cf520371d9
Still need to add capacity plots.
308 lines
12 KiB
Python
308 lines
12 KiB
Python
from . import distribution
|
|
from . import geometry
|
|
from .distribution import Distribution
|
|
from .expr import Node
|
|
from .geometry import Point, Segment
|
|
from typing import Dict, Generic, List, Optional, Set, Tuple, TypeVar
|
|
import collections
|
|
import itertools
|
|
import math
|
|
import matplotlib
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
|
|
T = TypeVar('T')
|
|
|
|
|
|
class Strategy(Generic[T]):
|
|
def __init__(self,
|
|
nodes: Set[Node[T]],
|
|
reads: List[Set[T]],
|
|
read_weights: List[float],
|
|
writes: List[Set[T]],
|
|
write_weights: List[float]) -> None:
|
|
self.nodes = nodes
|
|
self.read_capacity = {node.x: node.read_capacity for node in nodes}
|
|
self.write_capacity = {node.x: node.write_capacity for node in nodes}
|
|
self.reads = reads
|
|
self.read_weights = read_weights
|
|
self.writes = writes
|
|
self.write_weights = write_weights
|
|
|
|
self.unweighted_read_load: Dict[T, float] = \
|
|
collections.defaultdict(float)
|
|
for (read_quorum, weight) in zip(self.reads, self.read_weights):
|
|
for x in read_quorum:
|
|
self.unweighted_read_load[x] += weight
|
|
|
|
self.unweighted_write_load: Dict[T, float] = \
|
|
collections.defaultdict(float)
|
|
for (write_quorum, weight) in zip(self.writes, self.write_weights):
|
|
for x in write_quorum:
|
|
self.unweighted_write_load[x] += weight
|
|
|
|
def __str__(self) -> str:
|
|
non_zero_reads = {tuple(r): p
|
|
for (r, p) in zip(self.reads, self.read_weights)
|
|
if p > 0}
|
|
non_zero_writes = {tuple(w): p
|
|
for (w, p) in zip(self.writes, self.write_weights)
|
|
if p > 0}
|
|
return f'Strategy(reads={non_zero_reads}, writes={non_zero_writes})'
|
|
|
|
def __repr__(self) -> str:
|
|
return (f'Strategy(nodes={self.nodes}, '+
|
|
f'reads={self.reads}, ' +
|
|
f'read_weights={self.read_weights},' +
|
|
f'writes={self.writes}, ' +
|
|
f'write_weights={self.write_weights})')
|
|
|
|
def get_read_quorum(self) -> Set[T]:
|
|
return np.random.choice(self.reads, p=self.read_weights)
|
|
|
|
def get_write_quorum(self) -> Set[T]:
|
|
return np.random.choice(self.writes, p=self.write_weights)
|
|
|
|
def load(self,
|
|
read_fraction: Optional[Distribution] = None,
|
|
write_fraction: Optional[Distribution] = None) \
|
|
-> float:
|
|
d = distribution.canonicalize_rw(read_fraction, write_fraction)
|
|
return sum(weight * self._load(fr)
|
|
for (fr, weight) in d.items())
|
|
|
|
def node_load(self,
|
|
node: Node[T],
|
|
read_fraction: Optional[Distribution] = None,
|
|
write_fraction: Optional[Distribution] = None) \
|
|
-> float:
|
|
d = distribution.canonicalize_rw(read_fraction, write_fraction)
|
|
return sum(weight * self._node_load(node.x, fr)
|
|
for (fr, weight) in d.items())
|
|
|
|
def capacity(self,
|
|
read_fraction: Optional[Distribution] = None,
|
|
write_fraction: Optional[Distribution] = None) \
|
|
-> float:
|
|
return 1 / self.load(read_fraction, write_fraction)
|
|
|
|
|
|
def plot_node_load(self,
|
|
filename: str,
|
|
nodes: Optional[List[Node[T]]] = None,
|
|
read_fraction: Optional[Distribution] = None,
|
|
write_fraction: Optional[Distribution] = None) \
|
|
-> None:
|
|
fig, ax = plt.subplots()
|
|
self.plot_node_load_on(ax, nodes, read_fraction, write_fraction)
|
|
ax.set_xlabel('Node')
|
|
ax.set_ylabel('Load')
|
|
fig.tight_layout()
|
|
fig.savefig(filename)
|
|
|
|
def plot_node_load_on(self,
|
|
ax: plt.Axes,
|
|
nodes: Optional[List[Node[T]]] = None,
|
|
read_fraction: Optional[Distribution] = None,
|
|
write_fraction: Optional[Distribution] = None) \
|
|
-> None:
|
|
self._plot_node_load_on(ax,
|
|
scale=1,
|
|
scale_by_node_capacity=True,
|
|
nodes=nodes,
|
|
read_fraction=read_fraction,
|
|
write_fraction=write_fraction)
|
|
|
|
def plot_node_capacity(self,
|
|
filename: str,
|
|
nodes: Optional[List[Node[T]]] = None,
|
|
read_fraction: Optional[Distribution] = None,
|
|
write_fraction: Optional[Distribution] = None) \
|
|
-> None:
|
|
fig, ax = plt.subplots()
|
|
self.plot_node_capacity_on(ax, nodes, read_fraction, write_fraction)
|
|
ax.set_xlabel('Node')
|
|
ax.set_ylabel('Throughput at Peak Throughput')
|
|
fig.tight_layout()
|
|
fig.savefig(filename)
|
|
|
|
def plot_node_capacity_on(self,
|
|
ax: plt.Axes,
|
|
nodes: Optional[List[Node[T]]] = None,
|
|
read_fraction: Optional[Distribution] = None,
|
|
write_fraction: Optional[Distribution] = None) \
|
|
-> None:
|
|
self._plot_node_load_on(ax,
|
|
scale=self.capacity(read_fraction,
|
|
write_fraction),
|
|
scale_by_node_capacity=False,
|
|
nodes=nodes,
|
|
read_fraction=read_fraction,
|
|
write_fraction=write_fraction)
|
|
|
|
def plot_node_utilization(self,
|
|
filename: str,
|
|
nodes: Optional[List[Node[T]]] = None,
|
|
read_fraction: Optional[Distribution] = None,
|
|
write_fraction: Optional[Distribution] = None) \
|
|
-> None:
|
|
fig, ax = plt.subplots()
|
|
self.plot_node_utilization_on(ax, nodes, read_fraction, write_fraction)
|
|
ax.set_xlabel('Node')
|
|
ax.set_ylabel('Utilization at Peak Throughput')
|
|
fig.tight_layout()
|
|
fig.savefig(filename)
|
|
|
|
def plot_node_utilization_on(self,
|
|
ax: plt.Axes,
|
|
nodes: Optional[List[Node[T]]] = None,
|
|
read_fraction: Optional[Distribution] = None,
|
|
write_fraction: Optional[Distribution] = None) \
|
|
-> None:
|
|
self._plot_node_load_on(
|
|
ax,
|
|
scale=self.capacity(read_fraction, write_fraction),
|
|
scale_by_node_capacity=True,
|
|
nodes=nodes,
|
|
read_fraction=read_fraction,
|
|
write_fraction=write_fraction)
|
|
|
|
def plot_load_distribution(self,
|
|
filename: str,
|
|
nodes: Optional[List[Node[T]]] = None) \
|
|
-> None:
|
|
fig, ax = plt.subplots()
|
|
self.plot_load_distribution_on(ax, nodes)
|
|
ax.set_xlabel('Read Fraction')
|
|
ax.set_ylabel('Load')
|
|
fig.tight_layout()
|
|
fig.savefig(filename)
|
|
|
|
def _group(self, segments: List[Tuple[Segment, T]]) -> Dict[Segment, List[T]]:
|
|
groups: Dict[Segment, List[T]] = collections.defaultdict(list)
|
|
for segment, x in segments:
|
|
match_found = False
|
|
for other, xs in groups.items():
|
|
if segment.approximately_equal(other):
|
|
xs.append(x)
|
|
match_found = True
|
|
break
|
|
|
|
if not match_found:
|
|
groups[segment].append(x)
|
|
|
|
return groups
|
|
|
|
def plot_load_distribution_on(self,
|
|
ax: plt.Axes,
|
|
nodes: Optional[List[Node[T]]] = None) \
|
|
-> None:
|
|
nodes = nodes or list(self.nodes)
|
|
|
|
# We want to plot every node's load distribution. Multiple nodes might
|
|
# have the same load distribution, so we group the nodes by their
|
|
# distribution. The grouping is a little annoying because two floats
|
|
# might not be exactly equal but pretty close.
|
|
groups = self._group([
|
|
(Segment(Point(0, self.node_load(node, read_fraction=0)),
|
|
Point(1, self.node_load(node, read_fraction=1))), node.x)
|
|
for node in nodes
|
|
])
|
|
|
|
# Compute and plot the max of all segments. We increase the line
|
|
# slightly so it doesn't overlap with the other lines.
|
|
path = geometry.max_of_segments(list(groups.keys()))
|
|
ax.plot([p[0] for p in path],
|
|
[p[1] for p in path],
|
|
label='load',
|
|
linewidth=4)
|
|
|
|
for segment, xs in groups.items():
|
|
ax.plot([segment.l.x, segment.r.x],
|
|
[segment.l.y, segment.r.y],
|
|
'--',
|
|
label=','.join(str(x) for x in xs),
|
|
linewidth=2,
|
|
alpha=0.75)
|
|
|
|
|
|
def _node_load(self, x: T, fr: float) -> float:
|
|
"""
|
|
_node_load returns the load on x given a fixed read fraction fr.
|
|
"""
|
|
fw = 1 - fr
|
|
return (fr * self.unweighted_read_load[x] / self.read_capacity[x] +
|
|
fw * self.unweighted_write_load[x] / self.write_capacity[x])
|
|
|
|
def _load(self, fr: float) -> float:
|
|
"""
|
|
_load returns the load given a fixed read fraction fr.
|
|
"""
|
|
return max(self._node_load(node.x, fr) for node in self.nodes)
|
|
|
|
def _plot_node_load_on(
|
|
self,
|
|
ax: plt.Axes,
|
|
scale: float,
|
|
scale_by_node_capacity: bool,
|
|
nodes: Optional[List[Node[T]]] = None,
|
|
read_fraction: Optional[Distribution] = None,
|
|
write_fraction: Optional[Distribution] = None) \
|
|
-> None:
|
|
nodes = nodes or list(self.nodes)
|
|
d = distribution.canonicalize_rw(read_fraction, write_fraction)
|
|
x_list = [node.x for node in nodes]
|
|
x_index = {x: i for (i, x) in enumerate(x_list)}
|
|
x_ticks = list(range(len(x_list)))
|
|
|
|
def read_quorum_to_bar_heights(quorum: Set[T]) -> np.array:
|
|
bar_heights = np.zeros(len(x_list))
|
|
for x in quorum:
|
|
bar_heights[x_index[x]] = 1
|
|
if scale_by_node_capacity:
|
|
bar_heights[x_index[x]] /= self.read_capacity[x]
|
|
return bar_heights
|
|
|
|
def write_quorum_to_bar_heights(quorum: Set[T]) -> np.array:
|
|
bar_heights = np.zeros(len(x_list))
|
|
for x in quorum:
|
|
bar_heights[x_index[x]] = 1
|
|
if scale_by_node_capacity:
|
|
bar_heights[x_index[x]] /= self.write_capacity[x]
|
|
return bar_heights
|
|
|
|
bottoms = np.zeros(len(x_list))
|
|
|
|
fr = sum(weight * fr for (fr, weight) in d.items())
|
|
read_cmap = matplotlib.cm.get_cmap('Reds')
|
|
for (i, (rq, weight)) in enumerate(zip(self.reads, self.read_weights)):
|
|
bar_heights = scale * fr * weight * read_quorum_to_bar_heights(rq)
|
|
ax.bar(x_ticks,
|
|
bar_heights,
|
|
bottom=bottoms,
|
|
color=read_cmap(0.75 - i * 0.5 / len(self.reads)),
|
|
edgecolor='white', width=0.8)
|
|
for j, (bar_height, bottom) in enumerate(zip(bar_heights, bottoms)):
|
|
if bar_height != 0:
|
|
ax.text(x_ticks[j], bottom + bar_height / 2, i,
|
|
ha='center', va='center')
|
|
bottoms += bar_heights
|
|
|
|
fw = 1 - fr
|
|
write_cmap = matplotlib.cm.get_cmap('Blues')
|
|
for (i, (wq, weight)) in enumerate(zip(self.writes, self.write_weights)):
|
|
bar_heights = scale * fw * weight * write_quorum_to_bar_heights(wq)
|
|
ax.bar(x_ticks,
|
|
bar_heights,
|
|
bottom=bottoms,
|
|
color=write_cmap(0.75 - i * 0.5 / len(self.writes)),
|
|
edgecolor='white', width=0.8)
|
|
for j, (bar_height, bottom) in enumerate(zip(bar_heights, bottoms)):
|
|
if bar_height != 0:
|
|
ax.text(x_ticks[j], bottom + bar_height / 2, i,
|
|
ha='center', va='center')
|
|
bottoms += bar_heights
|
|
|
|
ax.set_xticks(x_ticks)
|
|
ax.set_xticklabels(str(x) for x in x_list)
|