skiplist/include/sl.h

1348 lines
165 KiB
C
Raw Normal View History

2024-03-17 14:40:59 +00:00
/*
* Copyright (c) 2024
* Gregory Burd <greg@burd.me>. All rights reserved.
*
* ISC License Permission to use, copy, modify, and/or distribute this software
* for any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
2024-03-18 15:06:49 +00:00
*
* I'd like to thank others for thoughtfully licensing their work, the
* community of software engineers succeeds when we work together.
*
2024-03-21 18:43:10 +00:00
* Portions of this code are derived from other copyrighted works:
2024-03-18 15:06:49 +00:00
*
2024-03-21 18:43:10 +00:00
* - MIT License
2024-03-18 15:06:49 +00:00
* - https://github.com/greensky00/skiplist
* 2017-2024 Jung-Sang Ahn <jungsang.ahn@gmail.com>
* - https://github.com/paulross/skiplist
2024-03-21 18:43:10 +00:00
* Copyright (c) 2017-2023 Paul Ross <paulross@uky.edu>
* - https://github.com/JP-Ellis/rust-skiplist
* Copyright (c) 2015 Joshua Ellis <github@jpellis.me>
* - Public Domain
* - https://gist.github.com/zhpengg/2873424
* Zhipeng Li <zhpeng.is@gmail.com>
2024-03-17 14:40:59 +00:00
*/
2024-03-19 13:41:36 +00:00
#ifndef _SKIPLIST_H_
#define _SKIPLIST_H_
2024-03-17 14:40:59 +00:00
/*
2024-03-19 13:41:36 +00:00
* This file defines a skiplist data structure.
2024-03-17 14:40:59 +00:00
*
* A skiplist is a way of storing sorted elements in such a way that they can be
* accessed, inserted and removed, all in O(log(n)) on average.
*
* Conceptually, a skiplist is arranged as follows:
*
* <head> ----------> [2] --------------------------------------------------> [9] ---------->
* <head> ----------> [2] ------------------------------------[7] ----------> [9] ---------->
* <head> ----------> [2] ----------> [4] ------------------> [7] ----------> [9] --> [10] ->
* <head> --> [1] --> [2] --> [3] --> [4] --> [5] --> [6] --> [7] --> [8] --> [9] --> [10] ->
*
* Each node contains at the very least a link to the next element in the list
* (corresponding to the lowest level in the above diagram), but it can randomly
* contain more links which skip further down the list (the towers in the above
* diagram). This allows for the algorithm to move down the list faster than
* having to visit every element.
*
* Conceptually, the skiplist can be thought of as a stack of linked lists. At
* the very bottom is the full linked list with every element, and each layer
* above corresponds to a linked list containing a random subset of the elements
* from the layer immediately below it. The probability distribution that
* determines this random subset can be customized, but typically a layer will
* contain half the nodes from the layer below.
*
* This implementation maintains a doubly-linked list at the bottom layer to
* support efficient iteration in either direction. There is also a guard
* node at the tail rather than simply pointing to NULL.
*
* <head> <-> [1] <-> [2] <-> [3] <-> [4] <-> [5] <-> [6] <-> [7] <-> <tail>
*
* Safety:
*
* The ordered skiplist relies on a well-behaved comparison
* function. Specifically, given some ordering function f(a, b), it must satisfy
* the following properties:
*
* 1) Be well defined: f(a, b) should always return the same value
* 2) Be anti-symmetric: f(a, b) == Greater if and only if f(b, a) == Less, and
* f(a, b) == Equal == f(b, a).
* 3) Be transitive: If f(a, b) == Greater and f(b, c) == Greater then f(a, c)
* == Greater.
*
* Failure to satisfy these properties can result in unexpected behavior at
* best, and at worst will cause a segfault, null deref, or some other bad
* behavior.
*
* References for this implementation include, but are not limited to:
*
2024-03-21 18:43:10 +00:00
* - Skip lists: a probabilistic alternative to balanced trees
* @article{10.1145/78973.78977,
* author = {Pugh, William},
* title = {Skip lists: a probabilistic alternative to balanced trees},
* year = {1990}, issue_date = {June 1990},
* publisher = {Association for Computing Machinery},
* address = {New York, NY, USA},
* volume = {33}, number = {6}, issn = {0001-0782},
* url = {https://doi.org/10.1145/78973.78977},
* doi = {10.1145/78973.78977},
* journal = {Commun. ACM}, month = {jun}, pages = {668676}, numpages = {9},
* keywords = {trees, searching, data structures},
* download = {https://www.cl.cam.ac.uk/teaching/2005/Algorithms/skiplists.pdf}
* }
*
* - Tutorial: The Ubiquitous Skiplist, its Variants, and Applications in Modern Big Data Systems
* @article{Vadrevu2023TutorialTU,
* title={Tutorial: The Ubiquitous Skiplist, its Variants, and Applications in Modern Big Data Systems},
* author={Venkata Sai Pavan Kumar Vadrevu and Lu Xing and Walid G. Aref},
* journal={ArXiv},
* year={2023},
* volume={abs/2304.09983},
* url={https://api.semanticscholar.org/CorpusID:258236678},
* download={https://arxiv.org/pdf/2304.09983.pdf}
* }
*
* - The Splay-List: A Distribution-Adaptive Concurrent Skip-List
* @misc{aksenov2020splaylist,
* title={The Splay-List: A Distribution-Adaptive Concurrent Skip-List},
* author={Vitaly Aksenov and Dan Alistarh and Alexandra Drozdova and Amirkeivan Mohtashami},
* year={2020},
* eprint={2008.01009},
* archivePrefix={arXiv},
* primaryClass={cs.DC},
* download={https://arxiv.org/pdf/2008.01009.pdf}
* }
*
* - JellyFish: A Fast Skip List with MVCC},
* @article{Yeon2020JellyFishAF,
* title={JellyFish: A Fast Skip List with MVCC},
* author={Jeseong Yeon and Leeju Kim and Youil Han and Hyeon Gyu Lee and Eunji Lee and Bryan Suk Joon Kim},
* journal={Proceedings of the 21st International Middleware Conference},
* year={2020},
* url={https://api.semanticscholar.org/CorpusID:228086012}
* }
2024-03-17 14:40:59 +00:00
*/
/*
* Skip List declarations.
2024-03-17 14:40:59 +00:00
*/
#ifndef SKIPLIST_MAX_HEIGHT
#define SKIPLIST_MAX_HEIGHT 1
#endif
2024-03-17 14:40:59 +00:00
/*
* A Skip List contains elements, a portion of which is used to manage those
* elements while the rest is defined by the use case for this declaration. The
* house keeping portion is the SKIPLIST_ENTRY below. It maintains the array of
* forward pointers to nodes and has a height (a zero-based count of levels, so
* a height of `0` means one (1) level and a height of `4` means five (5)
* levels).
*/
2024-03-21 13:31:32 +00:00
#define SKIPLIST_ENTRY(type) \
2024-03-22 15:47:51 +00:00
struct __skiplist_##decl_entry { \
struct __skiplist_##decl_idx { \
2024-03-20 20:02:56 +00:00
struct type *prev, **next; \
size_t height; \
2024-03-20 20:02:56 +00:00
} sle; \
2024-03-20 03:04:34 +00:00
}
2024-03-17 14:40:59 +00:00
/*
* Skip List node comparison function. This macro builds a function used when
* comparing two nodes for equality. A portion of this function, `fn_blk`, is
* the code you supply to compare two nodes as a block (starts with `{`, your
* code, then `}`) that should compare the node referenced by `a` to the node
* `b` as follows:
*
* When:
* *a < *b : return -1
* *a == *b : return 0
* *a > *b : return 1
*
* As stated earlier, the ordered skiplist relies on a well-behaved comparison
* function. Specifically, given some ordering function f(a, b), it must satisfy
* the following properties:
*
* 1) Be well defined: f(a, b) should always return the same value
* 2) Be anti-symmetric: f(a, b) == Greater if and only if f(b, a) == Less, and
* f(a, b) == Equal == f(b, a).
* 3) Be transitive: If f(a, b) == Greater and f(b, c) == Greater then f(a, c)
* == Greater.
*
* Failure to satisfy these properties can result in unexpected behavior at
* best, and at worst will cause a segfault, null deref, or some other bad
* behavior.
*
* Example for nodes with keys that are signed integeters (`int`):
* {
* (void)list;
* (void)aux;
* if (a->key < b->key)
* return -1;
* if (a->key > b->key)
* return 1;
* return 0;
* }
*
* Note that the comparison function can also make use of the reference to the
* list as well as a reference to a variable `aux` that you can point to
* anything else required to perform your comparison. The auxiliary pointer
* is unused for other purposes. You could even use it a pointer to a function
* that chooses the proper comparison function for the two nodes in question.
*
* Example where the value of `decl` below is `ex`:
* {
* // Cast `aux` to a function that returns a function that properly compares
* // `a` and `b`, for example if they were objects or different structs.
* (skip_ex_cmp_t *(fn)(ex_node_t *, ex_node_t *)) =
* (skip_ex_cmp_t *()(ex_node_t *, ex_node_t *))aux;
*
* // Use the `fn` pointed to by `aux` to get the comparison function.
* skip_ex_cmp_t *cmp = fn(a, b);
*
* // Now call that function and return the proper result.
* return cmp(list, a, b, aux);
* }
2024-03-17 14:40:59 +00:00
*/
#define SKIP_COMPARATOR(list, type, fn_blk) \
2024-03-20 03:04:34 +00:00
int __skip_cmp_##type(struct list *head, struct type *a, struct type *b, void *aux) \
{ \
if (a == b) \
return 0; \
if (a == (head)->slh_head || b == (head)->slh_tail) \
return -1; \
if (a == (head)->slh_tail || b == (head)->slh_head) \
return 1; \
fn_blk \
2024-03-20 03:04:34 +00:00
}
2024-03-17 14:40:59 +00:00
/*
* Skip List declarations and access methods.
*/
2024-03-21 16:30:37 +00:00
#define SKIPLIST_DECL(decl, prefix, field, free_node_blk, update_node_blk, snap_node_blk, sizeof_entry_blk) \
2024-03-20 20:02:56 +00:00
\
/* Skip List node type */ \
2024-03-20 20:02:56 +00:00
typedef struct decl##_node decl##_node_t; \
\
/* Skip List structure and type */ \
2024-03-20 20:02:56 +00:00
typedef struct decl { \
size_t level, length, max; \
int (*cmp)(struct decl *, decl##_node_t *, decl##_node_t *, void *); \
void *aux; \
decl##_node_t *slh_head; \
decl##_node_t *slh_tail; \
} decl##_t; \
\
/* Snapshot of a Skip List */ \
2024-03-21 02:48:11 +00:00
typedef struct decl##_snap { \
decl##_t list; \
2024-03-21 16:30:37 +00:00
decl##_node_t *nodes; \
size_t bytes; \
2024-03-21 02:48:11 +00:00
} decl##_snap_t; \
\
/* Skip List comparison function type */ \
typedef int (*skip_##decl##_cmp_t)(decl##_t *, decl##_node_t *, decl##_node_t *, void *); \
2024-03-21 02:48:11 +00:00
\
/* Used when positioning a cursor within a Skip List. */ \
2024-03-21 20:35:18 +00:00
typedef enum { SKIP_EQ = 0, SKIP_LTE = -1, SKIP_LT = -2, SKIP_GTE = 1, SKIP_GT = 2 } skip_pos_##decl_t; \
\
2024-03-20 20:02:56 +00:00
/* -- __skip_key_compare_ \
* \
* This function takes four arguments: \
* - a reference to the Skip List \
2024-03-20 20:02:56 +00:00
* - the two nodes to compare, `a` and `b` \
* - `aux` an additional auxiliary argument \
* and returns: \
* a < b : return -1 \
* a == b : return 0 \
* a > b : return 1 \
*/ \
static int __skip_key_compare_##decl(decl##_t *slist, decl##_node_t *a, decl##_node_t *b, void *aux) \
{ \
if (a == b) \
return 0; \
if (a == slist->slh_head || b == slist->slh_tail) \
return -1; \
if (a == slist->slh_tail || b == slist->slh_head) \
return 1; \
return slist->cmp(slist, a, b, aux); \
} \
\
/* -- __skip_toss_ \
* A "coin toss" function that is critical to the proper operation of the \
* Skip List. For example, when `max = 6` this function returns 0 with \
2024-03-20 20:02:56 +00:00
* probability 0.5, 1 with 0.25, 2 with 0.125, etc. until 6 with 0.5^7. \
*/ \
static int __skip_toss_##decl(size_t max) \
{ \
size_t level = 0; \
double probability = 0.5; \
\
2024-03-21 13:31:32 +00:00
double random_value = (double)rand() / RAND_MAX; /* NOLINT(*-msc50-cpp) */ \
while (random_value < probability && level < max) { \
2024-03-20 20:02:56 +00:00
level++; \
probability *= 0.5; \
} \
return level; \
} \
\
/* -- skip_alloc_node_ */ \
int prefix##skip_alloc_node_##decl(decl##_t *slist, decl##_node_t **node) \
{ \
decl##_node_t *n; \
/* Calculate the size of the struct sle within decl##_node_t, multiply \
by array size. (16/24 bytes on 32/64 bit systems) */ \
2024-03-22 15:47:51 +00:00
size_t sle_arr_sz = sizeof(struct __skiplist_##decl_idx) * slist->max; \
2024-03-20 20:02:56 +00:00
n = (decl##_node_t *)calloc(1, sizeof(decl##_node_t) + sle_arr_sz); \
if (n == NULL) \
return ENOMEM; \
n->field.sle.height = 0; \
2024-03-20 20:02:56 +00:00
n->field.sle.next = (decl##_node_t **)((uintptr_t)n + sizeof(decl##_node_t)); \
*node = n; \
return 0; \
} \
\
/* -- skip_init_ \
* \
*/ \
int prefix##skip_init_##decl(decl##_t *slist, int max, int (*cmp)(struct decl *, decl##_node_t *, decl##_node_t *, void *)) \
{ \
int rc = 0; \
size_t i; \
\
2024-03-20 20:02:56 +00:00
slist->length = 0; \
slist->max = (size_t)(max < 0 ? -max : max); \
slist->max = SKIPLIST_MAX_HEIGHT == 1 ? slist->max : SKIPLIST_MAX_HEIGHT; \
if (SKIPLIST_MAX_HEIGHT > 1 && slist->max > SKIPLIST_MAX_HEIGHT) \
return -1; \
slist->cmp = cmp; \
rc = prefix##skip_alloc_node_##decl(slist, &slist->slh_head); \
if (rc) \
goto fail; \
rc = prefix##skip_alloc_node_##decl(slist, &slist->slh_tail); \
if (rc) \
goto fail; \
2024-03-21 13:31:32 +00:00
\
slist->slh_head->field.sle.height = 0; \
2024-03-20 20:02:56 +00:00
for (i = 0; i < slist->max; i++) \
slist->slh_head->field.sle.next[i] = slist->slh_tail; \
slist->slh_head->field.sle.prev = NULL; \
2024-03-21 13:31:32 +00:00
\
slist->slh_tail->field.sle.height = slist->max; \
2024-03-20 20:02:56 +00:00
for (i = 0; i < slist->max; i++) \
slist->slh_tail->field.sle.next[i] = NULL; \
2024-03-21 13:31:32 +00:00
slist->slh_tail->field.sle.prev = slist->slh_head; \
\
2024-03-20 20:02:56 +00:00
/* NOTE: Here's a testing aid, simply set `max` to a negative number to \
* seed the PRNG in a predictable way and have reproducible random numbers. \
*/ \
if (max < 0) \
srand(-max); \
else \
srand(((unsigned int)time(NULL) ^ getpid())); \
fail:; \
return rc; \
} \
\
/* -- skip_free_node_ */ \
void prefix##skip_free_node_##decl(decl##_node_t *node) \
{ \
free_node_blk; \
free(node); \
} \
\
/* -- skip_size_ */ \
int prefix##skip_size_##decl(decl##_t *slist) \
{ \
return slist->length; \
} \
\
/* -- skip_empty_ */ \
int prefix##skip_empty_##decl(decl##_t *slist) \
{ \
return slist->length == 0; \
} \
\
/* -- skip_head_ */ \
decl##_node_t *prefix##skip_head_##decl(decl##_t *slist) \
{ \
2024-03-21 16:30:37 +00:00
return slist->slh_head->field.sle.next[0] == slist->slh_tail ? NULL : slist->slh_head->field.sle.next[0]; \
2024-03-20 20:02:56 +00:00
} \
\
/* -- skip_tail_ */ \
decl##_node_t *prefix##skip_tail_##decl(decl##_t *slist) \
{ \
2024-03-21 16:30:37 +00:00
return slist->slh_tail->field.sle.prev == slist->slh_head->field.sle.next[0] ? NULL : slist->slh_tail->field.sle.prev; \
2024-03-20 20:02:56 +00:00
} \
\
/* -- __skip_locate_ \
* Locates a node that matches another node updating `path` and then \
* returning the length of that path + 1 to the node and the matching \
* node in path[0], or NULL at path[0] where there wasn't a match. \
* sizeof(path) should be `slist->max + 1` \
*/ \
static size_t __skip_locate_##decl(decl##_t *slist, decl##_node_t *n, decl##_node_t **path) \
{ \
unsigned int i; \
size_t len = 0; \
decl##_node_t *elm = slist->slh_head; \
\
if (slist == NULL || n == NULL) \
return 0; \
\
/* Find the node that matches `node` or NULL. */ \
i = slist->slh_head->field.sle.height; \
2024-03-20 20:02:56 +00:00
do { \
while (elm && __skip_key_compare_##decl(slist, elm->field.sle.next[i], n, slist->aux) < 0) \
elm = elm->field.sle.next[i]; \
path[i + 1] = elm; \
len++; \
} while (i--); \
elm = elm->field.sle.next[0]; \
if (__skip_key_compare_##decl(slist, elm, n, slist->aux) == 0) { \
path[0] = elm; \
} \
return len; \
} \
\
/* -- __skip_insert_ */ \
static int __skip_insert_##decl(decl##_t *slist, decl##_node_t *n, int flags) \
{ \
static decl##_node_t apath[SKIPLIST_MAX_HEIGHT + 1]; \
size_t i, len, level; \
decl##_node_t *node, **path = (decl##_node_t **)&apath; \
\
if (slist == NULL || n == NULL) \
return ENOENT; \
\
/* Allocate a buffer */ \
if (SKIPLIST_MAX_HEIGHT == 1) { \
path = malloc(sizeof(decl##_node_t *) * slist->max + 1); \
if (path == NULL) \
return ENOMEM; \
} \
\
len = __skip_locate_##decl(slist, n, path); \
node = path[0]; \
if (len > 0) { \
if ((node != NULL) && (flags == 0)) { \
/* Don't insert, duplicate flag not set. */ \
return -1; \
} \
2024-03-21 13:31:32 +00:00
level = __skip_toss_##decl(slist->max - 1); \
n->field.sle.height = level + 1; \
2024-03-20 20:02:56 +00:00
for (i = 0; i <= level; i++) { \
if (i <= slist->slh_head->field.sle.height) { \
2024-03-20 20:02:56 +00:00
n->field.sle.next[i] = path[i + 1]->field.sle.next[i]; \
path[i + 1]->field.sle.next[i] = n; \
} else { \
n->field.sle.next[i] = slist->slh_tail; \
} \
} \
n->field.sle.prev = path[1]; \
2024-03-22 00:35:33 +00:00
n->field.sle.next[0]->field.sle.prev = n; \
2024-03-20 20:02:56 +00:00
if (n->field.sle.next[0] == slist->slh_tail) { \
slist->slh_tail->field.sle.prev = n; \
} \
if (level > slist->slh_head->field.sle.height) { \
slist->slh_head->field.sle.height = level; \
slist->slh_tail->field.sle.height = level; \
2024-03-20 20:02:56 +00:00
} \
slist->length++; \
\
if (SKIPLIST_MAX_HEIGHT == 1) \
free(path); \
} \
return 0; \
} \
\
/* -- skip_insert_ */ \
int prefix##skip_insert_##decl(decl##_t *slist, decl##_node_t *n) \
{ \
return __skip_insert_##decl(slist, n, 0); \
} \
\
/* -- skip_insert_dup_ */ \
int prefix##skip_insert_dup_##decl(decl##_t *slist, decl##_node_t *n) \
{ \
return __skip_insert_##decl(slist, n, 1); \
} \
\
2024-03-21 20:35:18 +00:00
/* -- skip_position_eq_ \
* Find a node that matches the node `n`. This differs from the locate() \
2024-03-20 20:02:56 +00:00
* API in that it does not return the path to the node, only the match. \
2024-03-21 20:35:18 +00:00
* \
* NOTE: This differs from _locate() in that it avoids an alloc/free \
* for the path when SKIPLIST_MAX_HEIGHT == 1. \
2024-03-20 20:02:56 +00:00
*/ \
2024-03-21 20:35:18 +00:00
decl##_node_t *prefix##skip_position_eq_##decl(decl##_t *slist, decl##_node_t *n) \
2024-03-20 20:02:56 +00:00
{ \
unsigned int i; \
decl##_node_t *elm = slist->slh_head; \
\
if (slist == NULL || n == NULL) \
return NULL; \
\
i = slist->slh_head->field.sle.height; \
2024-03-20 20:02:56 +00:00
\
do { \
while (elm && __skip_key_compare_##decl(slist, elm->field.sle.next[i], n, slist->aux) < 0) \
elm = elm->field.sle.next[i]; \
} while (i--); \
elm = elm->field.sle.next[0]; \
if (__skip_key_compare_##decl(slist, elm, n, slist->aux) == 0) { \
return elm; \
} \
return NULL; \
} \
\
2024-03-21 20:35:18 +00:00
/* -- skip_position_gte \
* Position and return a cursor at the first node that is equal to \
* or greater than the provided node `n`, otherwise if the largest \
* key is less than the key in `n` return NULL. \
* \
* NOTE: This differs from _locate() in that it avoids an alloc/free \
* for the path when SKIPLIST_MAX_HEIGHT == 1. \
*/ \
decl##_node_t *prefix##skip_position_gte_##decl(decl##_t *slist, decl##_node_t *n) \
{ \
int cmp; \
unsigned int i; \
decl##_node_t *elm = slist->slh_head; \
\
if (slist == NULL || n == NULL) \
return NULL; \
\
i = slist->slh_head->field.sle.height; \
2024-03-21 20:35:18 +00:00
\
do { \
while (elm && __skip_key_compare_##decl(slist, elm->field.sle.next[i], n, slist->aux) < 0) \
elm = elm->field.sle.next[i]; \
} while (i--); \
do { \
elm = elm->field.sle.next[0]; \
cmp = __skip_key_compare_##decl(slist, elm, n, slist->aux); \
} while (cmp < 0); \
return elm; \
} \
\
/* -- skip_position_gt_ \
2024-03-21 20:35:18 +00:00
* Position and return a cursor at the first node that is greater than \
* the provided node `n`. If the largestkey is less than the key in `n` \
* return NULL. \
* \
* NOTE: This differs from _locate() in that it avoids an alloc/free \
* for the path when SKIPLIST_MAX_HEIGHT == 1. \
2024-03-20 20:02:56 +00:00
*/ \
2024-03-21 20:35:18 +00:00
decl##_node_t *prefix##skip_position_gt_##decl(decl##_t *slist, decl##_node_t *n) \
2024-03-20 20:02:56 +00:00
{ \
int cmp; \
unsigned int i; \
decl##_node_t *elm = slist->slh_head; \
\
if (slist == NULL || n == NULL) \
return NULL; \
\
i = slist->slh_head->field.sle.height; \
2024-03-20 20:02:56 +00:00
\
do { \
while (elm && __skip_key_compare_##decl(slist, elm->field.sle.next[i], n, slist->aux) < 0) \
elm = elm->field.sle.next[i]; \
} while (i--); \
do { \
elm = elm->field.sle.next[0]; \
cmp = __skip_key_compare_##decl(slist, elm, n, slist->aux); \
} while (cmp <= 0); \
2024-03-20 20:02:56 +00:00
return elm; \
} \
\
2024-03-21 20:35:18 +00:00
/* -- skip_position_lte \
* Position and return a cursor at the last node that is less than \
* or equal to node `n`. \
* Return NULL if nothing is less than or equal. \
* \
* NOTE: This differs from _locate() in that it avoids an alloc/free \
* for the path when SKIPLIST_MAX_HEIGHT == 1. \
*/ \
decl##_node_t *prefix##skip_position_lte_##decl(decl##_t *slist, decl##_node_t *n) \
{ \
int cmp; \
unsigned int i; \
decl##_node_t *elm = slist->slh_head; \
\
if (slist == NULL || n == NULL) \
return NULL; \
\
i = slist->slh_head->field.sle.height; \
2024-03-21 20:35:18 +00:00
\
do { \
while (elm && __skip_key_compare_##decl(slist, elm->field.sle.next[i], n, slist->aux) < 0) \
elm = elm->field.sle.next[i]; \
} while (i--); \
elm = elm->field.sle.next[0]; \
if (__skip_key_compare_##decl(slist, elm, n, slist->aux) == 0) { \
return elm; \
} else { \
do { \
elm = elm->field.sle.prev; \
cmp = __skip_key_compare_##decl(slist, elm, n, slist->aux); \
} while (cmp >= 0); \
2024-03-21 20:35:18 +00:00
} \
return elm; \
} \
\
/* -- skip_position_lt_ \
2024-03-21 20:35:18 +00:00
* Position and return a cursor at the last node that is less than \
* to the node `n`. Return NULL if nothing is less than or equal. \
* \
* NOTE: This differs from _locate() in that it avoids an alloc/free \
* for the path when SKIPLIST_MAX_HEIGHT == 1. \
2024-03-20 20:02:56 +00:00
*/ \
2024-03-21 20:35:18 +00:00
decl##_node_t *prefix##skip_position_lt_##decl(decl##_t *slist, decl##_node_t *n) \
2024-03-20 20:02:56 +00:00
{ \
int cmp; \
unsigned int i; \
decl##_node_t *elm = slist->slh_head; \
\
if (slist == NULL || n == NULL) \
return NULL; \
\
i = slist->slh_head->field.sle.height; \
2024-03-20 20:02:56 +00:00
\
do { \
while (elm && __skip_key_compare_##decl(slist, elm->field.sle.next[i], n, slist->aux) < 0) \
elm = elm->field.sle.next[i]; \
} while (i--); \
elm = elm->field.sle.next[0]; \
do { \
elm = elm->field.sle.prev; \
cmp = __skip_key_compare_##decl(slist, elm, n, slist->aux); \
} while (cmp >= 0); \
2024-03-20 20:02:56 +00:00
return elm; \
} \
\
2024-03-21 20:35:18 +00:00
/* -- skip_position_ \
* Position a cursor relative to `n`. \
* This avoids an alloc/free for the path when SKIPLIST_MAX_HEIGHT == 1. \
*/ \
decl##_node_t *prefix##skip_position_##decl(decl##_t *slist, skip_pos_##decl_t op, decl##_node_t *n) \
{ \
decl##_node_t *node; \
\
switch (op) { \
case (SKIP_LT): \
node = prefix##skip_position_lt_##decl(slist, n); \
break; \
case (SKIP_LTE): \
node = prefix##skip_position_lte_##decl(slist, n); \
break; \
case (SKIP_GTE): \
node = prefix##skip_position_gte_##decl(slist, n); \
break; \
case (SKIP_GT): \
node = prefix##skip_position_gt_##decl(slist, n); \
break; \
default: \
case (SKIP_EQ): \
node = prefix##skip_position_eq_##decl(slist, n); \
break; \
} \
return node; \
} \
\
2024-03-20 20:02:56 +00:00
/* -- skip_update_ \
* Locates a node in the list that equals the `new` node and then \
* uses the `update_node_blk` to update the contents. \
2024-03-21 20:35:18 +00:00
* \
* \
2024-03-20 20:02:56 +00:00
* WARNING: Do not update the portion of the node used for ordering \
* (e.g. `key`) unless you really know what you're doing. \
*/ \
int prefix##skip_update_##decl(decl##_t *slist, decl##_node_t *new) \
{ \
decl##_node_t *node; \
\
if (slist == NULL || new == NULL) \
return -1; \
\
2024-03-21 20:35:18 +00:00
node = prefix##skip_position_eq_##decl(slist, new); \
2024-03-20 20:02:56 +00:00
if (node) { \
update_node_blk; \
return 0; \
} \
return -1; \
} \
\
/* -- skip_remove_ */ \
2024-03-20 20:02:56 +00:00
int prefix##skip_remove_##decl(decl##_t *slist, decl##_node_t *n) \
{ \
static decl##_node_t apath[SKIPLIST_MAX_HEIGHT + 1]; \
size_t i, len, level; \
decl##_node_t *node, **path = (decl##_node_t **)&apath; \
\
if (slist == NULL || n == NULL) \
return -1; \
if (slist->length == 0) \
return 0; \
\
/* Allocate a buffer */ \
if (SKIPLIST_MAX_HEIGHT == 1) { \
path = malloc(sizeof(decl##_node_t *) * slist->max + 1); \
if (path == NULL) \
return ENOMEM; \
} \
\
len = __skip_locate_##decl(slist, n, path); \
node = path[0]; \
if (node) { \
node->field.sle.next[0]->field.sle.prev = node->field.sle.prev; \
for (i = 1; i <= len; i++) { \
if (path[i]->field.sle.next[i - 1] != node) \
break; \
path[i]->field.sle.next[i - 1] = node->field.sle.next[i - 1]; \
if (path[i]->field.sle.next[i - 1] == slist->slh_tail) { \
level = path[i]->field.sle.height; \
path[i]->field.sle.height = level - 1; \
2024-03-20 20:02:56 +00:00
} \
} \
2024-03-22 00:35:33 +00:00
if (node->field.sle.next[0] == slist->slh_tail) { \
slist->slh_tail->field.sle.prev = n->field.sle.prev; \
} \
2024-03-20 20:02:56 +00:00
if (SKIPLIST_MAX_HEIGHT == 1) \
free(path); \
free_node_blk; \
\
/* Find all levels in the first element in the list that point \
at the tail and shrink the level. */ \
i = 0; \
node = slist->slh_head; \
while (node->field.sle.next[i] != slist->slh_tail && i++ < slist->slh_head->field.sle.height) \
2024-03-20 20:02:56 +00:00
; \
slist->slh_head->field.sle.height = i; \
slist->slh_tail->field.sle.height = i; \
2024-03-20 20:02:56 +00:00
slist->length--; \
} \
return 0; \
} \
\
/* -- skip_next_node_ */ \
decl##_node_t *prefix##skip_next_node_##decl(decl##_t *slist, decl##_node_t *n) \
{ \
if (slist == NULL || n == NULL) \
return NULL; \
if (n->field.sle.next[0] == slist->slh_tail) \
return NULL; \
return n->field.sle.next[0]; \
} \
\
/* -- skip_prev_node_ */ \
decl##_node_t *prefix##skip_prev_node_##decl(decl##_t *slist, decl##_node_t *n) \
{ \
if (slist == NULL || n == NULL) \
return NULL; \
if (n->field.sle.prev == slist->slh_head) \
return NULL; \
return n->field.sle.prev; \
} \
\
/* -- skip_destroy_ */ \
int prefix##skip_destroy_##decl(decl##_t *slist) \
{ \
decl##_node_t *node, *next; \
\
if (slist == NULL) \
return 0; \
if (prefix##skip_size_##decl(slist) == 0) \
return 0; \
node = prefix##skip_head_##decl(slist); \
do { \
next = prefix##skip_next_node_##decl(slist, node); \
prefix##skip_free_node_##decl(node); \
node = next; \
} while (node != NULL); \
\
free(slist->slh_head); \
free(slist->slh_tail); \
return 0; \
} \
\
2024-03-21 20:35:18 +00:00
/* -- skip_snapshot_ TODO/WIP \
* A snapshot is a read-only view of a Skip List at a point in \
2024-03-20 20:02:56 +00:00
* time. Once taken, a snapshot must be restored or disposed. \
* Any number of snapshots can be created. \
* \
* NOTE: There are many fancy algorithms for this, for now \
* this implementation will simply create a copy of the nodes. \
*/ \
2024-03-21 02:48:11 +00:00
decl##_snap_t *prefix##skip_snapshot_##decl(decl##_t *slist) \
2024-03-20 20:02:56 +00:00
{ \
2024-03-21 16:53:46 +00:00
size_t bytes, i; \
2024-03-21 02:48:11 +00:00
decl##_snap_t *snap; \
decl##_node_t *node, *new; \
2024-03-20 20:02:56 +00:00
\
if (slist == NULL) \
return 0; \
\
2024-03-21 16:30:37 +00:00
bytes = sizeof(decl##_snap_t) + (slist->length * sizeof(decl##_node_t)); \
snap = (decl##_snap_t *)calloc(1, bytes); \
2024-03-21 02:48:11 +00:00
if (snap == NULL) \
2024-03-20 20:02:56 +00:00
return NULL; \
\
2024-03-21 16:30:37 +00:00
snap->bytes = bytes; \
2024-03-21 13:31:32 +00:00
snap->list.length = slist->length; \
snap->list.max = slist->max; \
2024-03-21 16:30:37 +00:00
snap->nodes = (decl##_node_t *)(snap + sizeof(decl##_snap_t)); \
2024-03-21 02:48:11 +00:00
\
i = 0; \
2024-03-21 16:30:37 +00:00
node = prefix##skip_head_##decl(slist); \
while (node) { \
decl##_node_t *n = (decl##_node_t *)snap->nodes + (i++ * sizeof(decl##_node_t)); \
new = (decl##_node_t *)&n; \
2024-03-20 20:02:56 +00:00
snap_node_blk; \
node = prefix##skip_next_node_##decl(slist, node); \
2024-03-21 16:30:37 +00:00
} \
2024-03-21 02:48:11 +00:00
return snap; \
2024-03-20 20:02:56 +00:00
} \
\
2024-03-21 20:35:18 +00:00
/* -- skip_restore_snapshot_ TODO/WIP */ \
2024-03-21 02:48:11 +00:00
decl##_t *prefix##skip_restore_snapshot_##decl(decl##_snap_t *snap, int (*cmp)(decl##_t * head, decl##_node_t * a, decl##_node_t * b, void *aux)) \
2024-03-20 20:02:56 +00:00
{ \
2024-03-21 02:48:11 +00:00
int rc; \
size_t i; \
decl##_t *slist; \
2024-03-21 13:31:32 +00:00
decl##_node_t *node, *new; \
2024-03-20 20:02:56 +00:00
\
2024-03-21 02:48:11 +00:00
if (snap == NULL || cmp == NULL) \
return 0; \
slist = (decl##_t *)calloc(1, sizeof(decl##_t)); \
if (slist == NULL) \
2024-03-20 20:02:56 +00:00
return NULL; \
2024-03-21 02:48:11 +00:00
\
2024-03-21 16:30:37 +00:00
slist->cmp = cmp; \
slist->max = snap->list.max; \
\
2024-03-21 02:48:11 +00:00
rc = prefix##skip_alloc_node_##decl(slist, &slist->slh_head); \
if (rc) \
goto fail; \
rc = prefix##skip_alloc_node_##decl(slist, &slist->slh_tail); \
if (rc) \
goto fail; \
2024-03-21 13:31:32 +00:00
\
slist->slh_head->field.sle.height = 0; \
2024-03-21 02:48:11 +00:00
for (i = 0; i < slist->max; i++) \
slist->slh_head->field.sle.next[i] = slist->slh_tail; \
slist->slh_head->field.sle.prev = NULL; \
2024-03-21 13:31:32 +00:00
\
slist->slh_tail->field.sle.height = slist->max; \
2024-03-21 02:48:11 +00:00
for (i = 0; i < slist->max; i++) \
slist->slh_tail->field.sle.next[i] = NULL; \
2024-03-21 13:31:32 +00:00
slist->slh_tail->field.sle.prev = slist->slh_head; \
2024-03-21 02:48:11 +00:00
\
i = 0; \
2024-03-21 16:30:37 +00:00
while (snap->list.length > 0) { \
decl##_node_t *n = (decl##_node_t *)snap->nodes + (i++ * sizeof(decl##_node_t)); \
node = (decl##_node_t *)&n; \
2024-03-21 13:31:32 +00:00
rc = prefix##skip_alloc_node_##decl(slist, &new); \
snap_node_blk; \
__skip_insert_##decl(slist, new, 1); \
2024-03-21 16:30:37 +00:00
snap->list.length--; \
} \
return slist; \
2024-03-21 02:48:11 +00:00
fail:; \
if (slist->slh_head) \
free(slist->slh_head); \
if (slist->slh_tail) \
free(slist->slh_tail); \
return NULL; \
2024-03-20 20:02:56 +00:00
} \
\
2024-03-21 20:35:18 +00:00
/* -- skip_dispose_snapshot_ TODO/WIP */ \
void prefix##skip_dispose_snapshot_##decl(decl##_snap_t *snap) \
2024-03-20 20:02:56 +00:00
{ \
2024-03-21 16:30:37 +00:00
decl##_node_t *node; \
2024-03-21 02:48:11 +00:00
\
2024-03-21 16:30:37 +00:00
node = (decl##_node_t *)snap->nodes; \
while (snap->list.length > 0) { \
2024-03-20 20:02:56 +00:00
free_node_blk; \
2024-03-21 16:30:37 +00:00
node += sizeof(decl##_node_t); \
snap->list.length--; \
} \
2024-03-20 20:02:56 +00:00
free(snap); \
} \
\
2024-03-21 20:35:18 +00:00
/* -- skip_serialize_ TODO/WIP \
2024-03-21 16:53:46 +00:00
* Similar to snapshot, but includes the values and encodes them \
* in a portable manner. \
*/ \
decl##_snap_t *prefix##skip_serialize_##decl(decl##_t *slist) \
{ \
size_t size, bytes, i; \
decl##_snap_t *snap; \
decl##_node_t *node, *new; \
\
if (slist == NULL) \
return 0; \
\
bytes = sizeof(decl##_snap_t) + (slist->length * sizeof(decl##_node_t)); \
node = prefix##skip_head_##decl(slist); \
while (node) { \
sizeof_entry_blk; \
bytes += sizeof(size_t); \
bytes += size; \
node = prefix##skip_next_node_##decl(slist, node); \
} \
snap = (decl##_snap_t *)calloc(1, bytes); \
if (snap == NULL) \
return NULL; \
\
snap->bytes = bytes; \
snap->list.length = slist->length; \
snap->list.max = slist->max; \
snap->nodes = (decl##_node_t *)(snap + sizeof(decl##_snap_t)); \
\
i = 0; \
node = prefix##skip_head_##decl(slist); \
while (node) { \
decl##_node_t *n = (decl##_node_t *)snap->nodes + (i++ * sizeof(decl##_node_t)); \
new = (decl##_node_t *)&n; \
snap_node_blk; \
node = prefix##skip_next_node_##decl(slist, node); \
} \
return snap; \
} \
\
2024-03-21 20:35:18 +00:00
/* -- skip_deserialize_snapshot_ TODO/WIP */ \
2024-03-21 16:53:46 +00:00
decl##_t *prefix##skip_deserialize_##decl(decl##_snap_t *snap, int (*cmp)(decl##_t * head, decl##_node_t * a, decl##_node_t * b, void *aux)) \
{ \
int rc; \
size_t i; \
decl##_t *slist; \
decl##_node_t *node, *new; \
\
if (snap == NULL || cmp == NULL) \
return 0; \
slist = (decl##_t *)calloc(1, sizeof(decl##_t)); \
if (slist == NULL) \
return NULL; \
\
slist->cmp = cmp; \
slist->max = snap->list.max; \
\
rc = prefix##skip_alloc_node_##decl(slist, &slist->slh_head); \
if (rc) \
goto fail; \
rc = prefix##skip_alloc_node_##decl(slist, &slist->slh_tail); \
if (rc) \
goto fail; \
\
slist->slh_head->field.sle.height = 0; \
2024-03-21 16:53:46 +00:00
for (i = 0; i < slist->max; i++) \
slist->slh_head->field.sle.next[i] = slist->slh_tail; \
slist->slh_head->field.sle.prev = NULL; \
\
slist->slh_tail->field.sle.height = slist->max; \
2024-03-21 16:53:46 +00:00
for (i = 0; i < slist->max; i++) \
slist->slh_tail->field.sle.next[i] = NULL; \
slist->slh_tail->field.sle.prev = slist->slh_head; \
\
i = 0; \
while (snap->list.length > 0) { \
decl##_node_t *n = (decl##_node_t *)snap->nodes + (i++ * sizeof(decl##_node_t)); \
node = (decl##_node_t *)&n; \
rc = prefix##skip_alloc_node_##decl(slist, &new); \
snap_node_blk; \
__skip_insert_##decl(slist, new, 1); \
snap->list.length--; \
} \
return slist; \
fail:; \
if (slist->slh_head) \
free(slist->slh_head); \
if (slist->slh_tail) \
free(slist->slh_tail); \
return NULL; \
2024-03-22 15:47:51 +00:00
}
#define SKIPLIST_INTEGRITY_CHECK(decl, prefix, field) \
/* -- __skip_integrity_check_ */ \
static int __skip_integrity_check_##decl(decl##_t *slist, int flags) \
{ \
unsigned nth, n_err = 0; \
size_t size; \
FILE *of = stderr; \
decl##_node_t *node; \
struct __skiplist_##decl_idx *this, *that, *prev, *next; \
\
if (slist == NULL) { \
fprintf(of, "slist was NULL, nothing to check"); \
n_err++; \
return n_err; \
} \
\
/* Check the Skiplist header (slh) */ \
\
if (slist->slh_head == NULL) { \
fprintf(of, "skiplist slh_head is NULL"); \
n_err++; \
return n_err; \
} \
\
if (slist->slh_tail == NULL) { \
fprintf(of, "skiplist slh_tail is NULL"); \
n_err++; \
return n_err; \
} \
\
if (slist->cmp == NULL) { \
fprintf(of, "skiplist comparison function (cmp) is NULL"); \
n_err++; \
return n_err; \
} \
\
if (slist->level >= slist->max) { \
/* level is 0-based, max of 12 means level cannot be > 11 */ \
fprintf(of, "skiplist level in header was >= max"); \
n_err++; \
if (flags) \
return n_err; \
} \
\
if (SKIPLIST_MAX_HEIGHT < 1) { \
fprintf(of, "SKIPLIST_MAX_HEIGHT cannot be less than 1"); \
n_err++; \
if (flags) \
return n_err; \
} \
\
if (SKIPLIST_MAX_HEIGHT > 0 && slist->max > SKIPLIST_MAX_HEIGHT) { \
fprintf(of, "slist->max cannot be greater than SKIPLIST_MAX_HEIGHT"); \
n_err++; \
if (flags) \
return n_err; \
} \
\
if (slist->length > 0 && slist->slh_head->field.sle.next[0] != slist->slh_tail) { \
fprintf(of, "slist->length is 0, but head->next == tail, not an internal node"); \
n_err++; \
if (flags) \
return n_err; \
} \
\
if (slist->length > 0 && slist->slh_tail->field.sle.prev != slist->slh_head) { \
fprintf(of, "slist->length is 0, but tail->prev == head, not an internal node"); \
n_err++; \
if (flags) \
return n_err; \
} \
\
/* Validate the head node */ \
\
/* Validate the tail node */ \
\
/* Validate each node */ \
nth = 0; \
size = prefix##skip_size_##decl(slist); \
node = prefix##skip_head_##decl(slist); \
do { \
this = &node->field.sle; \
if (this->next == NULL) { \
fprintf(of, "the %u node's [%p] next field should never NULL", nth, (void *)node); \
n_err++; \
if (flags) \
return n_err; \
} \
if (this->prev == NULL) { \
fprintf(of, "the %u node [%p] prev field should never NULL", nth, (void *)node); \
n_err++; \
if (flags) \
return n_err; \
} \
if (*this->next != node + (sizeof(struct __skiplist_##decl_idx) * slist->max)) { \
fprintf(of, "the %u node's [%p] next field isn't at the proper offset relative to the node", nth, (void *)node); \
n_err++; \
if (flags) \
return n_err; \
} \
\
node = prefix##skip_next_node_##decl(slist, node); \
nth++; \
} while (node != NULL); \
\
return 0; \
2024-03-20 03:04:34 +00:00
}
2024-03-18 01:47:03 +00:00
2024-03-21 20:35:18 +00:00
#define SKIPLIST_KV_ACCESS(decl, prefix, ktype, vtype, qblk, rblk) \
vtype prefix##skip_get_##decl(decl##_t *slist, ktype key) \
{ \
decl##_node_t *node, query; \
\
qblk; \
node = prefix##skip_position_eq_##decl(slist, &query); \
if (node) { \
rblk; \
} \
return (vtype)0; \
} \
\
int prefix##skip_contains_##decl(decl##_t *slist, ktype key) \
{ \
decl##_node_t *node, query; \
\
qblk; \
node = prefix##skip_position_eq_##decl(slist, &query); \
if (node) \
return 1; \
return 0; \
} \
\
2024-03-21 20:35:18 +00:00
decl##_node_t *prefix##skip_pos_##decl(decl##_t *slist, skip_pos_##decl_t op, ktype key) \
{ \
decl##_node_t *node, query; \
\
qblk; \
node = prefix##skip_position_##decl(slist, op, &query); \
if (node != slist->slh_head && node != slist->slh_tail) \
return node; \
return NULL; \
} \
\
int prefix##skip_put_##decl(decl##_t *slist, ktype key, vtype value) \
{ \
int rc; \
decl##_node_t *node; \
rc = prefix##skip_alloc_node_##decl(slist, &node); \
if (rc) \
return rc; \
node->key = key; \
node->value = value; \
rc = prefix##skip_insert_##decl(slist, node); \
if (rc) \
prefix##skip_free_node_##decl(node); \
return rc; \
} \
\
int prefix##skip_dup_##decl(decl##_t *slist, ktype key, vtype value) \
{ \
int rc; \
decl##_node_t *node; \
rc = prefix##skip_alloc_node_##decl(slist, &node); \
if (rc) \
return rc; \
node->key = key; \
node->value = value; \
rc = prefix##skip_insert_dup_##decl(slist, node); \
if (rc) \
prefix##skip_free_node_##decl(node); \
return rc; \
2024-03-21 20:35:18 +00:00
} \
\
int prefix##skip_set_##decl(decl##_t *slist, ktype key, vtype value) \
{ \
decl##_node_t node; \
node.key = key; \
node.value = value; \
return prefix##skip_update_##decl(slist, &node); \
} \
\
int prefix##skip_del_##decl(decl##_t *slist, ktype key) \
{ \
decl##_node_t node; \
node.key = key; \
return prefix##skip_remove_##decl(slist, &node); \
2024-03-20 03:04:34 +00:00
}
2024-03-17 14:40:59 +00:00
#define SKIPLIST_DECL_DOT(decl, prefix, field) \
\
/* A type for a function that writes into a char[2048] buffer \
* a description of the value within the node. */ \
typedef void (*skip_sprintf_node_##decl##_t)(decl##_node_t *, char *); \
\
/* -- __skip_dot_node_ \
* Writes out a fragment of a DOT file representing a node. \
*/ \
static size_t __skip_dot_width_##decl(decl##_t *slist, decl##_node_t *node, size_t level) \
{ \
size_t w = 0; \
decl##_node_t *n; \
\
if (node == slist->slh_tail) \
return 0; \
n = node->field.sle.next[level]; \
\
do { \
w++; \
n = prefix##skip_prev_node_##decl(slist, n); \
} while (n && n->field.sle.prev != node); \
\
return --w; \
} \
\
/* -- __skip_dot_node_ \
* Writes out a fragment of a DOT file representing a node. \
*/ \
static void __skip_dot_node_##decl(FILE *os, decl##_t *slist, decl##_node_t *node, size_t nsg, skip_sprintf_node_##decl##_t fn) \
{ \
char buf[2048]; \
size_t level, width, height = node->field.sle.height; \
decl##_node_t *next; \
\
fprintf(os, "\"node%zu %p\"", nsg, (void *)node); \
fprintf(os, " [label = \""); \
level = height; \
while (level--) { \
width = __skip_dot_width_##decl(slist, node, level); \
fprintf(os, " { <w%zu> %zu | <f%zu> %p } |", level, width, level, (void *)node->field.sle.next[level]); \
} \
if (fn) { \
fn(node, buf); \
fprintf(os, " <f0> %s\"\n", buf); \
} else { \
fprintf(os, " <f0> ?\"\n"); \
} \
fprintf(os, "shape = \"record\"\n"); \
fprintf(os, "];\n"); \
\
/* Now edges */ \
level = 0; \
for (level = 0; level < height; level++) { \
fprintf(os, "\"node%zu %p\"", nsg, (void *)node); \
fprintf(os, ":f%zu -> ", level); \
fprintf(os, "\"node%zu %p\"", nsg, (void *)node->field.sle.next[level]); \
fprintf(os, ":w%zu [];\n", level); \
} \
next = prefix##skip_next_node_##decl(slist, node); \
if (next) \
__skip_dot_node_##decl(os, slist, next, nsg, fn); \
} \
\
/* -- _skip_dot_finish_ \
* Finalize the DOT file of the internal representation. \
*/ \
void prefix##skip_dot_end_##decl(FILE *os, size_t nsg) \
{ \
size_t i; \
if (nsg > 0) { \
/* Link the nodes together with an invisible node. \
* node0 [shape=record, label = "<f0> | <f1> | <f2> | <f3> | \
* <f4> | <f5> | <f6> | <f7> | <f8> | ", style=invis, width=0.01]; \
*/ \
fprintf(os, "node0 [shape=record, label = \""); \
for (i = 0; i < nsg; ++i) { \
fprintf(os, "<f%zu> | ", i); \
} \
fprintf(os, "\", style=invis, width=0.01];\n"); \
\
/* Now connect nodes with invisible edges \
* \
* node0:f0 -> HeadNode [style=invis]; \
* node0:f1 -> HeadNode1 [style=invis]; \
*/ \
for (i = 0; i < nsg; ++i) { \
fprintf(os, "node0:f%zu -> HeadNode%zu [style=invis];\n", i, i); \
} \
nsg = 0; \
} \
fprintf(os, "}\n"); \
} \
\
/* -- skip_dot_ \
* Create a DOT file of the internal representation of the \
* Skip List on the provided file descriptor (default: STDOUT). \
* \
* To view the output: \
* $ dot -Tps filename.dot -o outfile.ps \
* You can change the output format by varying the value after -T and \
* choosing an appropriate filename extension after -o. \
* See: https://graphviz.org/docs/outputs/ for the format options. \
* \
* https://en.wikipedia.org/wiki/DOT_(graph_description_language) \
*/ \
int prefix##skip_dot_##decl(FILE *os, decl##_t *slist, size_t nsg, skip_sprintf_node_##decl##_t fn) \
{ \
size_t width, level; \
decl##_node_t *node, *next; \
\
if (slist == NULL || fn == NULL) \
return nsg; \
2024-03-22 15:47:51 +00:00
if (__skip_integrity_check_##decl(slist, 1) != 0) { \
perror("Skiplist failed integrity checks, impossible to diagram."); \
return -1; \
} \
if (nsg == 0) { \
fprintf(os, "digraph Skiplist {\n"); \
fprintf(os, "label = \"Skiplist.\"\n"); \
fprintf(os, "graph [rankdir = \"LR\"];\n"); \
fprintf(os, "node [fontsize = \"12\" shape = \"ellipse\"];\n"); \
fprintf(os, "edge [];\n\n"); \
} \
fprintf(os, "subgraph cluster%zu {\n", nsg); \
fprintf(os, "style=dashed\n"); \
fprintf(os, "label=\"Skip list iteration %zu\"\n\n", nsg); \
fprintf(os, "\"HeadNode%zu\" [\n", nsg); \
fprintf(os, "label = \""); \
\
/* Write out the fields */ \
if (prefix##skip_size_##decl(slist) == 0) \
fprintf(os, "Empty HeadNode"); \
else { \
node = slist->slh_head->field.sle.next[0]; \
level = slist->slh_head->field.sle.height; \
next = node->field.sle.next[level] == NULL ? slist->slh_tail : node->field.sle.next[level]; /*TODO*/ \
do { \
width = __skip_dot_width_##decl(slist, node, level); \
fprintf(os, "{ %zu | <f%zu> %p }", width, level, (void *)next); \
if (level) \
fprintf(os, " | "); \
} while (level--); \
} \
fprintf(os, "\"\n"); \
fprintf(os, "shape = \"record\"\n"); \
fprintf(os, "];\n"); \
\
/* Edges for head node */ \
node = slist->slh_head; \
for (level = 0; level < slist->slh_head->field.sle.height; level++) { \
if (node->field.sle.next[level] == slist->slh_tail) \
break; \
fprintf(os, "\"HeadNode%zu\":f%zu -> ", nsg, level); \
fprintf(os, "\"node%zu %p\"", nsg, (void *)node->field.sle.next[level]); \
fprintf(os, ":w%zu [];\n", level); \
} \
fprintf(os, "\n"); \
\
/* Now all nodes via level 0, if non-empty */ \
node = prefix##skip_head_##decl(slist); \
if (node) \
__skip_dot_node_##decl(os, slist, node, nsg, fn); \
fprintf(os, "\n"); \
\
/* The tail, sentinal node */ \
node = slist->slh_tail; \
if (prefix##skip_size_##decl(slist) > 0) { \
fprintf(os, "\"node%zu %p\" [label = \"", nsg, (void *)slist->slh_tail); \
level = node->field.sle.height; \
do { \
fprintf(os, "<w%zu> %p", level, (void *)node); \
if (level && node->field.sle.prev != slist->slh_head) \
fprintf(os, " | "); \
} while (level--); \
fprintf(os, "\" shape = \"record\"];\n"); \
} \
\
/* End: "subgraph cluster0 {" */ \
fprintf(os, "}\n\n"); \
nsg += 1; \
\
return nsg; \
2024-03-20 03:04:34 +00:00
}
2024-03-17 14:40:59 +00:00
2024-03-19 13:41:36 +00:00
#endif /* _SKIPLIST_H_ */