Progress on multiple objectives.
This commit is contained in:
parent
31e875f957
commit
18f97ac866
3 changed files with 202 additions and 39 deletions
|
@ -1,4 +1,5 @@
|
|||
from typing import Dict, Iterator, Generic, List, Optional, Set, TypeVar
|
||||
import datetime
|
||||
import itertools
|
||||
import pulp
|
||||
|
||||
|
@ -87,7 +88,8 @@ class Node(Expr[T]):
|
|||
x: T,
|
||||
capacity: Optional[float] = None,
|
||||
read_capacity: Optional[float] = None,
|
||||
write_capacity: Optional[float] = None) -> None:
|
||||
write_capacity: Optional[float] = None,
|
||||
latency: datetime.timedelta = None) -> None:
|
||||
self.x = x
|
||||
|
||||
# A user either specifies capacity or (read_capacity and
|
||||
|
@ -111,6 +113,12 @@ class Node(Expr[T]):
|
|||
raise ValueError('You must specify capacity or (read_capacity '
|
||||
'and write_capacity)')
|
||||
|
||||
if latency is None:
|
||||
self.latency = datetime.timedelta(seconds=1)
|
||||
else:
|
||||
self.latency = latency
|
||||
|
||||
|
||||
def __str__(self) -> str:
|
||||
return str(self.x)
|
||||
|
||||
|
|
|
@ -5,8 +5,10 @@ from . import distribution
|
|||
from .distribution import Distribution
|
||||
from .expr import Expr, Node
|
||||
from .strategy import Strategy
|
||||
from typing import Dict, Iterator, Generic, List, Optional, Set, TypeVar
|
||||
from typing import (Callable, Dict, Iterator, Generic, List, Optional, Set,
|
||||
TypeVar)
|
||||
import collections
|
||||
import datetime
|
||||
import itertools
|
||||
import pulp
|
||||
|
||||
|
@ -14,6 +16,14 @@ import pulp
|
|||
T = TypeVar('T')
|
||||
|
||||
|
||||
LOAD = 'load'
|
||||
NETWORK = 'network'
|
||||
LATENCY = 'latency'
|
||||
|
||||
# TODO(mwhittaker): Add some other non-optimal strategies.
|
||||
# TODO(mwhittaker): Make it easy to make arbitrary strategies.
|
||||
|
||||
|
||||
class QuorumSystem(Generic[T]):
|
||||
def __init__(self, reads: Optional[Expr[T]] = None,
|
||||
writes: Optional[Expr[T]] = None) -> None:
|
||||
|
@ -64,6 +74,10 @@ class QuorumSystem(Generic[T]):
|
|||
return self.writes.resilience()
|
||||
|
||||
def strategy(self,
|
||||
optimize: str = LOAD,
|
||||
load_limit: Optional[float] = None,
|
||||
network_limit: Optional[float] = None,
|
||||
latency_limit: Optional[datetime.timedelta] = None,
|
||||
read_fraction: Optional[Distribution] = None,
|
||||
write_fraction: Optional[Distribution] = None,
|
||||
f: int = 0) \
|
||||
|
@ -71,12 +85,28 @@ class QuorumSystem(Generic[T]):
|
|||
if f < 0:
|
||||
raise ValueError('f must be >= 0')
|
||||
|
||||
if optimize == LOAD and load_limit is not None:
|
||||
raise ValueError(
|
||||
'a load limit cannot be set when optimizing for load')
|
||||
|
||||
if optimize == NETWORK and network_limit is not None:
|
||||
raise ValueError(
|
||||
'a network limit cannot be set when optimizing for network')
|
||||
|
||||
if optimize == LATENCY and latency_limit is not None:
|
||||
raise ValueError(
|
||||
'a latency limit cannot be set when optimizing for latency')
|
||||
|
||||
d = distribution.canonicalize_rw(read_fraction, write_fraction)
|
||||
if f == 0:
|
||||
return self._load_optimal_strategy(
|
||||
list(self.read_quorums()),
|
||||
list(self.write_quorums()),
|
||||
d)
|
||||
d,
|
||||
optimize=optimize,
|
||||
load_limit=load_limit,
|
||||
network_limit=network_limit,
|
||||
latency_limit=latency_limit)
|
||||
else:
|
||||
xs = [node.x for node in self.nodes()]
|
||||
read_quorums = list(self._f_resilient_quorums(f, xs, self.reads))
|
||||
|
@ -85,7 +115,14 @@ class QuorumSystem(Generic[T]):
|
|||
raise ValueError(f'There are no {f}-resilient read quorums')
|
||||
if len(write_quorums) == 0:
|
||||
raise ValueError(f'There are no {f}-resilient write quorums')
|
||||
return self._load_optimal_strategy(read_quorums, write_quorums, d)
|
||||
return self._load_optimal_strategy(
|
||||
read_quorums,
|
||||
write_quorums,
|
||||
d,
|
||||
optimize=optimize,
|
||||
load_limit=load_limit,
|
||||
network_limit=network_limit,
|
||||
latency_limit=latency_limit)
|
||||
|
||||
def dup_free(self) -> bool:
|
||||
return self.reads.dup_free() and self.writes.dup_free()
|
||||
|
@ -114,21 +151,46 @@ class QuorumSystem(Generic[T]):
|
|||
write_fraction: Optional[Distribution] = None,
|
||||
f: int = 0) \
|
||||
-> float:
|
||||
sigma = self.strategy(read_fraction, write_fraction, f)
|
||||
return sigma.load(read_fraction, write_fraction)
|
||||
return 0
|
||||
# TODO(mwhittaker): Remove.
|
||||
# sigma = self.strategy(read_fraction, write_fraction, f)
|
||||
# return sigma.load(read_fraction, write_fraction)
|
||||
|
||||
def capacity(self,
|
||||
read_fraction: Optional[Distribution] = None,
|
||||
write_fraction: Optional[Distribution] = None,
|
||||
f: int = 0) \
|
||||
-> float:
|
||||
return 1 / self.load(read_fraction, write_fraction, f)
|
||||
return 0
|
||||
# TODO(mwhittaker): Remove.
|
||||
# return 1 / self.load(read_fraction, write_fraction, f)
|
||||
|
||||
def _load_optimal_strategy(self,
|
||||
read_quorums: List[Set[T]],
|
||||
write_quorums: List[Set[T]],
|
||||
read_fraction: Dict[float, float]) \
|
||||
-> 'Strategy[T]':
|
||||
def _read_quorum_latency(self, quorum: Set[Node[T]]) -> datetime.timedelta:
|
||||
return self._quorum_latency(quorum, self.is_read_quorum)
|
||||
|
||||
def _write_quorum_latency(self, quorum: Set[Node[T]]) -> datetime.timedelta:
|
||||
return self._quorum_latency(quorum, self.is_write_quorum)
|
||||
|
||||
def _quorum_latency(self,
|
||||
quorum: Set[Node[T]],
|
||||
is_quorum: Callable[[Set[T]], bool]) \
|
||||
-> datetime.timedelta:
|
||||
nodes = list(quorum)
|
||||
nodes.sort(key=lambda node: node.latency)
|
||||
for i in range(len(quorum)):
|
||||
if is_quorum({node.x for node in nodes[:i+1]}):
|
||||
return nodes[i].latency
|
||||
raise ValueError('_quorum_latency called on a non-quorum')
|
||||
|
||||
def _load_optimal_strategy(
|
||||
self,
|
||||
read_quorums: List[Set[T]],
|
||||
write_quorums: List[Set[T]],
|
||||
read_fraction: Dict[float, float],
|
||||
optimize: str = LOAD,
|
||||
load_limit: Optional[float] = None,
|
||||
network_limit: Optional[float] = None,
|
||||
latency_limit: Optional[datetime.timedelta] = None) -> 'Strategy[T]':
|
||||
"""
|
||||
Consider the following 2x2 grid quorum system.
|
||||
|
||||
|
@ -184,7 +246,8 @@ class QuorumSystem(Generic[T]):
|
|||
0.5/rcap_c (r1) + 0.5/wcap_c (w0 + w2) <= L_0.5 # c's load
|
||||
0.5/rcap_d (r1) + 0.5/wcap_d (w1 + w3) <= L_0.5 # d's load
|
||||
"""
|
||||
nodes = self.reads.nodes() | self.writes.nodes()
|
||||
nodes = self.nodes()
|
||||
x_to_node = {node.x: node for node in nodes}
|
||||
read_capacity = {node.x: node.read_capacity for node in nodes}
|
||||
write_capacity = {node.x: node.write_capacity for node in nodes}
|
||||
|
||||
|
@ -220,38 +283,92 @@ class QuorumSystem(Generic[T]):
|
|||
for x in write_quorum:
|
||||
x_to_write_quorum_vars[x].append(v)
|
||||
|
||||
# Create a variable for every load.
|
||||
load_vars = {fr: pulp.LpVariable(f'l_{fr}', 0, 1)
|
||||
for fr in read_fraction.keys()}
|
||||
fr = sum(weight * f for (f, weight) in read_fraction.items())
|
||||
|
||||
def network() -> pulp.LpAffineExpression:
|
||||
read_network = fr * sum(
|
||||
v * len(rq)
|
||||
for (rq, v) in zip(read_quorums, read_quorum_vars)
|
||||
)
|
||||
write_network = (1 - fr) * sum(
|
||||
v * len(wq)
|
||||
for (wq, v) in zip(write_quorums, write_quorum_vars)
|
||||
)
|
||||
return read_network + write_network
|
||||
|
||||
def latency() -> pulp.LpAffineExpression:
|
||||
read_latency = fr * sum(
|
||||
v * self._read_quorum_latency(quorum).total_seconds()
|
||||
for (rq, v) in zip(read_quorums, read_quorum_vars)
|
||||
for quorum in [{x_to_node[x] for x in rq}]
|
||||
)
|
||||
write_latency = (1 - fr) * sum(
|
||||
v * self._write_quorum_latency(quorum).total_seconds()
|
||||
for (wq, v) in zip(write_quorums, write_quorum_vars)
|
||||
for quorum in [{x_to_node[x] for x in wq}]
|
||||
)
|
||||
return read_latency + write_latency
|
||||
|
||||
def fr_load(problem: pulp.LpProblem, fr: float) -> pulp.LpAffineExpression:
|
||||
l = pulp.LpVariable(f'l_{fr}', 0, 1)
|
||||
|
||||
for node in nodes:
|
||||
x = node.x
|
||||
x_load: pulp.LpAffineExpression = 0
|
||||
|
||||
if x in x_to_read_quorum_vars:
|
||||
vs = x_to_read_quorum_vars[x]
|
||||
x_load += fr * sum(vs) / read_capacity[x]
|
||||
|
||||
if x in x_to_write_quorum_vars:
|
||||
vs = x_to_write_quorum_vars[x]
|
||||
x_load += (1 - fr) * sum(vs) / write_capacity[x]
|
||||
|
||||
problem += (x_load <= l, f'{x}{fr}')
|
||||
|
||||
return l
|
||||
|
||||
def load(problem: pulp.LpProblem,
|
||||
read_fraction: Dict[float, float]) -> pulp.LpAffineExpression:
|
||||
return sum(weight * fr_load(problem, fr)
|
||||
for (fr, weight) in read_fraction.items())
|
||||
|
||||
# Form the linear program to find the load.
|
||||
problem = pulp.LpProblem("load", pulp.LpMinimize)
|
||||
|
||||
# First, we add our objective.
|
||||
problem += sum(weight * load_vars[fr]
|
||||
for (fr, weight) in read_fraction.items())
|
||||
|
||||
# Next, we make sure that the probabilities we select form valid
|
||||
# probabilty distributions.
|
||||
# We add these constraints to make sure that the probabilities we
|
||||
# select form valid probabilty distributions.
|
||||
problem += (sum(read_quorum_vars) == 1, 'valid read strategy')
|
||||
problem += (sum(write_quorum_vars) == 1, 'valid write strategy')
|
||||
|
||||
# Finally, we add constraints for every value of fr.
|
||||
for fr, weight in read_fraction.items():
|
||||
for node in nodes:
|
||||
x = node.x
|
||||
x_load: pulp.LpAffineExpression = 0
|
||||
if x in x_to_read_quorum_vars:
|
||||
x_load += (fr * sum(x_to_read_quorum_vars[x]) /
|
||||
read_capacity[x])
|
||||
if x in x_to_write_quorum_vars:
|
||||
x_load += ((1 - fr) * sum(x_to_write_quorum_vars[x]) /
|
||||
write_capacity[x])
|
||||
problem += (x_load <= load_vars[fr], f'{x}{fr}')
|
||||
# Add the objective.
|
||||
if optimize == LOAD:
|
||||
problem += load(problem, read_fraction)
|
||||
elif optimize == NETWORK:
|
||||
problem += network()
|
||||
else:
|
||||
assert optimize == LATENCY
|
||||
problem += latency()
|
||||
|
||||
# Add any constraints.
|
||||
if load_limit is not None:
|
||||
problem += (load(problem, read_fraction) <= load_limit,
|
||||
'load limit')
|
||||
|
||||
if network_limit is not None:
|
||||
problem += (network() <= network_limit, 'network limit')
|
||||
|
||||
if latency_limit is not None:
|
||||
problem += (latency() <= latency_limit.total_seconds(),
|
||||
'latency limit')
|
||||
|
||||
# Solve the linear program.
|
||||
print(problem)
|
||||
problem.solve(pulp.apis.PULP_CBC_CMD(msg=False))
|
||||
if problem.status != pulp.LpStatusOptimal:
|
||||
raise ValueError('no strategy satisfies the given constraints')
|
||||
|
||||
# Prune out any quorums with 0 probability.
|
||||
non_zero_read_quorums = [
|
||||
(rq, v.varValue)
|
||||
for (rq, v) in zip(read_quorums, read_quorum_vars)
|
||||
|
|
|
@ -69,6 +69,34 @@ class Strategy(Generic[T]):
|
|||
return sum(weight * self._load(fr)
|
||||
for (fr, weight) in d.items())
|
||||
|
||||
# TODO(mwhittaker): Rename throughput.
|
||||
def capacity(self,
|
||||
read_fraction: Optional[Distribution] = None,
|
||||
write_fraction: Optional[Distribution] = None) \
|
||||
-> float:
|
||||
return 1 / self.load(read_fraction, write_fraction)
|
||||
|
||||
def network_load(self,
|
||||
read_fraction: Optional[Distribution] = None,
|
||||
write_fraction: Optional[Distribution] = None) -> float:
|
||||
d = distribution.canonicalize_rw(read_fraction, write_fraction)
|
||||
fr = sum(weight * f for (f, weight) in d.items())
|
||||
read_network_load = fr * sum(
|
||||
len(rq) * p
|
||||
for (rq, p) in zip(self.reads, self.read_weights)
|
||||
)
|
||||
write_network_load = (1 - fr) * sum(
|
||||
len(wq) * p
|
||||
for (wq, p) in zip(self.writes, self.write_weights)
|
||||
)
|
||||
return read_network_load + write_network_load
|
||||
|
||||
def latency(self,
|
||||
read_fraction: Optional[Distribution] = None,
|
||||
write_fraction: Optional[Distribution] = None) -> float:
|
||||
# TODO(mwhittaker): Implement.
|
||||
return 0
|
||||
|
||||
def node_load(self,
|
||||
node: Node[T],
|
||||
read_fraction: Optional[Distribution] = None,
|
||||
|
@ -78,11 +106,21 @@ class Strategy(Generic[T]):
|
|||
return sum(weight * self._node_load(node.x, fr)
|
||||
for (fr, weight) in d.items())
|
||||
|
||||
def capacity(self,
|
||||
read_fraction: Optional[Distribution] = None,
|
||||
write_fraction: Optional[Distribution] = None) \
|
||||
-> float:
|
||||
return 1 / self.load(read_fraction, write_fraction)
|
||||
def node_utilization(self,
|
||||
node: Node[T],
|
||||
read_fraction: Optional[Distribution] = None,
|
||||
write_fraction: Optional[Distribution] = None) \
|
||||
-> float:
|
||||
# TODO(mwhittaker): Implement.
|
||||
return 0.0
|
||||
|
||||
def node_throghput(self,
|
||||
node: Node[T],
|
||||
read_fraction: Optional[Distribution] = None,
|
||||
write_fraction: Optional[Distribution] = None) \
|
||||
-> float:
|
||||
# TODO(mwhittaker): Implement.
|
||||
return 0.0
|
||||
|
||||
def _node_load(self, x: T, fr: float) -> float:
|
||||
"""
|
||||
|
|
Loading…
Reference in a new issue