovdqa xmm11,[rsp + _XMM_SAVE + 5*16]
vmovdqa xmm12,[rsp + _XMM_SAVE + 6*16]
vmovdqa xmm13,[rsp + _XMM_SAVE + 7*16]
%endif
add rsp, STACK_SIZE
pop r15
pop r14
pop r13
pop rbp
%ifndef LINUX
pop rdi
pop rsi
%endif
pop rbx
ret
section .data
align 64
K256:
dd 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
dd 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
dd 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
dd 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
dd 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
dd 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
dd 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
dd 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
dd 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
dd 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
dd 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
dd 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
dd 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
dd 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
dd 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
dd 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
PSHUFFLE_BYTE_FLIP_MASK: ddq 0x0c0d0e0f08090a0b0405060700010203
; shuffle xBxA -> 00BA
_SHUF_00BA: ddq 0xFFFFFFFFFFFFFFFF0b0a090803020100
; shuffle xDxC -> DC00
_SHUF_DC00: ddq 0x0b0a090803020100FFFFFFFFFFFFFFFF