quoracle/quorums/geometry.py

92 lines
2.8 KiB
Python
Raw Normal View History

from typing import Any, Callable, List, NamedTuple, Optional, Tuple
import math
class Point(NamedTuple):
x: float
y: float
class Segment:
def __init__(self, l: Point, r: Point) -> None:
assert l != r
assert l.x < r.x
self.l = l
self.r = r
def __str__(self) -> str:
return f'{tuple(self.l)} -> {tuple(self.r)}'
def __repr__(self) -> str:
return f'Segment({self.l}, {self.r})'
def __eq__(self, other) -> bool:
if isinstance(other, Segment):
return (self.l, self.r) == (other.l, other.r)
else:
return False
def __hash__(self) -> int:
return hash((self.l, self.r))
def __call__(self, x: float) -> float:
assert self.l.x <= x <= self.r.x
return self.slope() * (x - self.l.x) + self.l.y
def approximately_equal(self, other: 'Segment') -> float:
return (math.isclose(self.l.y, other.l.y, rel_tol=1e-5) and
math.isclose(self.r.y, other.r.y, rel_tol=1e-5))
def compatible(self, other: 'Segment') -> float:
return self.l.x == other.l.x and self.r.x == other.r.x
def slope(self) -> float:
return (self.r.y - self.l.y) / (self.r.x - self.l.x)
def above(self, other: 'Segment') -> bool:
assert self.compatible(other)
return self != other and self.l.y >= other.l.y and self.r.y >= other.r.y
def above_eq(self, other: 'Segment') -> bool:
assert self.compatible(other)
return self == other or self.above(other)
def intersects(self, other: 'Segment') -> bool:
assert self.compatible(other)
if self == other:
return True
elif self.l.y == other.l.y or self.r.y == other.r.y:
return True
elif self.above(other) or other.above(self):
return False
else:
return True
def intersection(self, other: 'Segment') -> Optional[Point]:
assert self.compatible(other)
if self == other or not self.intersects(other):
return None
x = ((other.l.y - self.l.y) /
(self.r.y - other.r.y + other.l.y - self.l.y))
return Point(x, self(x))
def max_of_segments(segments: List[Segment]) -> List[Tuple[float, float]]:
assert len(segments) > 0
assert len({segment.l.x for segment in segments}) == 1
assert len({segment.r.x for segment in segments}) == 1
# We compute the x-coordinate of every intersection point. We sort the
# x-coordinates and for every x, we compute the highest line at that point.
xs: List[float] = [0.0, 1.0]
for (i, s1) in enumerate(segments):
for (j, s2) in enumerate(segments[i + 1:], i + 1):
p = s1.intersection(s2)
if p is not None:
xs.append(p.x)
xs.sort()
return [(x, max(segments, key=lambda s: s(x))(x)) for x in xs]