pcompress/utils/heapq.c
2012-09-11 21:59:08 +05:30

193 lines
4.5 KiB
C

/*
* Functions for a rudimentary fast min-heap implementation.
* Derived from Python's _heapqmodule.c by way of drastic simplification
* and a few optimizations.
*/
/*
* Original Python _heapqmodule.c implementation was derived directly
* from heapq.py in Py2.3 which was written by Kevin O'Connor, augmented
* by Tim Peters, annotated by François Pinard, and converted to C by
* Raymond Hettinger.
*/
#include <stdio.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <stdint.h>
#include <heapq.h>
#ifndef NDEBUG
#define ERROR_CHK
#endif
void
reset_heap(heap_t *heap, __TYPE tot)
{
if (heap) {
heap->len = 0;
heap->tot = tot;
}
}
static int
_siftdownmax(heap_t *h, __TYPE startpos, __TYPE pos)
{
__TYPE newitem, parent;
__TYPE parentpos, *heap;
#ifdef ERROR_CHK
if (pos >= h->len) {
fprintf(stderr, "_siftdownmax: index out of range\n");
return -1;
}
#endif
heap = h->ary;
newitem = heap[pos];
/* Follow the path to the root, moving parents down until finding
a place newitem fits. */
while (pos > startpos){
parentpos = (pos - 1) >> 1;
parent = heap[parentpos];
if (parent < newitem)
break;
heap[pos] = parent;
pos = parentpos;
}
heap[pos] = newitem;
return 0;
}
static int
_siftupmax(heap_t *h, __TYPE spos, __TYPE epos)
{
__TYPE endpos, childpos, rightpos;
__TYPE newitem, *heap, pos;
endpos = h->len;
heap = h->ary;
#ifdef ERROR_CHK
if (pos >= endpos) {
fprintf(stderr, "_siftupmax: index out of range: %u, len: %u\n", pos, endpos);
return -1;
}
#endif
do {
pos = spos;
/* Bubble up the smaller child until hitting a leaf. */
newitem = heap[pos];
childpos = (pos << 1) + 1; /* leftmost child position */
while (childpos < endpos) {
/* Set childpos to index of smaller child. */
rightpos = childpos + 1;
if (rightpos < endpos) {
if (heap[rightpos] < heap[childpos])
childpos = rightpos;
}
/* Move the smaller child up. */
heap[pos] = heap[childpos];
pos = childpos;
childpos = (pos << 1) + 1;
}
/* The leaf at pos is empty now. Put newitem there, and and bubble
it up to its final resting place (by sifting its parents down). */
heap[pos] = newitem;
#ifdef ERROR_CHK
if (_siftdownmax(h, spos, pos) == -1)
return (-1);
#else
_siftdownmax(h, spos, pos);
#endif
spos--;
} while (spos >= epos);
return (0);
}
static int
_siftupmax_s(heap_t *h, __TYPE spos)
{
__TYPE endpos, childpos, rightpos;
__TYPE newitem, *heap, pos;
endpos = h->len;
heap = h->ary;
#ifdef ERROR_CHK
if (pos >= endpos) {
fprintf(stderr, "_siftupmax: index out of range: %u, len: %u\n", pos, endpos);
return -1;
}
#endif
pos = spos;
/* Bubble up the smaller child until hitting a leaf. */
newitem = heap[pos];
childpos = (pos << 1) + 1; /* leftmost child position */
while (childpos < endpos) {
/* Set childpos to index of smaller child. */
rightpos = childpos + 1;
if (rightpos < endpos) {
if (heap[rightpos] < heap[childpos])
childpos = rightpos;
}
/* Move the smaller child up. */
heap[pos] = heap[childpos];
pos = childpos;
childpos = (pos << 1) + 1;
}
/* The leaf at pos is empty now. Put newitem there, and and bubble
it up to its final resting place (by sifting its parents down). */
heap[pos] = newitem;
return (_siftdownmax(h, spos, pos));
}
int
ksmallest(__TYPE *ary, __TYPE len, heap_t *heap)
{
__TYPE elem, los;
__TYPE i, *hp, n;
#ifdef ERROR_CHK
if (len >= heap->tot) {
fprintf(stderr, "nsmallest: array size > heap size\n");
return (-1);
}
#endif
n = heap->tot;
heap->ary = ary;
hp = ary;
heap->len = n;
#ifdef ERROR_CHK
if(_siftupmax(heap, n/2-1, 0) == -1)
return (-1);
#else
_siftupmax(heap, n/2-1, 0);
#endif
los = hp[0];
for (i = n; i < len; i++) {
elem = ary[i];
if (elem >= los) {
continue;
}
hp[0] = elem;
#ifdef ERROR_CHK
if (_siftupmax_s(heap, 0) == -1)
return (-1);
#else
_siftupmax_s(heap, 0);
#endif
los = hp[0];
}
return 0;
}