Tidied up code.
Some of the code was nasty. I cleaned it up a bit. I also started moving tests into a tests/ directory. You can run python -m unittest to run them. I still need to add more tests to make sure things are working as expected.
This commit is contained in:
parent
63b88c38d5
commit
a42bccaf0c
6 changed files with 521 additions and 354 deletions
|
@ -1,5 +1,5 @@
|
||||||
from .expr import Node, choose, majority
|
from .expr import Node, choose, majority
|
||||||
from .quorum_system import QuorumSystem
|
from .quorum_system import QuorumSystem, Strategy
|
||||||
from .viz import (
|
from .viz import (
|
||||||
plot_node_load,
|
plot_node_load,
|
||||||
plot_node_load_on,
|
plot_node_load_on,
|
||||||
|
|
|
@ -1,6 +1,5 @@
|
||||||
from typing import Any, Callable, List, NamedTuple, Optional, Tuple
|
from typing import Any, Callable, List, NamedTuple, Optional, Tuple
|
||||||
import math
|
import math
|
||||||
import unittest
|
|
||||||
|
|
||||||
|
|
||||||
class Point(NamedTuple):
|
class Point(NamedTuple):
|
||||||
|
@ -90,165 +89,3 @@ def max_of_segments(segments: List[Segment]) -> List[Tuple[float, float]]:
|
||||||
xs.append(p.x)
|
xs.append(p.x)
|
||||||
xs.sort()
|
xs.sort()
|
||||||
return [(x, max(segments, key=lambda s: s(x))(x)) for x in xs]
|
return [(x, max(segments, key=lambda s: s(x))(x)) for x in xs]
|
||||||
|
|
||||||
|
|
||||||
class TestGeometry(unittest.TestCase):
|
|
||||||
def test_eq(self):
|
|
||||||
l = Point(0, 1)
|
|
||||||
r = Point(1, 1)
|
|
||||||
m = Point(0.5, 0.5)
|
|
||||||
self.assertEqual(Segment(l, r), Segment(l, r))
|
|
||||||
self.assertNotEqual(Segment(l, r), Segment(l, m))
|
|
||||||
|
|
||||||
def test_compatible(self):
|
|
||||||
s1 = Segment(Point(0, 1), Point(1, 2))
|
|
||||||
s2 = Segment(Point(0, 2), Point(1, 1))
|
|
||||||
s3 = Segment(Point(0.5, 2), Point(1, 1))
|
|
||||||
self.assertTrue(s1.compatible(s2))
|
|
||||||
self.assertTrue(s2.compatible(s1))
|
|
||||||
self.assertFalse(s1.compatible(s3))
|
|
||||||
self.assertFalse(s3.compatible(s1))
|
|
||||||
self.assertFalse(s2.compatible(s3))
|
|
||||||
self.assertFalse(s3.compatible(s2))
|
|
||||||
|
|
||||||
def test_call(self):
|
|
||||||
segment = Segment(Point(0, 0), Point(1, 1))
|
|
||||||
for x in [0.0, 0.25, 0.5, 0.75, 1.0]:
|
|
||||||
self.assertEqual(segment(x), x)
|
|
||||||
|
|
||||||
segment = Segment(Point(0, 0), Point(1, 2))
|
|
||||||
for x in [0.0, 0.25, 0.5, 0.75, 1.0]:
|
|
||||||
self.assertEqual(segment(x), 2*x)
|
|
||||||
|
|
||||||
segment = Segment(Point(1, 2), Point(3, 6))
|
|
||||||
for x in [1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]:
|
|
||||||
self.assertEqual(segment(x), 2*x)
|
|
||||||
|
|
||||||
segment = Segment(Point(0, 1), Point(1, 0))
|
|
||||||
for x in [0.0, 0.25, 0.5, 0.75, 1.0]:
|
|
||||||
self.assertEqual(segment(x), 1 - x)
|
|
||||||
|
|
||||||
def test_slope(self):
|
|
||||||
self.assertEqual(Segment(Point(0, 0), Point(1, 1)).slope(), 1.0)
|
|
||||||
self.assertEqual(Segment(Point(0, 1), Point(1, 2)).slope(), 1.0)
|
|
||||||
self.assertEqual(Segment(Point(1, 1), Point(2, 2)).slope(), 1.0)
|
|
||||||
self.assertEqual(Segment(Point(1, 1), Point(2, 3)).slope(), 2.0)
|
|
||||||
self.assertEqual(Segment(Point(1, 1), Point(2, 0)).slope(), -1.0)
|
|
||||||
|
|
||||||
def test_above(self):
|
|
||||||
s1 = Segment(Point(0, 0), Point(1, 0.5))
|
|
||||||
s2 = Segment(Point(0, 0.5), Point(1, 2))
|
|
||||||
s3 = Segment(Point(0, 1.5), Point(1, 0.5))
|
|
||||||
|
|
||||||
self.assertFalse(s1.above(s1))
|
|
||||||
self.assertFalse(s1.above(s2))
|
|
||||||
self.assertFalse(s1.above(s3))
|
|
||||||
|
|
||||||
self.assertTrue(s2.above(s1))
|
|
||||||
self.assertFalse(s2.above(s2))
|
|
||||||
self.assertFalse(s2.above(s3))
|
|
||||||
|
|
||||||
self.assertTrue(s3.above(s1))
|
|
||||||
self.assertFalse(s3.above(s2))
|
|
||||||
self.assertFalse(s3.above(s3))
|
|
||||||
|
|
||||||
def test_above_eq(self):
|
|
||||||
s1 = Segment(Point(0, 0), Point(1, 0.5))
|
|
||||||
s2 = Segment(Point(0, 0.5), Point(1, 2))
|
|
||||||
s3 = Segment(Point(0, 1.5), Point(1, 0.5))
|
|
||||||
|
|
||||||
self.assertTrue(s1.above_eq(s1))
|
|
||||||
self.assertFalse(s1.above_eq(s2))
|
|
||||||
self.assertFalse(s1.above_eq(s3))
|
|
||||||
|
|
||||||
self.assertTrue(s2.above_eq(s1))
|
|
||||||
self.assertTrue(s2.above_eq(s2))
|
|
||||||
self.assertFalse(s2.above_eq(s3))
|
|
||||||
|
|
||||||
self.assertTrue(s3.above_eq(s1))
|
|
||||||
self.assertFalse(s3.above_eq(s2))
|
|
||||||
self.assertTrue(s3.above_eq(s3))
|
|
||||||
|
|
||||||
def test_intersects(self):
|
|
||||||
s1 = Segment(Point(0, 0), Point(1, 0.5))
|
|
||||||
s2 = Segment(Point(0, 0.5), Point(1, 2))
|
|
||||||
s3 = Segment(Point(0, 1.5), Point(1, 0.5))
|
|
||||||
|
|
||||||
self.assertTrue(s1.intersects(s1))
|
|
||||||
self.assertFalse(s1.intersects(s2))
|
|
||||||
self.assertTrue(s1.intersects(s3))
|
|
||||||
|
|
||||||
self.assertFalse(s2.intersects(s1))
|
|
||||||
self.assertTrue(s2.intersects(s2))
|
|
||||||
self.assertTrue(s2.intersects(s3))
|
|
||||||
|
|
||||||
self.assertTrue(s3.intersects(s1))
|
|
||||||
self.assertTrue(s3.intersects(s2))
|
|
||||||
self.assertTrue(s3.intersects(s3))
|
|
||||||
|
|
||||||
def test_intersection(self):
|
|
||||||
s1 = Segment(Point(0, 0), Point(1, 1))
|
|
||||||
s2 = Segment(Point(0, 1), Point(1, 0))
|
|
||||||
s3 = Segment(Point(0, 1), Point(1, 1))
|
|
||||||
s4 = Segment(Point(0, 0.25), Point(1, 0.25))
|
|
||||||
|
|
||||||
self.assertEqual(s1.intersection(s1), None)
|
|
||||||
self.assertEqual(s1.intersection(s2), Point(0.5, 0.5))
|
|
||||||
self.assertEqual(s1.intersection(s3), Point(1, 1))
|
|
||||||
self.assertEqual(s1.intersection(s4), Point(0.25, 0.25))
|
|
||||||
|
|
||||||
self.assertEqual(s2.intersection(s1), Point(0.5, 0.5))
|
|
||||||
self.assertEqual(s2.intersection(s2), None)
|
|
||||||
self.assertEqual(s2.intersection(s3), Point(0, 1))
|
|
||||||
self.assertEqual(s2.intersection(s4), Point(0.75, 0.25))
|
|
||||||
|
|
||||||
self.assertEqual(s3.intersection(s1), Point(1, 1))
|
|
||||||
self.assertEqual(s3.intersection(s2), Point(0, 1))
|
|
||||||
self.assertEqual(s3.intersection(s3), None)
|
|
||||||
self.assertEqual(s3.intersection(s4), None)
|
|
||||||
|
|
||||||
self.assertEqual(s4.intersection(s1), Point(0.25, 0.25))
|
|
||||||
self.assertEqual(s4.intersection(s2), Point(0.75, 0.25))
|
|
||||||
self.assertEqual(s4.intersection(s3), None)
|
|
||||||
self.assertEqual(s4.intersection(s4), None)
|
|
||||||
|
|
||||||
def test_max_one_segment(self):
|
|
||||||
s1 = Segment(Point(0, 0), Point(1, 1))
|
|
||||||
s2 = Segment(Point(0, 1), Point(1, 0))
|
|
||||||
s3 = Segment(Point(0, 1), Point(1, 1))
|
|
||||||
s4 = Segment(Point(0, 0.25), Point(1, 0.25))
|
|
||||||
s5 = Segment(Point(0, 0.75), Point(1, 0.75))
|
|
||||||
|
|
||||||
def is_subset(xs: List[Any], ys: List[Any]) -> bool:
|
|
||||||
return all(x in ys for x in xs)
|
|
||||||
|
|
||||||
for s in [s1, s2, s3, s4, s5]:
|
|
||||||
self.assertEqual(max_of_segments([s]), [s.l, s.r])
|
|
||||||
|
|
||||||
expected = [
|
|
||||||
([s1, s1], [(0, 0), (1, 1)]),
|
|
||||||
([s1, s2], [(0, 1), (0.5, 0.5), (1, 1)]),
|
|
||||||
([s1, s3], [(0, 1), (1, 1)]),
|
|
||||||
([s1, s4], [(0, 0.25), (0.25, 0.25), (1, 1)]),
|
|
||||||
([s1, s5], [(0, 0.75), (0.75, 0.75), (1, 1)]),
|
|
||||||
([s2, s2], [(0, 1), (1, 0)]),
|
|
||||||
([s2, s3], [(0, 1), (1, 1)]),
|
|
||||||
([s2, s4], [(0, 1), (0.75, 0.25), (1, 0.25)]),
|
|
||||||
([s2, s5], [(0, 1), (0.25, 0.75), (1, 0.75)]),
|
|
||||||
([s3, s3], [(0, 1), (1, 1)]),
|
|
||||||
([s3, s4], [(0, 1), (1, 1)]),
|
|
||||||
([s3, s5], [(0, 1), (1, 1)]),
|
|
||||||
([s4, s4], [(0, 0.25), (1, 0.25)]),
|
|
||||||
([s4, s5], [(0, 0.75), (1, 0.75)]),
|
|
||||||
([s5, s5], [(0, 0.75), (1, 0.75)]),
|
|
||||||
|
|
||||||
([s1, s2, s4], [(0, 1), (0.5, 0.5), (1, 1)]),
|
|
||||||
([s1, s2, s5], [(0, 1), (0.25, 0.75), (0.75, 0.75), (1, 1)]),
|
|
||||||
]
|
|
||||||
for segments, path in expected:
|
|
||||||
self.assertTrue(is_subset(path, max_of_segments(segments)))
|
|
||||||
self.assertTrue(is_subset(path, max_of_segments(segments[::-1])))
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
unittest.main()
|
|
||||||
|
|
|
@ -1,6 +1,3 @@
|
||||||
# TODO(mwhittaker): We can define a set of read quorums that are not minimal.
|
|
||||||
# Does this mess things up?
|
|
||||||
|
|
||||||
from . import distribution
|
from . import distribution
|
||||||
from . import geometry
|
from . import geometry
|
||||||
from .distribution import Distribution
|
from .distribution import Distribution
|
||||||
|
@ -16,7 +13,6 @@ import pulp
|
||||||
|
|
||||||
T = TypeVar('T')
|
T = TypeVar('T')
|
||||||
|
|
||||||
|
|
||||||
LOAD = 'load'
|
LOAD = 'load'
|
||||||
NETWORK = 'network'
|
NETWORK = 'network'
|
||||||
LATENCY = 'latency'
|
LATENCY = 'latency'
|
||||||
|
@ -29,8 +25,7 @@ class QuorumSystem(Generic[T]):
|
||||||
writes: Optional[Expr[T]] = None) -> None:
|
writes: Optional[Expr[T]] = None) -> None:
|
||||||
if reads is not None and writes is not None:
|
if reads is not None and writes is not None:
|
||||||
optimal_writes = reads.dual()
|
optimal_writes = reads.dual()
|
||||||
if not all(optimal_writes.is_quorum(write_quorum)
|
if not all(optimal_writes.is_quorum(wq) for wq in writes.quorums()):
|
||||||
for write_quorum in writes.quorums()):
|
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
'Not all read quorums intersect all write quorums')
|
'Not all read quorums intersect all write quorums')
|
||||||
|
|
||||||
|
@ -63,9 +58,15 @@ class QuorumSystem(Generic[T]):
|
||||||
def is_write_quorum(self, xs: Set[T]) -> bool:
|
def is_write_quorum(self, xs: Set[T]) -> bool:
|
||||||
return self.writes.is_quorum(xs)
|
return self.writes.is_quorum(xs)
|
||||||
|
|
||||||
|
def node(self, x: T) -> Node[T]:
|
||||||
|
return self.x_to_node[x]
|
||||||
|
|
||||||
def nodes(self) -> Set[Node[T]]:
|
def nodes(self) -> Set[Node[T]]:
|
||||||
return self.reads.nodes() | self.writes.nodes()
|
return self.reads.nodes() | self.writes.nodes()
|
||||||
|
|
||||||
|
def elements(self) -> Set[T]:
|
||||||
|
return {node.x for node in self.nodes()}
|
||||||
|
|
||||||
def resilience(self) -> int:
|
def resilience(self) -> int:
|
||||||
return min(self.read_resilience(), self.write_resilience())
|
return min(self.read_resilience(), self.write_resilience())
|
||||||
|
|
||||||
|
@ -75,6 +76,107 @@ class QuorumSystem(Generic[T]):
|
||||||
def write_resilience(self) -> int:
|
def write_resilience(self) -> int:
|
||||||
return self.writes.resilience()
|
return self.writes.resilience()
|
||||||
|
|
||||||
|
def dup_free(self) -> bool:
|
||||||
|
return self.reads.dup_free() and self.writes.dup_free()
|
||||||
|
|
||||||
|
def load(self,
|
||||||
|
optimize: str = LOAD,
|
||||||
|
load_limit: Optional[float] = None,
|
||||||
|
network_limit: Optional[float] = None,
|
||||||
|
latency_limit: Optional[datetime.timedelta] = None,
|
||||||
|
read_fraction: Optional[Distribution] = None,
|
||||||
|
write_fraction: Optional[Distribution] = None,
|
||||||
|
f: int = 0) -> float:
|
||||||
|
return self.strategy(
|
||||||
|
optimize,
|
||||||
|
load_limit,
|
||||||
|
network_limit,
|
||||||
|
latency_limit,
|
||||||
|
read_fraction,
|
||||||
|
write_fraction,
|
||||||
|
f
|
||||||
|
).load(read_fraction, write_fraction)
|
||||||
|
|
||||||
|
def capacity(self,
|
||||||
|
optimize: str = LOAD,
|
||||||
|
load_limit: Optional[float] = None,
|
||||||
|
network_limit: Optional[float] = None,
|
||||||
|
latency_limit: Optional[datetime.timedelta] = None,
|
||||||
|
read_fraction: Optional[Distribution] = None,
|
||||||
|
write_fraction: Optional[Distribution] = None,
|
||||||
|
f: int = 0) -> float:
|
||||||
|
return self.strategy(
|
||||||
|
optimize,
|
||||||
|
load_limit,
|
||||||
|
network_limit,
|
||||||
|
latency_limit,
|
||||||
|
read_fraction,
|
||||||
|
write_fraction,
|
||||||
|
f
|
||||||
|
).capacity(read_fraction, write_fraction)
|
||||||
|
|
||||||
|
def network_load(self,
|
||||||
|
optimize: str = LOAD,
|
||||||
|
load_limit: Optional[float] = None,
|
||||||
|
network_limit: Optional[float] = None,
|
||||||
|
latency_limit: Optional[datetime.timedelta] = None,
|
||||||
|
read_fraction: Optional[Distribution] = None,
|
||||||
|
write_fraction: Optional[Distribution] = None,
|
||||||
|
f: int = 0) -> float:
|
||||||
|
return self.strategy(
|
||||||
|
optimize,
|
||||||
|
load_limit,
|
||||||
|
network_limit,
|
||||||
|
latency_limit,
|
||||||
|
read_fraction,
|
||||||
|
write_fraction,
|
||||||
|
f
|
||||||
|
).network_load(read_fraction, write_fraction)
|
||||||
|
|
||||||
|
def latency(self,
|
||||||
|
optimize: str = LOAD,
|
||||||
|
load_limit: Optional[float] = None,
|
||||||
|
network_limit: Optional[float] = None,
|
||||||
|
latency_limit: Optional[datetime.timedelta] = None,
|
||||||
|
read_fraction: Optional[Distribution] = None,
|
||||||
|
write_fraction: Optional[Distribution] = None,
|
||||||
|
f: int = 0) -> float:
|
||||||
|
return self.strategy(
|
||||||
|
optimize,
|
||||||
|
load_limit,
|
||||||
|
network_limit,
|
||||||
|
latency_limit,
|
||||||
|
read_fraction,
|
||||||
|
write_fraction,
|
||||||
|
f
|
||||||
|
).latency(read_fraction, write_fraction)
|
||||||
|
|
||||||
|
def uniform_strategy(self, f: int = 0) -> 'Strategy[T]':
|
||||||
|
"""
|
||||||
|
uniform_strategy(f) returns a uniform strategy over the minimal
|
||||||
|
f-resilient quorums. That is, every minimal f-resilient quorum is
|
||||||
|
equally likely to be chosen.
|
||||||
|
"""
|
||||||
|
if f < 0:
|
||||||
|
raise ValueError('f must be >= 0')
|
||||||
|
elif f == 0:
|
||||||
|
read_quorums = list(self.read_quorums())
|
||||||
|
write_quorums = list(self.write_quorums())
|
||||||
|
else:
|
||||||
|
xs = list(self.elements())
|
||||||
|
read_quorums = list(self._f_resilient_quorums(f, xs, self.reads))
|
||||||
|
write_quorums = list(self._f_resilient_quorums(f, xs, self.reads))
|
||||||
|
if len(read_quorums) == 0:
|
||||||
|
raise ValueError(f'There are no {f}-resilient read quorums')
|
||||||
|
if len(write_quorums) == 0:
|
||||||
|
raise ValueError(f'There are no {f}-resilient write quorums')
|
||||||
|
|
||||||
|
read_quorums = self._minimize(read_quorums)
|
||||||
|
write_quorums = self._minimize(write_quorums)
|
||||||
|
sigma_r = {frozenset(rq): 1 / len(rq) for rq in read_quorums}
|
||||||
|
sigma_w = {frozenset(wq): 1 / len(wq) for wq in write_quorums}
|
||||||
|
return Strategy(self, sigma_r, sigma_w)
|
||||||
|
|
||||||
def strategy(self,
|
def strategy(self,
|
||||||
optimize: str = LOAD,
|
optimize: str = LOAD,
|
||||||
load_limit: Optional[float] = None,
|
load_limit: Optional[float] = None,
|
||||||
|
@ -82,10 +184,10 @@ class QuorumSystem(Generic[T]):
|
||||||
latency_limit: Optional[datetime.timedelta] = None,
|
latency_limit: Optional[datetime.timedelta] = None,
|
||||||
read_fraction: Optional[Distribution] = None,
|
read_fraction: Optional[Distribution] = None,
|
||||||
write_fraction: Optional[Distribution] = None,
|
write_fraction: Optional[Distribution] = None,
|
||||||
f: int = 0) \
|
f: int = 0) -> 'Strategy[T]':
|
||||||
-> 'Strategy[T]':
|
if optimize not in {LOAD, NETWORK, LATENCY}:
|
||||||
if f < 0:
|
raise ValueError(
|
||||||
raise ValueError('f must be >= 0')
|
f'optimize must be one of {LOAD}, {NETWORK}, or {LATENCY}')
|
||||||
|
|
||||||
if optimize == LOAD and load_limit is not None:
|
if optimize == LOAD and load_limit is not None:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
|
@ -99,6 +201,9 @@ class QuorumSystem(Generic[T]):
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
'a latency limit cannot be set when optimizing for latency')
|
'a latency limit cannot be set when optimizing for latency')
|
||||||
|
|
||||||
|
if f < 0:
|
||||||
|
raise ValueError('f must be >= 0')
|
||||||
|
|
||||||
d = distribution.canonicalize_rw(read_fraction, write_fraction)
|
d = distribution.canonicalize_rw(read_fraction, write_fraction)
|
||||||
if f == 0:
|
if f == 0:
|
||||||
return self._load_optimal_strategy(
|
return self._load_optimal_strategy(
|
||||||
|
@ -110,7 +215,7 @@ class QuorumSystem(Generic[T]):
|
||||||
network_limit=network_limit,
|
network_limit=network_limit,
|
||||||
latency_limit=latency_limit)
|
latency_limit=latency_limit)
|
||||||
else:
|
else:
|
||||||
xs = [node.x for node in self.nodes()]
|
xs = list(self.elements())
|
||||||
read_quorums = list(self._f_resilient_quorums(f, xs, self.reads))
|
read_quorums = list(self._f_resilient_quorums(f, xs, self.reads))
|
||||||
write_quorums = list(self._f_resilient_quorums(f, xs, self.reads))
|
write_quorums = list(self._f_resilient_quorums(f, xs, self.reads))
|
||||||
if len(read_quorums) == 0:
|
if len(read_quorums) == 0:
|
||||||
|
@ -126,13 +231,23 @@ class QuorumSystem(Generic[T]):
|
||||||
network_limit=network_limit,
|
network_limit=network_limit,
|
||||||
latency_limit=latency_limit)
|
latency_limit=latency_limit)
|
||||||
|
|
||||||
def dup_free(self) -> bool:
|
def _minimize(self, sets: List[Set[T]]) -> List[Set[T]]:
|
||||||
return self.reads.dup_free() and self.writes.dup_free()
|
sets = sorted(sets, key=lambda s: len(s))
|
||||||
|
minimal_elements: List[Set[T]] = []
|
||||||
|
for x in sets:
|
||||||
|
if not any(x >= y for y in minimal_elements):
|
||||||
|
minimal_elements.append(x)
|
||||||
|
return minimal_elements
|
||||||
|
|
||||||
def _f_resilient_quorums(self,
|
def _f_resilient_quorums(self,
|
||||||
f: int,
|
f: int,
|
||||||
xs: List[T],
|
xs: List[T],
|
||||||
e: Expr) -> Iterator[Set[T]]:
|
e: Expr) -> Iterator[Set[T]]:
|
||||||
|
"""
|
||||||
|
Consider a set X of elements in xs. We say X is f-resilient if, despite
|
||||||
|
removing an arbitrary set of f elements from X, X is a quorum in e.
|
||||||
|
_f_resilient_quorums returns the set of all f-resilient quorums.
|
||||||
|
"""
|
||||||
assert f >= 1
|
assert f >= 1
|
||||||
|
|
||||||
def helper(s: Set[T], i: int) -> Iterator[Set[T]]:
|
def helper(s: Set[T], i: int) -> Iterator[Set[T]]:
|
||||||
|
@ -148,25 +263,6 @@ class QuorumSystem(Generic[T]):
|
||||||
|
|
||||||
return helper(set(), 0)
|
return helper(set(), 0)
|
||||||
|
|
||||||
def load(self,
|
|
||||||
read_fraction: Optional[Distribution] = None,
|
|
||||||
write_fraction: Optional[Distribution] = None,
|
|
||||||
f: int = 0) \
|
|
||||||
-> float:
|
|
||||||
return 0
|
|
||||||
# TODO(mwhittaker): Remove.
|
|
||||||
# sigma = self.strategy(read_fraction, write_fraction, f)
|
|
||||||
# return sigma.load(read_fraction, write_fraction)
|
|
||||||
|
|
||||||
def capacity(self,
|
|
||||||
read_fraction: Optional[Distribution] = None,
|
|
||||||
write_fraction: Optional[Distribution] = None,
|
|
||||||
f: int = 0) \
|
|
||||||
-> float:
|
|
||||||
return 0
|
|
||||||
# TODO(mwhittaker): Remove.
|
|
||||||
# return 1 / self.load(read_fraction, write_fraction, f)
|
|
||||||
|
|
||||||
def _read_quorum_latency(self, quorum: Set[Node[T]]) -> datetime.timedelta:
|
def _read_quorum_latency(self, quorum: Set[Node[T]]) -> datetime.timedelta:
|
||||||
return self._quorum_latency(quorum, self.is_read_quorum)
|
return self._quorum_latency(quorum, self.is_read_quorum)
|
||||||
|
|
||||||
|
@ -205,54 +301,132 @@ class QuorumSystem(Generic[T]):
|
||||||
read_quorums = [{a, b}, {c, d}]
|
read_quorums = [{a, b}, {c, d}]
|
||||||
write_quorums = [{a, c}, {a, d}, {b, c}, {b, d}]
|
write_quorums = [{a, c}, {a, d}, {b, c}, {b, d}]
|
||||||
|
|
||||||
We can form a linear program to compute the optimal load of this quorum
|
We want to find the strategy that is optimal with respect to load,
|
||||||
system for some fixed read fraction fr as follows. First, we create a
|
network load, or latency that satisfies the provided load, network
|
||||||
variable ri for every read quorum i and a variable wi for every write
|
load, or latency constraints.
|
||||||
quorum i. ri represents the probabilty of selecting the ith read
|
|
||||||
quorum, and wi represents the probabilty of selecting the ith write
|
|
||||||
quorum. We introduce an additional variable l that represents the load
|
|
||||||
and solve the following linear program.
|
|
||||||
|
|
||||||
min L subject to
|
We can find the optimal strategy using linear programming. First, we
|
||||||
r0 + r1 + r2 = 1
|
create a variable ri for every read quorum i and a variable wi for
|
||||||
w0 + w1 = 1
|
every write quorum i. ri represents the probabilty of selecting the ith
|
||||||
fr (r0) + (1 - fr) (w0 + w1) <= L # a's load
|
read quorum, and wi represents the probabilty of selecting the ith
|
||||||
fr (r0) + (1 - fr) (w2 + w3) <= L # b's load
|
write quorum.
|
||||||
fr (r1) + (1 - fr) (w0 + w2) <= L # c's load
|
|
||||||
fr (r1) + (1 - fr) (w1 + w3) <= L # d's load
|
|
||||||
|
|
||||||
If we assume every element x has read capacity rcap_x and write
|
We now explain how to represent load, network load, and latency as
|
||||||
capacity wcap_x, then we adjust the linear program like this.
|
linear expressions.
|
||||||
|
|
||||||
min L subject to
|
Load
|
||||||
r0 + r1 + r2 = 1
|
====
|
||||||
w0 + w1 = 1
|
Assume a read fraction fr and write fraction fw. The load of a node a is
|
||||||
fr/rcap_a (r0) + (1 - fr)/wcap_a (w0 + w1) <= L # a's load
|
|
||||||
fr/rcap_b (r0) + (1 - fr)/wcap_b (w2 + w3) <= L # b's load
|
|
||||||
fr/rcap_c (r1) + (1 - fr)/wcap_c (w0 + w2) <= L # c's load
|
|
||||||
fr/rcap_d (r1) + (1 - fr)/wcap_d (w1 + w3) <= L # d's load
|
|
||||||
|
|
||||||
Assume we have fr = 0.9 with 80% probabilty and fr = 0.5 with 20%. Then
|
load(a) = (fr * rprob(a) / rcap(a)) + (fw * wprob(a) / wcap(a))
|
||||||
we adjust the linear program as follows to find the strategy that
|
|
||||||
minimzes the average load.
|
|
||||||
|
|
||||||
min 0.8 * L_0.9 + 0.2 * L_0.5 subject to
|
where prob_r(a) and prob_w(a) are the probabilities that a is selected
|
||||||
r0 + r1 + r2 = 1
|
as part of a read or write quorum respectively; and rcap(a) and wcap(a)
|
||||||
w0 + w1 = 1
|
are the read and write capacities of a. We can express prob_r(a) and
|
||||||
0.9/rcap_a (r0) + 0.1/wcap_a (w0 + w1) <= L_0.9 # a's load
|
prob_w(a) as follows:
|
||||||
0.9/rcap_b (r0) + 0.1/wcap_b (w2 + w3) <= L_0.9 # b's load
|
|
||||||
0.9/rcap_c (r1) + 0.1/wcap_c (w0 + w2) <= L_0.9 # c's load
|
rprob(a) = sum({ri | a is in read quorum i})
|
||||||
0.9/rcap_d (r1) + 0.1/wcap_d (w1 + w3) <= L_0.9 # d's load
|
wprob(a) = sum({wi | a is in write quorum i})
|
||||||
0.5/rcap_a (r0) + 0.5/wcap_a (w0 + w1) <= L_0.5 # a's load
|
|
||||||
0.5/rcap_b (r0) + 0.5/wcap_b (w2 + w3) <= L_0.5 # b's load
|
Using the example grid quorum above, we have:
|
||||||
0.5/rcap_c (r1) + 0.5/wcap_c (w0 + w2) <= L_0.5 # c's load
|
|
||||||
0.5/rcap_d (r1) + 0.5/wcap_d (w1 + w3) <= L_0.5 # d's load
|
rprob(a) = r0 wprob(a) = w0 + w1
|
||||||
|
rprob(b) = r0 wprob(b) = w2 + w3
|
||||||
|
rprob(c) = r1 wprob(c) = w0 + w2
|
||||||
|
rprob(d) = r1 wprob(d) = w1 + w3
|
||||||
|
|
||||||
|
The load of a strategy is the maximum load on any node. We can compute
|
||||||
|
this by minimizing a new variable l and constraining the load of every
|
||||||
|
node to be less than l. Using the example above, we have
|
||||||
|
|
||||||
|
min l subject to
|
||||||
|
fr * r0 * rcap(a) + fw * (w0 + w1) * wcap(a) <= l
|
||||||
|
fr * r0 * rcap(b) + fw * (w2 + w3) * wcap(b) <= l
|
||||||
|
fr * r1 * rcap(c) + fw * (w0 + w2) * wcap(c) <= l
|
||||||
|
fr * r1 * rcap(d) + fw * (w1 + w3) * wcap(d) <= l
|
||||||
|
|
||||||
|
To compute the load of a strategy with respect to a distribution of
|
||||||
|
read_fractions, we compute the load for every value of fr and weight
|
||||||
|
according to the distribution. For example, imagine fr is 0.9 80% of
|
||||||
|
the time and 0.5 20% of the time. We have:
|
||||||
|
|
||||||
|
min 0.8 * l0.9 + 0.2 * l0.5
|
||||||
|
0.9 * r0 * rcap(a) + 0.1 * (w0 + w1) * wcap(a) <= l0.9
|
||||||
|
0.9 * r0 * rcap(b) + 0.1 * (w2 + w3) * wcap(b) <= l0.9
|
||||||
|
0.9 * r1 * rcap(c) + 0.1 * (w0 + w2) * wcap(c) <= l0.9
|
||||||
|
0.9 * r1 * rcap(d) + 0.1 * (w1 + w3) * wcap(d) <= l0.9
|
||||||
|
0.5 * r0 * rcap(a) + 0.5 * (w0 + w1) * wcap(a) <= l0.5
|
||||||
|
0.5 * r0 * rcap(b) + 0.5 * (w2 + w3) * wcap(b) <= l0.5
|
||||||
|
0.5 * r1 * rcap(c) + 0.5 * (w0 + w2) * wcap(c) <= l0.5
|
||||||
|
0.5 * r1 * rcap(d) + 0.5 * (w1 + w3) * wcap(d) <= l0.5
|
||||||
|
|
||||||
|
Let the expression for load be LOAD.
|
||||||
|
|
||||||
|
Network
|
||||||
|
=======
|
||||||
|
The network load of a strategy is the expected size of a quorum. For a
|
||||||
|
fixed fr, We can compute the network load as:
|
||||||
|
|
||||||
|
fr * sum_i(size(read quorum i) * ri) +
|
||||||
|
fw * sum_i(size(write quorum i) * ri)
|
||||||
|
|
||||||
|
Using the example above:
|
||||||
|
|
||||||
|
fr * (2*r0 + 2*r1) + fw * (2*w0 + 2*w1 + 2*w2 + 2*w3)
|
||||||
|
|
||||||
|
For a distribution of read fractions, we compute the weighted average.
|
||||||
|
Let the expression for network load be NETWORK.
|
||||||
|
|
||||||
|
Latency
|
||||||
|
=======
|
||||||
|
The latency of a strategy is the expected latency of a quorum. We can
|
||||||
|
compute the latency as:
|
||||||
|
|
||||||
|
fr * sum_i(latency(read quorum i) * ri) +
|
||||||
|
fw * sum_i(latency(write quorum i) * ri)
|
||||||
|
|
||||||
|
Using the example above (assuming every node has a latency of 1):
|
||||||
|
|
||||||
|
fr * (1*r0 + 1*r1) + fw * (1*w0 + 1*w1 + 1*w2 + 1*w3)
|
||||||
|
|
||||||
|
For a distribution of read fractions, we compute the weighted average.
|
||||||
|
Let the expression for latency be LATENCY.
|
||||||
|
|
||||||
|
Linear Program
|
||||||
|
==============
|
||||||
|
To find an optimal strategy, we use a linear program. The objective
|
||||||
|
specified by the user is minimized, and any provided constraints are
|
||||||
|
added as constraints to the program. For example, imagine the user
|
||||||
|
wants a load optimal strategy with network load <= 2 and latency <= 3.
|
||||||
|
We form the program:
|
||||||
|
|
||||||
|
min LOAD subject to
|
||||||
|
sum_i(ri) = 1 # ensure we have a valid distribution on read quorums
|
||||||
|
sum_i(wi) = 1 # ensure we have a valid distribution on write quorums
|
||||||
|
NETWORK <= 2
|
||||||
|
LATENCY <= 3
|
||||||
|
|
||||||
|
Using the example above assuming a fixed fr, we have:
|
||||||
|
|
||||||
|
min l subject to
|
||||||
|
fr * r0 * rcap(a) + fw * (w0 + w1) * wcap(a) <= l
|
||||||
|
fr * r0 * rcap(b) + fw * (w2 + w3) * wcap(b) <= l
|
||||||
|
fr * r1 * rcap(c) + fw * (w0 + w2) * wcap(c) <= l
|
||||||
|
fr * r1 * rcap(d) + fw * (w1 + w3) * wcap(d) <= l
|
||||||
|
fr * (2*r0 + 2*r1) + fw * (2*w0 + 2*w1 + 2*w2 + 2*w3) <= 2
|
||||||
|
fr * (1*r0 + 1*r1) + fw * (1*w0 + 1*w1 + 1*w2 + 1*w3) <= 3
|
||||||
|
|
||||||
|
If we instead wanted to minimize network load with load <= 4 and
|
||||||
|
latency <= 5, we would have the following program:
|
||||||
|
|
||||||
|
min fr * (2*r0 + 2*r1) +
|
||||||
|
fw * (2*w0 + 2*w1 + 2*w2 + 2*w3) subject to
|
||||||
|
fr * r0 * rcap(a) + fw * (w0 + w1) * wcap(a) <= 4
|
||||||
|
fr * r0 * rcap(b) + fw * (w2 + w3) * wcap(b) <= 4
|
||||||
|
fr * r1 * rcap(c) + fw * (w0 + w2) * wcap(c) <= 4
|
||||||
|
fr * r1 * rcap(d) + fw * (w1 + w3) * wcap(d) <= 4
|
||||||
|
fr * (1*r0 + 1*r1) + fw * (1*w0 + 1*w1 + 1*w2 + 1*w3) <= 5
|
||||||
"""
|
"""
|
||||||
nodes = self.nodes()
|
|
||||||
x_to_node = {node.x: node for node in nodes}
|
|
||||||
read_capacity = {node.x: node.read_capacity for node in nodes}
|
|
||||||
write_capacity = {node.x: node.write_capacity for node in nodes}
|
|
||||||
|
|
||||||
# Create a variable for every read quorum and every write quorum. While
|
# Create a variable for every read quorum and every write quorum. While
|
||||||
# we do this, map each element x to the read and write quorums that
|
# we do this, map each element x to the read and write quorums that
|
||||||
# it's in. For example, image we have the following read and write
|
# it's in. For example, image we have the following read and write
|
||||||
|
@ -285,46 +459,46 @@ class QuorumSystem(Generic[T]):
|
||||||
for x in write_quorum:
|
for x in write_quorum:
|
||||||
x_to_write_quorum_vars[x].append(v)
|
x_to_write_quorum_vars[x].append(v)
|
||||||
|
|
||||||
fr = sum(weight * f for (f, weight) in read_fraction.items())
|
fr = sum(p * fr for (fr, p) in read_fraction.items())
|
||||||
|
|
||||||
def network() -> pulp.LpAffineExpression:
|
def network() -> pulp.LpAffineExpression:
|
||||||
read_network = fr * sum(
|
reads = fr * sum(
|
||||||
v * len(rq)
|
v * len(rq)
|
||||||
for (rq, v) in zip(read_quorums, read_quorum_vars)
|
for (rq, v) in zip(read_quorums, read_quorum_vars)
|
||||||
)
|
)
|
||||||
write_network = (1 - fr) * sum(
|
writes = (1 - fr) * sum(
|
||||||
v * len(wq)
|
v * len(wq)
|
||||||
for (wq, v) in zip(write_quorums, write_quorum_vars)
|
for (wq, v) in zip(write_quorums, write_quorum_vars)
|
||||||
)
|
)
|
||||||
return read_network + write_network
|
return reads + writes
|
||||||
|
|
||||||
def latency() -> pulp.LpAffineExpression:
|
def latency() -> pulp.LpAffineExpression:
|
||||||
read_latency = fr * sum(
|
reads = fr * sum(
|
||||||
v * self._read_quorum_latency(quorum).total_seconds()
|
v * self._read_quorum_latency(quorum).total_seconds()
|
||||||
for (rq, v) in zip(read_quorums, read_quorum_vars)
|
for (rq, v) in zip(read_quorums, read_quorum_vars)
|
||||||
for quorum in [{x_to_node[x] for x in rq}]
|
for quorum in [{self.node(x) for x in rq}]
|
||||||
)
|
)
|
||||||
write_latency = (1. - fr) * sum(
|
writes = (1 - fr) * sum(
|
||||||
v * self._write_quorum_latency(quorum).total_seconds()
|
v * self._write_quorum_latency(quorum).total_seconds()
|
||||||
for (wq, v) in zip(write_quorums, write_quorum_vars)
|
for (wq, v) in zip(write_quorums, write_quorum_vars)
|
||||||
for quorum in [{x_to_node[x] for x in wq}]
|
for quorum in [{self.node(x) for x in wq}]
|
||||||
)
|
)
|
||||||
return read_latency + write_latency
|
return reads + writes
|
||||||
|
|
||||||
def fr_load(problem: pulp.LpProblem, fr: float) -> pulp.LpAffineExpression:
|
def fr_load(problem: pulp.LpProblem, fr: float) -> pulp.LpAffineExpression:
|
||||||
l = pulp.LpVariable(f'l_{fr}', 0, 1)
|
l = pulp.LpVariable(f'l_{fr}', 0, 1)
|
||||||
|
|
||||||
for node in nodes:
|
for node in self.nodes():
|
||||||
x = node.x
|
x = node.x
|
||||||
x_load: pulp.LpAffineExpression = 0
|
x_load: pulp.LpAffineExpression = 0
|
||||||
|
|
||||||
if x in x_to_read_quorum_vars:
|
if x in x_to_read_quorum_vars:
|
||||||
vs = x_to_read_quorum_vars[x]
|
vs = x_to_read_quorum_vars[x]
|
||||||
x_load += fr * sum(vs) / read_capacity[x]
|
x_load += fr * sum(vs) / self.node(x).read_capacity
|
||||||
|
|
||||||
if x in x_to_write_quorum_vars:
|
if x in x_to_write_quorum_vars:
|
||||||
vs = x_to_write_quorum_vars[x]
|
vs = x_to_write_quorum_vars[x]
|
||||||
x_load += (1 - fr) * sum(vs) / write_capacity[x]
|
x_load += (1 - fr) * sum(vs) / self.node(x).write_capacity
|
||||||
|
|
||||||
problem += (x_load <= l, f'{x}{fr}')
|
problem += (x_load <= l, f'{x}{fr}')
|
||||||
|
|
||||||
|
@ -332,11 +506,11 @@ class QuorumSystem(Generic[T]):
|
||||||
|
|
||||||
def load(problem: pulp.LpProblem,
|
def load(problem: pulp.LpProblem,
|
||||||
read_fraction: Dict[float, float]) -> pulp.LpAffineExpression:
|
read_fraction: Dict[float, float]) -> pulp.LpAffineExpression:
|
||||||
return sum(weight * fr_load(problem, fr)
|
return sum(p * fr_load(problem, fr)
|
||||||
for (fr, weight) in read_fraction.items())
|
for (fr, p) in read_fraction.items())
|
||||||
|
|
||||||
# Form the linear program to find the load.
|
# Form the linear program.
|
||||||
problem = pulp.LpProblem("load", pulp.LpMinimize)
|
problem = pulp.LpProblem("optimal_strategy", pulp.LpMinimize)
|
||||||
|
|
||||||
# We add these constraints to make sure that the probabilities we
|
# We add these constraints to make sure that the probabilities we
|
||||||
# select form valid probabilty distributions.
|
# select form valid probabilty distributions.
|
||||||
|
@ -365,152 +539,147 @@ class QuorumSystem(Generic[T]):
|
||||||
'latency limit')
|
'latency limit')
|
||||||
|
|
||||||
# Solve the linear program.
|
# Solve the linear program.
|
||||||
print(problem)
|
|
||||||
problem.solve(pulp.apis.PULP_CBC_CMD(msg=False))
|
problem.solve(pulp.apis.PULP_CBC_CMD(msg=False))
|
||||||
if problem.status != pulp.LpStatusOptimal:
|
if problem.status != pulp.LpStatusOptimal:
|
||||||
raise ValueError('no strategy satisfies the given constraints')
|
raise ValueError('no strategy satisfies the given constraints')
|
||||||
|
|
||||||
# Prune out any quorums with 0 probability.
|
# Prune out any quorums with 0 probability.
|
||||||
non_zero_read_quorums = [
|
sigma_r = {
|
||||||
(rq, v.varValue)
|
frozenset(rq): v.varValue
|
||||||
for (rq, v) in zip(read_quorums, read_quorum_vars)
|
for (rq, v) in zip(read_quorums, read_quorum_vars)
|
||||||
if v.varValue != 0]
|
if v.varValue != 0
|
||||||
non_zero_write_quorums = [
|
}
|
||||||
(wq, v.varValue)
|
sigma_w = {
|
||||||
|
frozenset(wq): v.varValue
|
||||||
for (wq, v) in zip(write_quorums, write_quorum_vars)
|
for (wq, v) in zip(write_quorums, write_quorum_vars)
|
||||||
if v.varValue != 0]
|
if v.varValue != 0
|
||||||
return Strategy(self,
|
}
|
||||||
[rq for (rq, _) in non_zero_read_quorums],
|
|
||||||
[weight for (_, weight) in non_zero_read_quorums],
|
return Strategy(self, sigma_r, sigma_w)
|
||||||
[wq for (wq, _) in non_zero_write_quorums],
|
|
||||||
[weight for (_, weight) in non_zero_write_quorums])
|
|
||||||
|
|
||||||
|
|
||||||
class Strategy(Generic[T]):
|
class Strategy(Generic[T]):
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
qs: QuorumSystem[T],
|
qs: QuorumSystem[T],
|
||||||
reads: List[Set[T]],
|
sigma_r: Dict[FrozenSet[T], float],
|
||||||
read_weights: List[float],
|
sigma_w: Dict[FrozenSet[T], float]) -> None:
|
||||||
writes: List[Set[T]],
|
|
||||||
write_weights: List[float]) -> None:
|
|
||||||
self.qs = qs
|
self.qs = qs
|
||||||
self.reads = reads
|
self.sigma_r = sigma_r
|
||||||
self.read_weights = read_weights
|
self.sigma_w = sigma_w
|
||||||
self.writes = writes
|
|
||||||
self.write_weights = write_weights
|
|
||||||
|
|
||||||
self.unweighted_read_load: Dict[T, float] = \
|
# The probability that x is chosen as part of a read quorum.
|
||||||
collections.defaultdict(float)
|
self.x_read_probability: Dict[T, float] = collections.defaultdict(float)
|
||||||
for (read_quorum, weight) in zip(self.reads, self.read_weights):
|
for (read_quorum, p) in self.sigma_r.items():
|
||||||
for x in read_quorum:
|
for x in read_quorum:
|
||||||
self.unweighted_read_load[x] += weight
|
self.x_read_probability[x] += p
|
||||||
|
|
||||||
self.unweighted_write_load: Dict[T, float] = \
|
# The probability that x is chosen as part of a write quorum.
|
||||||
collections.defaultdict(float)
|
self.x_write_probability: Dict[T, float] = collections.defaultdict(float)
|
||||||
for (write_quorum, weight) in zip(self.writes, self.write_weights):
|
for (write_quorum, weight) in self.sigma_w.items():
|
||||||
for x in write_quorum:
|
for x in write_quorum:
|
||||||
self.unweighted_write_load[x] += weight
|
self.x_write_probability[x] += weight
|
||||||
|
|
||||||
|
@no_type_check
|
||||||
def __str__(self) -> str:
|
def __str__(self) -> str:
|
||||||
non_zero_reads = {tuple(r): p
|
# T may not comparable, so mypy complains about this sort.
|
||||||
for (r, p) in zip(self.reads, self.read_weights)
|
reads = {tuple(sorted(rq)): p for (rq, p) in self.sigma_r.items()}
|
||||||
if p > 0}
|
writes = {tuple(sorted(wq)): p for (wq, p) in self.sigma_w.items()}
|
||||||
non_zero_writes = {tuple(w): p
|
return f'Strategy(reads={reads}, writes={writes})'
|
||||||
for (w, p) in zip(self.writes, self.write_weights)
|
|
||||||
if p > 0}
|
def quorum_system(self) -> QuorumSystem[T]:
|
||||||
return f'Strategy(reads={non_zero_reads}, writes={non_zero_writes})'
|
return self.qs
|
||||||
|
|
||||||
|
def node(self, x: T) -> Node[T]:
|
||||||
|
return self.qs.node(x)
|
||||||
|
|
||||||
|
def nodes(self) -> Set[Node[T]]:
|
||||||
|
return self.qs.nodes()
|
||||||
|
|
||||||
def get_read_quorum(self) -> Set[T]:
|
def get_read_quorum(self) -> Set[T]:
|
||||||
return np.random.choice(self.reads, p=self.read_weights)
|
return set(np.random.choice(list(self.sigma_r.keys()),
|
||||||
|
p=list(self.sigma_r.values())))
|
||||||
|
|
||||||
def get_write_quorum(self) -> Set[T]:
|
def get_write_quorum(self) -> Set[T]:
|
||||||
return np.random.choice(self.writes, p=self.write_weights)
|
return set(np.random.choice(list(self.sigma_w.keys()),
|
||||||
|
p=list(self.sigma_w.values())))
|
||||||
|
|
||||||
def load(self,
|
def load(self,
|
||||||
read_fraction: Optional[Distribution] = None,
|
read_fraction: Optional[Distribution] = None,
|
||||||
write_fraction: Optional[Distribution] = None) \
|
write_fraction: Optional[Distribution] = None) -> float:
|
||||||
-> float:
|
|
||||||
d = distribution.canonicalize_rw(read_fraction, write_fraction)
|
d = distribution.canonicalize_rw(read_fraction, write_fraction)
|
||||||
return sum(weight * self._load(fr)
|
return sum(p * self._load(fr) for (fr, p) in d.items())
|
||||||
for (fr, weight) in d.items())
|
|
||||||
|
|
||||||
# TODO(mwhittaker): Rename throughput.
|
|
||||||
def capacity(self,
|
def capacity(self,
|
||||||
read_fraction: Optional[Distribution] = None,
|
read_fraction: Optional[Distribution] = None,
|
||||||
write_fraction: Optional[Distribution] = None) \
|
write_fraction: Optional[Distribution] = None) -> float:
|
||||||
-> float:
|
|
||||||
return 1 / self.load(read_fraction, write_fraction)
|
return 1 / self.load(read_fraction, write_fraction)
|
||||||
|
|
||||||
def network_load(self,
|
def network_load(self,
|
||||||
read_fraction: Optional[Distribution] = None,
|
read_fraction: Optional[Distribution] = None,
|
||||||
write_fraction: Optional[Distribution] = None) -> float:
|
write_fraction: Optional[Distribution] = None) -> float:
|
||||||
d = distribution.canonicalize_rw(read_fraction, write_fraction)
|
d = distribution.canonicalize_rw(read_fraction, write_fraction)
|
||||||
fr = sum(weight * f for (f, weight) in d.items())
|
fr = sum(p * fr for (fr, p) in d.items())
|
||||||
read_network_load = fr * sum(
|
reads = fr * sum(p * len(rq) for (rq, p) in self.sigma_r.items())
|
||||||
len(rq) * p
|
writes = (1 - fr) * sum(p * len(wq) for (wq, p) in self.sigma_w.items())
|
||||||
for (rq, p) in zip(self.reads, self.read_weights)
|
return reads + writes
|
||||||
)
|
|
||||||
write_network_load = (1 - fr) * sum(
|
|
||||||
len(wq) * p
|
|
||||||
for (wq, p) in zip(self.writes, self.write_weights)
|
|
||||||
)
|
|
||||||
return read_network_load + write_network_load
|
|
||||||
|
|
||||||
|
# mypy doesn't like calling sum with timedeltas.
|
||||||
|
@no_type_check
|
||||||
def latency(self,
|
def latency(self,
|
||||||
read_fraction: Optional[Distribution] = None,
|
read_fraction: Optional[Distribution] = None,
|
||||||
write_fraction: Optional[Distribution] = None) \
|
write_fraction: Optional[Distribution] = None) \
|
||||||
-> datetime.timedelta:
|
-> datetime.timedelta:
|
||||||
d = distribution.canonicalize_rw(read_fraction, write_fraction)
|
d = distribution.canonicalize_rw(read_fraction, write_fraction)
|
||||||
fr = sum(weight * f for (f, weight) in d.items())
|
fr = sum(p * fr for (fr, p) in d.items())
|
||||||
|
|
||||||
read_latency = fr * sum((
|
reads = fr * sum((
|
||||||
self.qs._read_quorum_latency(quorum) * p # type: ignore
|
p * self.qs._read_quorum_latency({self.node(x) for x in rq})
|
||||||
for (rq, p) in zip(self.reads, self.read_weights)
|
for (rq, p) in self.sigma_r.items()
|
||||||
for quorum in [{self.qs.x_to_node[x] for x in rq}]
|
), datetime.timedelta(seconds=0))
|
||||||
), datetime.timedelta(seconds=0)) # type: ignore
|
|
||||||
write_latency = (1 - fr) * sum((
|
writes = (1 - fr) * sum((
|
||||||
self.qs._write_quorum_latency(quorum) * p # type: ignore
|
p * self.qs._write_quorum_latency({self.node(x) for x in wq})
|
||||||
for (wq, p) in zip(self.writes, self.write_weights)
|
for (wq, p) in self.sigma_w.items()
|
||||||
for quorum in [{self.qs.x_to_node[x] for x in wq}]
|
), datetime.timedelta(seconds=0))
|
||||||
), datetime.timedelta(seconds=0)) # type:ignore
|
|
||||||
return read_latency + write_latency # type: ignore
|
return reads + writes
|
||||||
|
|
||||||
def node_load(self,
|
def node_load(self,
|
||||||
node: Node[T],
|
node: Node[T],
|
||||||
read_fraction: Optional[Distribution] = None,
|
read_fraction: Optional[Distribution] = None,
|
||||||
write_fraction: Optional[Distribution] = None) \
|
write_fraction: Optional[Distribution] = None) -> float:
|
||||||
-> float:
|
|
||||||
d = distribution.canonicalize_rw(read_fraction, write_fraction)
|
d = distribution.canonicalize_rw(read_fraction, write_fraction)
|
||||||
return sum(weight * self._node_load(node.x, fr)
|
return sum(p * self._node_load(node, fr) for (fr, p) in d.items())
|
||||||
for (fr, weight) in d.items())
|
|
||||||
|
|
||||||
def node_utilization(self,
|
def node_utilization(self,
|
||||||
node: Node[T],
|
node: Node[T],
|
||||||
read_fraction: Optional[Distribution] = None,
|
read_fraction: Optional[Distribution] = None,
|
||||||
write_fraction: Optional[Distribution] = None) \
|
write_fraction: Optional[Distribution] = None) \
|
||||||
-> float:
|
-> float:
|
||||||
# TODO(mwhittaker): Implement.
|
d = distribution.canonicalize_rw(read_fraction, write_fraction)
|
||||||
return 0.0
|
return sum(p * self._node_utilization(node, fr)
|
||||||
|
for (fr, p) in d.items())
|
||||||
|
|
||||||
def node_throghput(self,
|
def node_throughput(self,
|
||||||
node: Node[T],
|
node: Node[T],
|
||||||
read_fraction: Optional[Distribution] = None,
|
read_fraction: Optional[Distribution] = None,
|
||||||
write_fraction: Optional[Distribution] = None) \
|
write_fraction: Optional[Distribution] = None) -> float:
|
||||||
-> float:
|
d = distribution.canonicalize_rw(read_fraction, write_fraction)
|
||||||
# TODO(mwhittaker): Implement.
|
return sum(p * self._node_throughput(node, fr) for (fr, p) in d.items())
|
||||||
return 0.0
|
|
||||||
|
|
||||||
def _node_load(self, x: T, fr: float) -> float:
|
|
||||||
"""
|
|
||||||
_node_load returns the load on x given a fixed read fraction fr.
|
|
||||||
"""
|
|
||||||
fw = 1 - fr
|
|
||||||
node = self.qs.x_to_node[x]
|
|
||||||
return (fr * self.unweighted_read_load[x] / node.read_capacity +
|
|
||||||
fw * self.unweighted_write_load[x] / node.write_capacity)
|
|
||||||
|
|
||||||
def _load(self, fr: float) -> float:
|
def _load(self, fr: float) -> float:
|
||||||
"""
|
return max(self._node_load(node, fr) for node in self.nodes())
|
||||||
_load returns the load given a fixed read fraction fr.
|
|
||||||
"""
|
def _node_load(self, node: Node[T], fr: float) -> float:
|
||||||
return max(self._node_load(node.x, fr) for node in self.qs.nodes())
|
fw = 1 - fr
|
||||||
|
return (fr * self.x_read_probability[node.x] / node.read_capacity +
|
||||||
|
fw * self.x_write_probability[node.x] / node.write_capacity)
|
||||||
|
|
||||||
|
def _node_utilization(self, node: Node[T], fr: float) -> float:
|
||||||
|
return self._node_load(node, fr) / self._load(fr)
|
||||||
|
|
||||||
|
def _node_throughput(self, node: Node[T], fr: float) -> float:
|
||||||
|
cap = 1 / self._load(fr)
|
||||||
|
fw = 1 - fr
|
||||||
|
return cap * (fr * self.x_read_probability[node.x] +
|
||||||
|
fw * self.x_write_probability[node.x])
|
||||||
|
|
|
@ -4,7 +4,7 @@ from .distribution import Distribution
|
||||||
from .expr import Node
|
from .expr import Node
|
||||||
from .geometry import Point, Segment
|
from .geometry import Point, Segment
|
||||||
from .quorum_system import Strategy
|
from .quorum_system import Strategy
|
||||||
from typing import Dict, List, Optional, Set, Tuple, TypeVar
|
from typing import Dict, FrozenSet, List, Optional, Set, Tuple, TypeVar
|
||||||
import collections
|
import collections
|
||||||
import matplotlib
|
import matplotlib
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
@ -107,19 +107,18 @@ def _plot_node_load_on(ax: plt.Axes,
|
||||||
x_index = {x: i for (i, x) in enumerate(x_list)}
|
x_index = {x: i for (i, x) in enumerate(x_list)}
|
||||||
x_ticks = list(range(len(x_list)))
|
x_ticks = list(range(len(x_list)))
|
||||||
|
|
||||||
def one_hot(quorum: Set[T]) -> np.array:
|
def one_hot(quorum: FrozenSet[T]) -> np.array:
|
||||||
bar_heights = np.zeros(len(x_list))
|
bar_heights = np.zeros(len(x_list))
|
||||||
for x in quorum:
|
for x in quorum:
|
||||||
bar_heights[x_index[x]] = 1
|
bar_heights[x_index[x]] = 1
|
||||||
return bar_heights
|
return bar_heights
|
||||||
|
|
||||||
def plot_quorums(quorums: List[Set[T]],
|
def plot_quorums(sigma: Dict[FrozenSet[T], float],
|
||||||
weights: List[float],
|
|
||||||
fraction: float,
|
fraction: float,
|
||||||
bottoms: np.array,
|
bottoms: np.array,
|
||||||
capacities: np.array,
|
capacities: np.array,
|
||||||
cmap: matplotlib.colors.Colormap):
|
cmap: matplotlib.colors.Colormap):
|
||||||
for (i, (quorum, weight)) in enumerate(zip(quorums, weights)):
|
for (i, (quorum, weight)) in enumerate(sigma.items()):
|
||||||
bar_heights = scale * fraction * weight * one_hot(quorum)
|
bar_heights = scale * fraction * weight * one_hot(quorum)
|
||||||
if scale_by_node_capacity:
|
if scale_by_node_capacity:
|
||||||
bar_heights /= capacities
|
bar_heights /= capacities
|
||||||
|
@ -127,7 +126,7 @@ def _plot_node_load_on(ax: plt.Axes,
|
||||||
ax.bar(x_ticks,
|
ax.bar(x_ticks,
|
||||||
bar_heights,
|
bar_heights,
|
||||||
bottom=bottoms,
|
bottom=bottoms,
|
||||||
color=cmap(0.75 - i * 0.5 / len(quorums)),
|
color=cmap(0.75 - i * 0.5 / len(sigma)),
|
||||||
edgecolor='white', width=0.8)
|
edgecolor='white', width=0.8)
|
||||||
|
|
||||||
for j, (bar_height, bottom) in enumerate(zip(bar_heights, bottoms)):
|
for j, (bar_height, bottom) in enumerate(zip(bar_heights, bottoms)):
|
||||||
|
@ -142,9 +141,9 @@ def _plot_node_load_on(ax: plt.Axes,
|
||||||
read_capacities = np.array([node.read_capacity for node in nodes])
|
read_capacities = np.array([node.read_capacity for node in nodes])
|
||||||
write_capacities = np.array([node.write_capacity for node in nodes])
|
write_capacities = np.array([node.write_capacity for node in nodes])
|
||||||
bottoms = np.zeros(len(x_list))
|
bottoms = np.zeros(len(x_list))
|
||||||
plot_quorums(sigma.reads, sigma.read_weights, fr, bottoms, read_capacities,
|
plot_quorums(sigma.sigma_r, fr, bottoms, read_capacities,
|
||||||
matplotlib.cm.get_cmap('Reds'))
|
matplotlib.cm.get_cmap('Reds'))
|
||||||
plot_quorums(sigma.writes, sigma.write_weights, fw, bottoms,
|
plot_quorums(sigma.sigma_w, fw, bottoms,
|
||||||
write_capacities, matplotlib.cm.get_cmap('Blues'))
|
write_capacities, matplotlib.cm.get_cmap('Blues'))
|
||||||
ax.set_xticks(x_ticks)
|
ax.set_xticks(x_ticks)
|
||||||
ax.set_xticklabels(str(x) for x in x_list)
|
ax.set_xticklabels(str(x) for x in x_list)
|
||||||
|
|
0
tests/__init__.py
Normal file
0
tests/__init__.py
Normal file
162
tests/test_geometry.py
Normal file
162
tests/test_geometry.py
Normal file
|
@ -0,0 +1,162 @@
|
||||||
|
from quorums import *
|
||||||
|
from quorums.geometry import *
|
||||||
|
from typing import Any, Callable, List, NamedTuple, Optional, Tuple
|
||||||
|
import unittest
|
||||||
|
|
||||||
|
|
||||||
|
class TestGeometry(unittest.TestCase):
|
||||||
|
def test_eq(self):
|
||||||
|
l = Point(0, 1)
|
||||||
|
r = Point(1, 1)
|
||||||
|
m = Point(0.5, 0.5)
|
||||||
|
self.assertEqual(Segment(l, r), Segment(l, r))
|
||||||
|
self.assertNotEqual(Segment(l, r), Segment(l, m))
|
||||||
|
|
||||||
|
def test_compatible(self):
|
||||||
|
s1 = Segment(Point(0, 1), Point(1, 2))
|
||||||
|
s2 = Segment(Point(0, 2), Point(1, 1))
|
||||||
|
s3 = Segment(Point(0.5, 2), Point(1, 1))
|
||||||
|
self.assertTrue(s1.compatible(s2))
|
||||||
|
self.assertTrue(s2.compatible(s1))
|
||||||
|
self.assertFalse(s1.compatible(s3))
|
||||||
|
self.assertFalse(s3.compatible(s1))
|
||||||
|
self.assertFalse(s2.compatible(s3))
|
||||||
|
self.assertFalse(s3.compatible(s2))
|
||||||
|
|
||||||
|
def test_call(self):
|
||||||
|
segment = Segment(Point(0, 0), Point(1, 1))
|
||||||
|
for x in [0.0, 0.25, 0.5, 0.75, 1.0]:
|
||||||
|
self.assertEqual(segment(x), x)
|
||||||
|
|
||||||
|
segment = Segment(Point(0, 0), Point(1, 2))
|
||||||
|
for x in [0.0, 0.25, 0.5, 0.75, 1.0]:
|
||||||
|
self.assertEqual(segment(x), 2*x)
|
||||||
|
|
||||||
|
segment = Segment(Point(1, 2), Point(3, 6))
|
||||||
|
for x in [1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]:
|
||||||
|
self.assertEqual(segment(x), 2*x)
|
||||||
|
|
||||||
|
segment = Segment(Point(0, 1), Point(1, 0))
|
||||||
|
for x in [0.0, 0.25, 0.5, 0.75, 1.0]:
|
||||||
|
self.assertEqual(segment(x), 1 - x)
|
||||||
|
|
||||||
|
def test_slope(self):
|
||||||
|
self.assertEqual(Segment(Point(0, 0), Point(1, 1)).slope(), 1.0)
|
||||||
|
self.assertEqual(Segment(Point(0, 1), Point(1, 2)).slope(), 1.0)
|
||||||
|
self.assertEqual(Segment(Point(1, 1), Point(2, 2)).slope(), 1.0)
|
||||||
|
self.assertEqual(Segment(Point(1, 1), Point(2, 3)).slope(), 2.0)
|
||||||
|
self.assertEqual(Segment(Point(1, 1), Point(2, 0)).slope(), -1.0)
|
||||||
|
|
||||||
|
def test_above(self):
|
||||||
|
s1 = Segment(Point(0, 0), Point(1, 0.5))
|
||||||
|
s2 = Segment(Point(0, 0.5), Point(1, 2))
|
||||||
|
s3 = Segment(Point(0, 1.5), Point(1, 0.5))
|
||||||
|
|
||||||
|
self.assertFalse(s1.above(s1))
|
||||||
|
self.assertFalse(s1.above(s2))
|
||||||
|
self.assertFalse(s1.above(s3))
|
||||||
|
|
||||||
|
self.assertTrue(s2.above(s1))
|
||||||
|
self.assertFalse(s2.above(s2))
|
||||||
|
self.assertFalse(s2.above(s3))
|
||||||
|
|
||||||
|
self.assertTrue(s3.above(s1))
|
||||||
|
self.assertFalse(s3.above(s2))
|
||||||
|
self.assertFalse(s3.above(s3))
|
||||||
|
|
||||||
|
def test_above_eq(self):
|
||||||
|
s1 = Segment(Point(0, 0), Point(1, 0.5))
|
||||||
|
s2 = Segment(Point(0, 0.5), Point(1, 2))
|
||||||
|
s3 = Segment(Point(0, 1.5), Point(1, 0.5))
|
||||||
|
|
||||||
|
self.assertTrue(s1.above_eq(s1))
|
||||||
|
self.assertFalse(s1.above_eq(s2))
|
||||||
|
self.assertFalse(s1.above_eq(s3))
|
||||||
|
|
||||||
|
self.assertTrue(s2.above_eq(s1))
|
||||||
|
self.assertTrue(s2.above_eq(s2))
|
||||||
|
self.assertFalse(s2.above_eq(s3))
|
||||||
|
|
||||||
|
self.assertTrue(s3.above_eq(s1))
|
||||||
|
self.assertFalse(s3.above_eq(s2))
|
||||||
|
self.assertTrue(s3.above_eq(s3))
|
||||||
|
|
||||||
|
def test_intersects(self):
|
||||||
|
s1 = Segment(Point(0, 0), Point(1, 0.5))
|
||||||
|
s2 = Segment(Point(0, 0.5), Point(1, 2))
|
||||||
|
s3 = Segment(Point(0, 1.5), Point(1, 0.5))
|
||||||
|
|
||||||
|
self.assertTrue(s1.intersects(s1))
|
||||||
|
self.assertFalse(s1.intersects(s2))
|
||||||
|
self.assertTrue(s1.intersects(s3))
|
||||||
|
|
||||||
|
self.assertFalse(s2.intersects(s1))
|
||||||
|
self.assertTrue(s2.intersects(s2))
|
||||||
|
self.assertTrue(s2.intersects(s3))
|
||||||
|
|
||||||
|
self.assertTrue(s3.intersects(s1))
|
||||||
|
self.assertTrue(s3.intersects(s2))
|
||||||
|
self.assertTrue(s3.intersects(s3))
|
||||||
|
|
||||||
|
def test_intersection(self):
|
||||||
|
s1 = Segment(Point(0, 0), Point(1, 1))
|
||||||
|
s2 = Segment(Point(0, 1), Point(1, 0))
|
||||||
|
s3 = Segment(Point(0, 1), Point(1, 1))
|
||||||
|
s4 = Segment(Point(0, 0.25), Point(1, 0.25))
|
||||||
|
|
||||||
|
self.assertEqual(s1.intersection(s1), None)
|
||||||
|
self.assertEqual(s1.intersection(s2), Point(0.5, 0.5))
|
||||||
|
self.assertEqual(s1.intersection(s3), Point(1, 1))
|
||||||
|
self.assertEqual(s1.intersection(s4), Point(0.25, 0.25))
|
||||||
|
|
||||||
|
self.assertEqual(s2.intersection(s1), Point(0.5, 0.5))
|
||||||
|
self.assertEqual(s2.intersection(s2), None)
|
||||||
|
self.assertEqual(s2.intersection(s3), Point(0, 1))
|
||||||
|
self.assertEqual(s2.intersection(s4), Point(0.75, 0.25))
|
||||||
|
|
||||||
|
self.assertEqual(s3.intersection(s1), Point(1, 1))
|
||||||
|
self.assertEqual(s3.intersection(s2), Point(0, 1))
|
||||||
|
self.assertEqual(s3.intersection(s3), None)
|
||||||
|
self.assertEqual(s3.intersection(s4), None)
|
||||||
|
|
||||||
|
self.assertEqual(s4.intersection(s1), Point(0.25, 0.25))
|
||||||
|
self.assertEqual(s4.intersection(s2), Point(0.75, 0.25))
|
||||||
|
self.assertEqual(s4.intersection(s3), None)
|
||||||
|
self.assertEqual(s4.intersection(s4), None)
|
||||||
|
|
||||||
|
def test_max_one_segment(self):
|
||||||
|
s1 = Segment(Point(0, 0), Point(1, 1))
|
||||||
|
s2 = Segment(Point(0, 1), Point(1, 0))
|
||||||
|
s3 = Segment(Point(0, 1), Point(1, 1))
|
||||||
|
s4 = Segment(Point(0, 0.25), Point(1, 0.25))
|
||||||
|
s5 = Segment(Point(0, 0.75), Point(1, 0.75))
|
||||||
|
|
||||||
|
def is_subset(xs: List[Any], ys: List[Any]) -> bool:
|
||||||
|
return all(x in ys for x in xs)
|
||||||
|
|
||||||
|
for s in [s1, s2, s3, s4, s5]:
|
||||||
|
self.assertEqual(max_of_segments([s]), [s.l, s.r])
|
||||||
|
|
||||||
|
expected = [
|
||||||
|
([s1, s1], [(0, 0), (1, 1)]),
|
||||||
|
([s1, s2], [(0, 1), (0.5, 0.5), (1, 1)]),
|
||||||
|
([s1, s3], [(0, 1), (1, 1)]),
|
||||||
|
([s1, s4], [(0, 0.25), (0.25, 0.25), (1, 1)]),
|
||||||
|
([s1, s5], [(0, 0.75), (0.75, 0.75), (1, 1)]),
|
||||||
|
([s2, s2], [(0, 1), (1, 0)]),
|
||||||
|
([s2, s3], [(0, 1), (1, 1)]),
|
||||||
|
([s2, s4], [(0, 1), (0.75, 0.25), (1, 0.25)]),
|
||||||
|
([s2, s5], [(0, 1), (0.25, 0.75), (1, 0.75)]),
|
||||||
|
([s3, s3], [(0, 1), (1, 1)]),
|
||||||
|
([s3, s4], [(0, 1), (1, 1)]),
|
||||||
|
([s3, s5], [(0, 1), (1, 1)]),
|
||||||
|
([s4, s4], [(0, 0.25), (1, 0.25)]),
|
||||||
|
([s4, s5], [(0, 0.75), (1, 0.75)]),
|
||||||
|
([s5, s5], [(0, 0.75), (1, 0.75)]),
|
||||||
|
|
||||||
|
([s1, s2, s4], [(0, 1), (0.5, 0.5), (1, 1)]),
|
||||||
|
([s1, s2, s5], [(0, 1), (0.25, 0.75), (0.75, 0.75), (1, 1)]),
|
||||||
|
]
|
||||||
|
for segments, path in expected:
|
||||||
|
self.assertTrue(is_subset(path, max_of_segments(segments)))
|
||||||
|
self.assertTrue(is_subset(path, max_of_segments(segments[::-1])))
|
Loading…
Reference in a new issue