e3befd9e16
More refactoring of symbol names.
391 lines
8.8 KiB
C
391 lines
8.8 KiB
C
/*
|
|
* This file is a part of Pcompress, a chunked parallel multi-
|
|
* algorithm lossless compression and decompression program.
|
|
*
|
|
* Copyright (C) 2012 Moinak Ghosh. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 3 of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* moinakg@belenix.org, http://moinakg.wordpress.com/
|
|
*
|
|
* This program includes partly-modified public domain source
|
|
* code from the LZMA SDK: http://www.7-zip.org/sdk.html
|
|
*/
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <libgen.h>
|
|
#include <unistd.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <errno.h>
|
|
#include <link.h>
|
|
#include <rabin_dedup.h>
|
|
#include <skein.h>
|
|
|
|
#include "utils.h"
|
|
|
|
/*
|
|
* Checksum properties
|
|
*/
|
|
static struct {
|
|
char *name;
|
|
cksum_t cksum_id;
|
|
int bytes;
|
|
} cksum_props[] = {
|
|
{"CRC64", CKSUM_CRC64, 8},
|
|
{"SKEIN256", CKSUM_SKEIN256, 32},
|
|
{"SKEIN512", CKSUM_SKEIN512, 64}
|
|
};
|
|
|
|
extern uint64_t lzma_crc64(const uint8_t *buf, size_t size, uint64_t crc);
|
|
extern uint64_t lzma_crc64_8bchk(const uint8_t *buf, size_t size,
|
|
uint64_t crc, uint64_t *cnt);
|
|
|
|
void
|
|
err_exit(int show_errno, const char *format, ...)
|
|
{
|
|
int err = errno;
|
|
va_list args;
|
|
|
|
va_start(args, format);
|
|
vfprintf(stderr, format, args);
|
|
va_end(args);
|
|
|
|
if (show_errno)
|
|
fprintf(stderr, "\nError: %s\n", strerror(err));
|
|
exit(1);
|
|
}
|
|
|
|
/*
|
|
* Fetch the command name that started the current process.
|
|
* The returned string must be freed by the caller.
|
|
*/
|
|
const char *
|
|
get_execname(const char *argv0)
|
|
{
|
|
char path[MAXPATHLEN];
|
|
char apath[128];
|
|
char *tmp1, *tmp2;
|
|
pid_t pid;
|
|
|
|
/* The easiest case: we are in linux */
|
|
if (readlink("/proc/self/exe", path, MAXPATHLEN) != -1) {
|
|
return (strdup(basename(path)));
|
|
}
|
|
|
|
/* Next easy case: Solaris/Illumos */
|
|
pid = getpid();
|
|
sprintf(apath, "/proc/%d/path/a.out", pid);
|
|
if (readlink(apath, path, MAXPATHLEN) != -1) {
|
|
return (strdup(basename(path)));
|
|
}
|
|
|
|
/* Oops... not in linux, not in Solaris no guarantee */
|
|
/* check if we have something like execve("foobar", NULL, NULL) */
|
|
if (argv0 == NULL) {
|
|
/* Give up */
|
|
return (strdup("Unknown"));
|
|
}
|
|
|
|
tmp1 = strdup(argv0);
|
|
tmp2 = strdup(basename(tmp1));
|
|
free(tmp1);
|
|
return (tmp2);
|
|
}
|
|
|
|
/*
|
|
* Routines to parse a numeric string which can have the following suffixes:
|
|
* k - Kilobyte
|
|
* m - Megabyte
|
|
* g - Gigabyte
|
|
*
|
|
* The number should fit in an ssize_t data type.
|
|
* Numeric overflow is also checked. The routine parse_numeric() returns
|
|
* 1 if there was a numeric overflow.
|
|
*/
|
|
static int
|
|
raise_by_multiplier(ssize_t *val, int mult, int power) {
|
|
ssize_t result;
|
|
|
|
while (power-- > 0) {
|
|
result = *val * mult;
|
|
if (result/mult != *val)
|
|
return (1);
|
|
*val = result;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
parse_numeric(ssize_t *val, const char *str)
|
|
{
|
|
int i, ovr;
|
|
char *mult;
|
|
|
|
*val = strtoll(str, &mult, 0);
|
|
if (*mult != '\0') {
|
|
switch (*mult) {
|
|
case 'k':
|
|
case 'K':
|
|
ovr = raise_by_multiplier(val, 1024, 1);
|
|
break;
|
|
case 'm':
|
|
case 'M':
|
|
ovr = raise_by_multiplier(val, 1024, 2);
|
|
break;
|
|
case 'g':
|
|
case 'G':
|
|
ovr = raise_by_multiplier(val, 1024, 3);
|
|
break;
|
|
default:
|
|
ovr = 2;
|
|
}
|
|
}
|
|
|
|
return (ovr);
|
|
}
|
|
|
|
/*
|
|
* Convert number of bytes into human readable format
|
|
*/
|
|
char *
|
|
bytes_to_size(uint64_t bytes)
|
|
{
|
|
static char num[20];
|
|
uint64_t kilobyte = 1024;
|
|
uint64_t megabyte = kilobyte * 1024;
|
|
uint64_t gigabyte = megabyte * 1024;
|
|
uint64_t terabyte = gigabyte * 1024;
|
|
|
|
if (bytes < kilobyte) {
|
|
sprintf(num, "%llu B", bytes);
|
|
|
|
} else if (bytes < megabyte) {
|
|
sprintf(num, "%llu KB", bytes / kilobyte);
|
|
|
|
} else if (bytes < gigabyte) {
|
|
sprintf(num, "%llu MB", bytes / megabyte);
|
|
|
|
} else if (bytes < terabyte) {
|
|
sprintf(num, "%llu GB", bytes / gigabyte);
|
|
|
|
} else {
|
|
sprintf(num, "%llu B", bytes);
|
|
}
|
|
return (num);
|
|
}
|
|
|
|
/*
|
|
* Read/Write helpers to ensure a full chunk is read or written
|
|
* unless there is an error.
|
|
* Additionally can be given an offset in the buf where the data
|
|
* should be inserted.
|
|
*/
|
|
ssize_t
|
|
Read(int fd, void *buf, size_t count)
|
|
{
|
|
ssize_t rcount, rem;
|
|
uchar_t *cbuf;
|
|
va_list args;
|
|
|
|
rem = count;
|
|
cbuf = (uchar_t *)buf;
|
|
do {
|
|
rcount = read(fd, cbuf, rem);
|
|
if (rcount < 0) return (rcount);
|
|
if (rcount == 0) break;
|
|
rem = rem - rcount;
|
|
cbuf += rcount;
|
|
} while (rem);
|
|
return (count - rem);
|
|
}
|
|
|
|
/*
|
|
* Read the requested chunk and return the last rabin boundary in the chunk.
|
|
* This helps in splitting chunks at rabin boundaries rather than fixed points.
|
|
* The request buffer may have some data at the beginning carried over from
|
|
* after the previous rabin boundary.
|
|
*/
|
|
ssize_t
|
|
Read_Adjusted(int fd, uchar_t *buf, size_t count, ssize_t *rabin_count, void *ctx)
|
|
{
|
|
char *buf2;
|
|
ssize_t rcount;
|
|
dedupe_context_t *rctx = (dedupe_context_t *)ctx;
|
|
|
|
if (!ctx) return (Read(fd, buf, count));
|
|
buf2 = buf;
|
|
if (*rabin_count) {
|
|
buf2 = (char *)buf + *rabin_count;
|
|
count -= *rabin_count;
|
|
}
|
|
rcount = Read(fd, buf2, count);
|
|
if (rcount > 0) {
|
|
rcount += *rabin_count;
|
|
if (rcount == count)
|
|
dedupe_compress(rctx, buf, &rcount, 0, rabin_count);
|
|
else
|
|
*rabin_count = 0;
|
|
} else {
|
|
if (rcount == 0) rcount = *rabin_count;
|
|
*rabin_count = 0;
|
|
}
|
|
return (rcount);
|
|
}
|
|
|
|
ssize_t
|
|
Write(int fd, const void *buf, size_t count)
|
|
{
|
|
ssize_t wcount, rem;
|
|
uchar_t *cbuf;
|
|
|
|
rem = count;
|
|
cbuf = (uchar_t *)buf;
|
|
do {
|
|
wcount = write(fd, cbuf, rem);
|
|
if (wcount < 0) return (wcount);
|
|
rem = rem - wcount;
|
|
cbuf += wcount;
|
|
} while (rem);
|
|
return (count - rem);
|
|
}
|
|
|
|
/*
|
|
* Thread sizing. We want a balanced combination of chunk threads and compression
|
|
* algorithm threads that best fit the available/allowed number of processors.
|
|
*/
|
|
void
|
|
set_threadcounts(algo_props_t *props, int *nthreads, int nprocs, algo_threads_type_t typ) {
|
|
int mt_capable;
|
|
|
|
if (typ == COMPRESS_THREADS)
|
|
mt_capable = props->compress_mt_capable;
|
|
else
|
|
mt_capable = props->decompress_mt_capable;
|
|
|
|
if (mt_capable) {
|
|
int nthreads1, p_max;
|
|
|
|
if (nprocs == 3) {
|
|
props->nthreads = 1;
|
|
*nthreads = 3;
|
|
return;
|
|
}
|
|
|
|
if (typ == COMPRESS_THREADS)
|
|
p_max = props->c_max_threads;
|
|
else
|
|
p_max = props->d_max_threads;
|
|
|
|
nthreads1 = 1;
|
|
props->nthreads = 1;
|
|
while (nthreads1 < *nthreads || props->nthreads < p_max) {
|
|
if ((props->nthreads+1) * nthreads1 <= nprocs && props->nthreads < p_max) {
|
|
props->nthreads++;
|
|
|
|
} else if (props->nthreads * (nthreads1+1) <= nprocs && nthreads1 < *nthreads) {
|
|
nthreads1++;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
*nthreads = nthreads1;
|
|
|
|
} else if (props->single_chunk_mt_capable && props->is_single_chunk) {
|
|
*nthreads = 1;
|
|
if (typ == COMPRESS_THREADS)
|
|
props->nthreads = props->c_max_threads;
|
|
else
|
|
props->nthreads = props->d_max_threads;
|
|
if (props->nthreads > nprocs)
|
|
props->nthreads = nprocs;
|
|
}
|
|
}
|
|
|
|
int
|
|
compute_checksum(uchar_t *cksum_buf, int cksum, uchar_t *buf, ssize_t bytes)
|
|
{
|
|
if (cksum == CKSUM_CRC64) {
|
|
uint64_t *ck = (uint64_t *)cksum_buf;
|
|
*ck = lzma_crc64(buf, bytes, 0);
|
|
|
|
} else if (cksum == CKSUM_SKEIN256) {
|
|
Skein_512_Ctxt_t ctx;
|
|
|
|
Skein_512_Init(&ctx, 256);
|
|
Skein_512_Update(&ctx, buf, bytes);
|
|
Skein_512_Final(&ctx, cksum_buf);
|
|
|
|
} else if (cksum == CKSUM_SKEIN512) {
|
|
Skein_512_Ctxt_t ctx;
|
|
|
|
Skein_512_Init(&ctx, 512);
|
|
Skein_512_Update(&ctx, buf, bytes);
|
|
Skein_512_Final(&ctx, cksum_buf);
|
|
} else {
|
|
return (-1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Check is either the given checksum name or id is valid and
|
|
* return it's properties.
|
|
*/
|
|
int
|
|
get_checksum_props(char *name, int *cksum, int *cksum_bytes)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i<sizeof (cksum_props); i++) {
|
|
if ((name != NULL && strcmp(name, cksum_props[i].name) == 0) ||
|
|
(*cksum != 0 && *cksum == cksum_props[i].cksum_id)) {
|
|
*cksum = cksum_props[i].cksum_id;
|
|
*cksum_bytes = cksum_props[i].bytes;
|
|
return (0);
|
|
}
|
|
}
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Endian independent way of storing the checksum bytes. This is actually
|
|
* storing in little endian format and a copy can be avoided in x86 land.
|
|
* However unsightly ifdefs are avoided here since this is not so performance
|
|
* critical.
|
|
*/
|
|
void
|
|
serialize_checksum(uchar_t *checksum, uchar_t *buf, int cksum_bytes)
|
|
{
|
|
int i,j;
|
|
|
|
j = 0;
|
|
for (i=cksum_bytes; i>0; i--) {
|
|
buf[j] = checksum[i-1];
|
|
j++;
|
|
}
|
|
}
|
|
|
|
void
|
|
deserialize_checksum(uchar_t *checksum, uchar_t *buf, int cksum_bytes)
|
|
{
|
|
int i,j;
|
|
|
|
j = 0;
|
|
for (i=cksum_bytes; i>0; i--) {
|
|
checksum[i-1] = buf[j];
|
|
j++;
|
|
}
|
|
}
|