208 lines
5.7 KiB
Python
208 lines
5.7 KiB
Python
from typing import Iterator, Generic, List, Optional, Set, TypeVar
|
|
import itertools
|
|
|
|
|
|
T = TypeVar('T')
|
|
|
|
|
|
class Expr(Generic[T]):
|
|
def quorums(self) -> Iterator[Set[T]]:
|
|
raise NotImplementedError
|
|
|
|
def is_quorum(self, xs: Set[T]) -> bool:
|
|
raise NotImplementedError
|
|
|
|
def dual(self) -> 'Expr[T]':
|
|
raise NotImplementedError
|
|
|
|
def __add__(self, rhs: 'Expr[T]') -> 'Expr[T]':
|
|
return _or(self, rhs)
|
|
|
|
def __mul__(self, rhs: 'Expr[T]') -> 'Expr[T]':
|
|
return _and(self, rhs)
|
|
|
|
|
|
class Node(Expr[T]):
|
|
def __init__(self, x: T) -> None:
|
|
self.x = x
|
|
|
|
def __str__(self) -> str:
|
|
return str(self.x)
|
|
|
|
def __repr__(self) -> str:
|
|
return f'Node({self.x})'
|
|
|
|
def quorums(self) -> Iterator[Set[T]]:
|
|
yield {self.x}
|
|
|
|
def is_quorum(self, xs: Set[T]) -> bool:
|
|
return self.x in xs
|
|
|
|
def dual(self) -> Expr:
|
|
return self
|
|
|
|
|
|
class Or(Expr[T]):
|
|
def __init__(self, es: List[Expr[T]]) -> None:
|
|
if len(es) == 0:
|
|
raise ValueError(f'Or cannot be constructed with an empty list')
|
|
|
|
self.es = es
|
|
|
|
def __str__(self) -> str:
|
|
return '(' + ' + '.join(str(e) for e in self.es) + ')'
|
|
|
|
def __repr__(self) -> str:
|
|
return f'Or({self.es})'
|
|
|
|
def quorums(self) -> Iterator[Set[T]]:
|
|
for e in self.es:
|
|
yield from e.quorums()
|
|
|
|
def is_quorum(self, xs: Set[T]) -> bool:
|
|
return any(e.is_quorum(xs) for e in self.es)
|
|
|
|
def dual(self) -> Expr:
|
|
return And([e.dual() for e in self.es])
|
|
|
|
|
|
class And(Expr[T]):
|
|
def __init__(self, es: List[Expr[T]]) -> None:
|
|
if len(es) == 0:
|
|
raise ValueError(f'And cannot be constructed with an empty list')
|
|
|
|
self.es = es
|
|
|
|
def __str__(self) -> str:
|
|
return '(' + ' * '.join(str(e) for e in self.es) + ')'
|
|
|
|
def __repr__(self) -> str:
|
|
return f'And({self.es})'
|
|
|
|
def quorums(self) -> Iterator[Set[T]]:
|
|
for subquorums in itertools.product(*[e.quorums() for e in self.es]):
|
|
yield set.union(*subquorums)
|
|
|
|
def is_quorum(self, xs: Set[T]) -> bool:
|
|
return all(e.is_quorum(xs) for e in self.es)
|
|
|
|
def dual(self) -> Expr:
|
|
return Or([e.dual() for e in self.es])
|
|
|
|
|
|
class Choose(Expr[T]):
|
|
def __init__(self, k: int, es: List[Expr[T]]) -> None:
|
|
if k <= 0 or k > len(es):
|
|
raise ValueError(f'k must be in the range [1, {len(es)}]')
|
|
|
|
self.k = k
|
|
self.es = es
|
|
|
|
def __str__(self) -> str:
|
|
return f'choose{self.k}(' + ', '.join(str(e) for e in self.es) + ')'
|
|
|
|
def __repr__(self) -> str:
|
|
return f'Chose({self.k}, {self.es})'
|
|
|
|
def quorums(self) -> Iterator[Set[T]]:
|
|
for combo in itertools.combinations(self.es, self.k):
|
|
for subquorums in itertools.product(*[e.quorums() for e in combo]):
|
|
yield set.union(*subquorums)
|
|
|
|
def is_quorum(self, xs: Set[T]) -> bool:
|
|
return sum(1 if e.is_quorum(xs) else 0 for e in self.es) >= self.k
|
|
|
|
def dual(self) -> Expr:
|
|
# TODO(mwhittaker): Prove that this is in fact the dual.
|
|
return Choose(len(self.es) - self.k + 1, [e.dual() for e in self.es])
|
|
|
|
|
|
def _and(lhs: Expr[T], rhs: Expr[T]) -> 'And[T]':
|
|
if isinstance(lhs, And) and isinstance(rhs, And):
|
|
return And(lhs.es + rhs.es)
|
|
elif isinstance(lhs, And):
|
|
return And(lhs.es + [rhs])
|
|
elif isinstance(rhs, And):
|
|
return And([lhs] + rhs.es)
|
|
else:
|
|
return And([lhs, rhs])
|
|
|
|
|
|
def _or(lhs: Expr[T], rhs: Expr[T]) -> 'Or[T]':
|
|
if isinstance(lhs, Or) and isinstance(rhs, Or):
|
|
return Or(lhs.es + rhs.es)
|
|
elif isinstance(lhs, Or):
|
|
return Or(lhs.es + [rhs])
|
|
elif isinstance(rhs, Or):
|
|
return Or([lhs] + rhs.es)
|
|
else:
|
|
return Or([lhs, rhs])
|
|
|
|
|
|
def choose(k: int, es: List[Expr[T]]) -> Choose[T]:
|
|
return Choose(k, es)
|
|
|
|
|
|
def majority(es: List[Expr[T]]) -> Choose[T]:
|
|
return Choose(len(es) // 2 + 1, es)
|
|
|
|
|
|
class QuorumSystem:
|
|
def __init__(self, reads: Optional[Expr[T]] = None,
|
|
writes: Optional[Expr[T]] = None) -> None:
|
|
if reads is not None and writes is not None:
|
|
# TODO(mwhittaker): Think of ways to make this more efficient.
|
|
assert all(len(r & w) > 0
|
|
for (r, w) in itertools.product(reads.quorums(),
|
|
writes.quorums()))
|
|
self.reads = reads
|
|
self.writes = writes
|
|
elif reads is not None and writes is None:
|
|
self.reads = reads
|
|
self.writes = reads.dual()
|
|
elif reads is None and writes is not None:
|
|
self.reads = writes.dual()
|
|
self.writes = writes
|
|
else:
|
|
raise ValueError('A QuorumSystem must be instantiated with a set '
|
|
'of read quorums or a set of write quorums')
|
|
|
|
def __repr__(self) -> str:
|
|
return f'QuorumSystem(reads={self.reads}, writes={self.writes})'
|
|
|
|
def read_quorums(self) -> Iterator[Set[T]]:
|
|
return self.reads.quorums()
|
|
|
|
def write_quorums(self) -> Iterator[Set[T]]:
|
|
return self.writes.quorums()
|
|
|
|
def is_read_quorum(self, xs: Set[T]) -> bool:
|
|
return self.reads.is_quorum(xs)
|
|
|
|
def is_write_quorum(self, xs: Set[T]) -> bool:
|
|
return self.writes.is_quorum(xs)
|
|
|
|
|
|
a = Node('a')
|
|
b = Node('b')
|
|
c = Node('c')
|
|
d = Node('d')
|
|
e = Node('e')
|
|
f = Node('g')
|
|
g = Node('g')
|
|
h = Node('h')
|
|
i = Node('i')
|
|
|
|
disjunction = a + b + c
|
|
conjunction = disjunction * disjunction * disjunction
|
|
print(conjunction)
|
|
print(conjunction.dual())
|
|
print(conjunction.dual().dual())
|
|
print(QuorumSystem(reads=conjunction))
|
|
|
|
|
|
# - num_quorums
|
|
# - has dups?
|
|
# - optimal schedule
|
|
# - independent schedule
|
|
# - node read and write throughputs
|