from . import distribution from . import geometry from .distribution import Distribution from .expr import Node from .geometry import Point, Segment from typing import Dict, Generic, List, Optional, Set, Tuple, TypeVar import collections import itertools import numpy as np T = TypeVar('T') class Strategy(Generic[T]): def __init__(self, nodes: Set[Node[T]], reads: List[Set[T]], read_weights: List[float], writes: List[Set[T]], write_weights: List[float]) -> None: self.nodes = nodes self.read_capacity = {node.x: node.read_capacity for node in nodes} self.write_capacity = {node.x: node.write_capacity for node in nodes} self.reads = reads self.read_weights = read_weights self.writes = writes self.write_weights = write_weights self.unweighted_read_load: Dict[T, float] = \ collections.defaultdict(float) for (read_quorum, weight) in zip(self.reads, self.read_weights): for x in read_quorum: self.unweighted_read_load[x] += weight self.unweighted_write_load: Dict[T, float] = \ collections.defaultdict(float) for (write_quorum, weight) in zip(self.writes, self.write_weights): for x in write_quorum: self.unweighted_write_load[x] += weight def __str__(self) -> str: non_zero_reads = {tuple(r): p for (r, p) in zip(self.reads, self.read_weights) if p > 0} non_zero_writes = {tuple(w): p for (w, p) in zip(self.writes, self.write_weights) if p > 0} return f'Strategy(reads={non_zero_reads}, writes={non_zero_writes})' def __repr__(self) -> str: return (f'Strategy(nodes={self.nodes}, '+ f'reads={self.reads}, ' + f'read_weights={self.read_weights},' + f'writes={self.writes}, ' + f'write_weights={self.write_weights})') def get_read_quorum(self) -> Set[T]: return np.random.choice(self.reads, p=self.read_weights) def get_write_quorum(self) -> Set[T]: return np.random.choice(self.writes, p=self.write_weights) def load(self, read_fraction: Optional[Distribution] = None, write_fraction: Optional[Distribution] = None) \ -> float: d = distribution.canonicalize_rw(read_fraction, write_fraction) return sum(weight * self._load(fr) for (fr, weight) in d.items()) # TODO(mwhittaker): Rename throughput. def capacity(self, read_fraction: Optional[Distribution] = None, write_fraction: Optional[Distribution] = None) \ -> float: return 1 / self.load(read_fraction, write_fraction) def network_load(self, read_fraction: Optional[Distribution] = None, write_fraction: Optional[Distribution] = None) -> float: d = distribution.canonicalize_rw(read_fraction, write_fraction) fr = sum(weight * f for (f, weight) in d.items()) read_network_load = fr * sum( len(rq) * p for (rq, p) in zip(self.reads, self.read_weights) ) write_network_load = (1 - fr) * sum( len(wq) * p for (wq, p) in zip(self.writes, self.write_weights) ) return read_network_load + write_network_load def latency(self, read_fraction: Optional[Distribution] = None, write_fraction: Optional[Distribution] = None) -> float: # TODO(mwhittaker): Implement. return 0 def node_load(self, node: Node[T], read_fraction: Optional[Distribution] = None, write_fraction: Optional[Distribution] = None) \ -> float: d = distribution.canonicalize_rw(read_fraction, write_fraction) return sum(weight * self._node_load(node.x, fr) for (fr, weight) in d.items()) def node_utilization(self, node: Node[T], read_fraction: Optional[Distribution] = None, write_fraction: Optional[Distribution] = None) \ -> float: # TODO(mwhittaker): Implement. return 0.0 def node_throghput(self, node: Node[T], read_fraction: Optional[Distribution] = None, write_fraction: Optional[Distribution] = None) \ -> float: # TODO(mwhittaker): Implement. return 0.0 def _node_load(self, x: T, fr: float) -> float: """ _node_load returns the load on x given a fixed read fraction fr. """ fw = 1 - fr return (fr * self.unweighted_read_load[x] / self.read_capacity[x] + fw * self.unweighted_write_load[x] / self.write_capacity[x]) def _load(self, fr: float) -> float: """ _load returns the load given a fixed read fraction fr. """ return max(self._node_load(node.x, fr) for node in self.nodes)