skiplist/include/sl.h
2024-04-08 11:18:36 -04:00

1966 lines
235 KiB
C

/*
* Copyright (c) 2024
* Gregory Burd <greg@burd.me>. All rights reserved.
*
* ISC License Permission to use, copy, modify, and/or distribute this software
* for any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*
* I'd like to thank others for thoughtfully licensing their work, the
* community of software engineers succeeds when we work together.
*
* Portions of this code are derived from other copyrighted works:
*
* - MIT License
* - https://github.com/greensky00/skiplist
* 2017-2024 Jung-Sang Ahn <jungsang.ahn@gmail.com>
* - https://github.com/paulross/skiplist
* Copyright (c) 2017-2023 Paul Ross <paulross@uky.edu>
* - https://github.com/JP-Ellis/rust-skiplist
* Copyright (c) 2015 Joshua Ellis <github@jpellis.me>
* - Public Domain
* - https://gist.github.com/zhpengg/2873424
* Zhipeng Li <zhpeng.is@gmail.com>
*/
#define _USE_MATH_DEFINES // needed to have definition of M_LOG2E
#define _GNU_SOURCE
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpedantic"
#include <assert.h>
#include <errno.h>
#include <math.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#pragma GCC diagnostic pop
#ifndef _SKIPLIST_H_
#define _SKIPLIST_H_
/*
* This file defines a skiplist data structure written in C. Implemented as
* using macros this code provides a way to essentially "template" (as in C++)
* and emit code with types and functions specific to your use case. You can
* apply these macros multiple times safely in your code, once for each
* application.
*
* A skiplist is a sorted list with O(log(n)) on average for most operations.
* It is a probabilistic datastructure, meaning that it does not guarantee
* O(log(n)) it approximates it over time. This implementation improves the
* probability by integrating the splay list algorithm for rebalancing trading
* off a bit of computational overhead and code complexity for a nearly always
* optimal, or "perfect" skiplist.
*
* Conceptually, a skiplist is arranged as follows:
*
* <head> ----------> [2] --------------------------------------------------> [9] ---------->
* <head> ----------> [2] ------------------------------------[7] ----------> [9] ---------->
* <head> ----------> [2] ----------> [4] ------------------> [7] ----------> [9] --> [10] ->
* <head> --> [1] --> [2] --> [3] --> [4] --> [5] --> [6] --> [7] --> [8] --> [9] --> [10] ->
*
* Each node contains at the very least a link to the next element in the list
* (corresponding to the lowest level in the above diagram), but it can randomly
* contain more links which skip further down the list (the towers in the above
* diagram). This allows for the algorithm to move down the list faster than
* having to visit every element.
*
* Conceptually, the skiplist can be thought of as a stack of linked lists. At
* the very bottom is the full linked list with every element, and each layer
* above corresponds to a linked list containing a random subset of the elements
* from the layer immediately below it. The probability distribution that
* determines this random subset can be customized, but typically a layer will
* contain half the nodes from the layer below.
*
* This implementation maintains a doubly-linked list at the bottom layer to
* support efficient iteration in either direction. There is also a guard
* node at the tail rather than simply pointing to NULL.
*
* <head> <-> [1] <-> [2] <-> [3] <-> [4] <-> [5] <-> [6] <-> [7] <-> <tail>
*
* Safety:
*
* The ordered skiplist relies on a well-behaved comparison
* function. Specifically, given some ordering function f(a, b), it must satisfy
* the following properties:
*
* 1) Be well defined: f(a, b) should always return the same value
* 2) Be anti-symmetric: f(a, b) == Greater if and only if f(b, a) == Less, and
* f(a, b) == Equal == f(b, a).
* 3) Be transitive: If f(a, b) == Greater and f(b, c) == Greater then f(a, c)
* == Greater.
*
* Failure to satisfy these properties can result in unexpected behavior at
* best, and at worst will cause a segfault, null deref, or some other bad
* behavior.
*
* References for this implementation include, but are not limited to:
*
* - Skip lists: a probabilistic alternative to balanced trees
* @article{10.1145/78973.78977,
* author = {Pugh, William},
* title = {Skip lists: a probabilistic alternative to balanced trees},
* year = {1990}, issue_date = {June 1990},
* publisher = {Association for Computing Machinery},
* address = {New York, NY, USA},
* volume = {33}, number = {6}, issn = {0001-0782},
* url = {https://doi.org/10.1145/78973.78977},
* doi = {10.1145/78973.78977},
* journal = {Commun. ACM}, month = {jun}, pages = {668-676}, numpages = {9},
* keywords = {trees, searching, data structures},
* download = {https://www.cl.cam.ac.uk/teaching/2005/Algorithms/skiplists.pdf}
* }
*
* - Tutorial: The Ubiquitous Skiplist, its Variants, and Applications in Modern Big Data Systems
* @article{Vadrevu2023TutorialTU,
* title={Tutorial: The Ubiquitous Skiplist, its Variants, and Applications in Modern Big Data Systems},
* author={Venkata Sai Pavan Kumar Vadrevu and Lu Xing and Walid G. Aref},
* journal={ArXiv},
* year={2023},
* volume={abs/2304.09983},
* url={https://api.semanticscholar.org/CorpusID:258236678},
* download={https://arxiv.org/pdf/2304.09983.pdf}
* }
*
* - The Splay-List: A Distribution-Adaptive Concurrent Skip-List
* @misc{aksenov2020splaylist,
* title={The Splay-List: A Distribution-Adaptive Concurrent Skip-List},
* author={Vitaly Aksenov and Dan Alistarh and Alexandra Drozdova and Amirkeivan Mohtashami},
* year={2020},
* eprint={2008.01009},
* archivePrefix={arXiv},
* primaryClass={cs.DC},
* download={https://arxiv.org/pdf/2008.01009.pdf}
* }
*
* - JellyFish: A Fast Skip List with MVCC},
* @article{Yeon2020JellyFishAF,
* title={JellyFish: A Fast Skip List with MVCC},
* author={Jeseong Yeon and Leeju Kim and Youil Han and Hyeon Gyu Lee and Eunji Lee and Bryan Suk Joon Kim},
* journal={Proceedings of the 21st International Middleware Conference},
* year={2020},
* url={https://api.semanticscholar.org/CorpusID:228086012}
* }
*/
#if defined(SKIPLIST_DIAGNOSTIC) && defined(DEBUG)
#ifndef SKIP_DIAG
#define SKIP_DIAG
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wvariadic-macros"
#define __skip_diag(format, ...) __skip_diag_(__FILE__, __LINE__, __func__, format, ##__VA_ARGS__)
#pragma GCC diagnostic pop
/** \
* -- __skip_diag__ \
* \
* Write debug message to stderr with origin of message. \
*/
void __attribute__((format(printf, 4, 5))) __skip_diag_(const char *file, int line, const char *func, const char *format, ...)
{
va_list args;
va_start(args, format);
fprintf(stderr, "%s:%d:%s(): ", file, line, func);
vfprintf(stderr, format, args);
va_end(args);
}
#else
#define __skip_diag(file, line, func, format, ...) ((void)0)
#endif
#ifndef SKIP_ASSERT
#define SKIP_ASSERT
#define __skip_assert(expr) \
if (!(expr)) \
fprintf(stderr, "%s:%d:%s(): assertion failed! %s", __FILE__, __LINE__, __func__, #expr)
#else
#define __skip_assert(expr) ((void)0)
#endif
#endif
/*
* Skiplist declarations.
*/
#ifndef SKIPLIST_MAX_HEIGHT
#define SKIPLIST_MAX_HEIGHT 1
#endif
/*
* Every Skiplist node has to hvae an additional section of data used to manage
* nodes in the list. The rest of the datastructure is defined by the use case.
* This housekeeping portion is the SKIPLIST_ENTRY, see below. It maintains the
* array of forward pointers to nodes and has a height, this height is a a
* zero-based count of levels, so a height of `0` means one (1) level and a
* height of `4` means five (5) forward pointers (levels) in the node, [0-4).
*/
#define SKIPLIST_ENTRY(decl) \
struct __skiplist_##decl##_entry { \
size_t sle_era; \
size_t sle_height; \
struct decl##_node *sle_prev; \
struct __skiplist_##decl##_level { \
struct decl##_node *next; \
} *sle_levels; \
}
#define SKIPLIST_FOREACH_H2T(decl, prefix, field, list, elm, iter) \
for (iter = 0, (elm) = (list)->slh_head; ((elm) = (elm)->field.sle_levels[0].next) != (list)->slh_tail; iter++)
/* Iterate from tail to head over the nodes. */
#define SKIPLIST_FOREACH_T2H(decl, prefix, field, list, elm, iter) \
for (iter = (list)->slh_length, (elm) = (list)->slh_tail; ((elm) = (elm)->field.sle_prev) != (list)->slh_head; iter--)
/* Iterate over the next pointers in a node from bottom to top (B2T) or top to bottom (T2B). */
#define __SKIP_ALL_ENTRIES_T2B(field, elm) for (size_t lvl = slist->slh_max_height; lvl != (size_t)-1; lvl--)
#define __SKIP_ENTRIES_T2B(field, elm) for (size_t lvl = elm->field.sle_height; lvl != (size_t)-1; lvl--)
#define __SKIP_ENTRIES_T2B_FROM(field, elm, off) for (size_t lvl = off; lvl != (size_t)-1; lvl--)
#define __SKIP_IS_LAST_ENTRY_T2B() if (lvl == 0)
#define __SKIP_ALL_ENTRIES_B2T(field, elm) for (size_t lvl = 0; lvl < slist->slh_max_height; lvl++)
#define __SKIP_ENTRIES_B2T(field, elm) for (size_t lvl = 0; lvl <= elm->field.sle_height; lvl++)
#define __SKIP_ENTRIES_B2T_FROM(field, elm, off) for (size_t lvl = off; lvl <= elm->field.sle_height; lvl++)
#define __SKIP_IS_LAST_ENTRY_B2T() if (lvl + 1 == elm->field.sle_height)
/*
* Skiplist declarations and access methods.
*/
#define SKIPLIST_DECL(decl, prefix, field, compare_entries_blk, free_entry_blk, update_entry_blk, archive_entry_blk, sizeof_entry_blk) \
\
/* Used when positioning a cursor within a Skiplist. */ \
typedef enum { SKIP_EQ = 0, SKIP_LTE = -1, SKIP_LT = -2, SKIP_GTE = 1, SKIP_GT = 2 } skip_pos_##decl_t; \
\
/* Skiplist node type */ \
typedef struct decl##_node decl##_node_t; \
\
/* Skiplist type. */ \
typedef struct decl decl##_t; \
\
/* Skiplist structure */ \
struct decl { \
size_t slh_length, slh_max_height; \
void *slh_aux; \
int slh_prng_state; \
decl##_node_t *slh_head; \
decl##_node_t *slh_tail; \
struct { \
void (*free_entry)(decl##_node_t *); \
int (*update_entry)(decl##_node_t *, void *); \
int (*archive_entry)(decl##_node_t *, const decl##_node_t *); \
size_t (*sizeof_entry)(decl##_node_t *); \
int (*compare_entries)(decl##_t *, decl##_node_t *, decl##_node_t *, void *); \
\
/* Optional: Snapshots */ \
int (*snapshot_preserve_node)(decl##_t * slist, const decl##_node_t *src, decl##_node_t **preserved); \
void (*snapshot_release)(decl##_t *); \
} slh_fns; \
struct { \
size_t cur_era; \
size_t pres_era; \
decl##_node_t *pres; \
} slh_snap; \
}; \
\
typedef struct __skiplist_path_##decl { \
decl##_node_t *node; /* node traversed in the act of location */ \
} __skiplist_path_##decl##_t; \
\
/* Xorshift algorithm for PRNG */ \
static uint32_t __##decl##_xorshift32(int *state) \
{ \
uint32_t x = *state; \
if (x == 0) \
x = 123456789; \
x ^= x << 13; \
x ^= x >> 17; \
x ^= x << 5; \
*state = x; \
return x; \
} \
\
/** \
* -- __skip_compare_entries_fn_ \
* \
* Wraps the `compare_entries_blk` code into `slh_fns.compare_entries`. \
*/ \
static int __skip_compare_entries_fn_##decl(decl##_t *list, decl##_node_t *a, decl##_node_t *b, void *aux) \
{ \
compare_entries_blk; \
} \
\
/** \
* -- __skip_free_entry_fn \
* \
* Wraps the `free_entry_blk` code into `slh_fns.free_entry`. \
*/ \
static void __skip_free_entry_fn_##decl(decl##_node_t *node) \
{ \
free_entry_blk; \
} \
\
/** \
* -- __skip_update_entry_fn_ \
* \
* Wraps the `update_entry_blk` code into `slh_fns.update_entry`. \
*/ \
static int __skip_update_entry_fn_##decl(decl##_node_t *node, void *value) \
{ \
int rc = 0; \
update_entry_blk; \
return rc; \
} \
\
/** \
* -- __skip_archive_entry_fn_ \
* \
* Wraps the `archive_entry_blk` code into `slh_fns.archive_entry`. \
*/ \
static int __skip_archive_entry_fn_##decl(decl##_node_t *dest, const decl##_node_t *src) \
{ \
int rc = 0; \
archive_entry_blk; \
return rc; \
} \
\
/** \
* -- __skip_sizeof_entry_fn_ \
* \
* Wraps the `sizeof_entry_blk` code into `slh_fns.sizeof_entry`. \
*/ \
static size_t __skip_sizeof_entry_fn_##decl(decl##_node_t *node) \
{ \
size_t bytes = 0; \
sizeof_entry_blk; \
return bytes; \
} \
\
/** \
* -- __skip_compare_nodes_ \
* \
* This function takes four arguments: \
* - a reference to the Skiplist \
* - the two nodes to compare, `a` and `b` \
* - `aux` an additional auxiliary argument \
* and returns: \
* a < b : return -1 \
* a == b : return 0 \
* a > b : return 1 \
*/ \
static int __skip_compare_nodes_##decl(decl##_t *slist, decl##_node_t *a, decl##_node_t *b, void *aux) \
{ \
if (a == b) \
return 0; \
if (a == NULL) \
return -1; \
if (b == NULL) \
return 1; \
if (a == slist->slh_head || b == slist->slh_tail) \
return -1; \
if (a == slist->slh_tail || b == slist->slh_head) \
return 1; \
return slist->slh_fns.compare_entries(slist, a, b, aux); \
} \
\
/** \
* -- __skip_toss_ \
* \
* A "coin toss" function that is critical to the proper operation of the \
* Skiplist. For example, when `max = 6` this function returns 0 with \
* probability 0.5, 1 with 0.25, 2 with 0.125, etc. until 6 with 0.5^7. \
*/ \
static int __skip_toss_##decl(decl##_t *slist, size_t max) \
{ \
size_t level = 0; \
double probability = 0.5; \
\
double random_value = (double)__##decl##_xorshift32(&slist->slh_prng_state) / RAND_MAX; \
while (random_value < probability && level < max) { \
level++; \
probability *= 0.5; \
} \
return level; \
} \
\
/** \
* -- skip_alloc_node_ \
* \
* Allocates a new node on the heap and sets default values. \
*/ \
int prefix##skip_alloc_node_##decl(decl##_t *slist, decl##_node_t **node) \
{ \
decl##_node_t *n; \
/* Calculate the size of the struct sle within decl##_node_t, multiply \
by array size. (16/24 bytes on 32/64 bit systems) */ \
size_t sle_arr_sz = sizeof(struct __skiplist_##decl##_level) * slist->slh_max_height; \
n = (decl##_node_t *)calloc(1, sizeof(decl##_node_t) + sle_arr_sz); \
if (n == NULL) \
return ENOMEM; \
n->field.sle_height = 0; \
n->field.sle_levels = (struct __skiplist_##decl##_level *)((uintptr_t)n + sizeof(decl##_node_t)); \
*node = n; \
return 0; \
} \
\
/** \
* -- skip_init_ \
* \
* Initializes a Skiplist to the deafault values, this must be called \
* before using the list. \
*/ \
int prefix##skip_init_##decl(decl##_t *slist, int max) \
{ \
int rc = 0; \
size_t i; \
\
slist->slh_length = 0; \
slist->slh_max_height = SKIPLIST_MAX_HEIGHT == 1 ? (size_t)(max < 0 ? -max : max) : SKIPLIST_MAX_HEIGHT; \
slist->slh_snap.cur_era = 0; \
slist->slh_snap.pres_era = 0; \
slist->slh_snap.pres = 0; \
slist->slh_fns.free_entry = __skip_free_entry_fn_##decl; \
slist->slh_fns.update_entry = __skip_update_entry_fn_##decl; \
slist->slh_fns.archive_entry = __skip_archive_entry_fn_##decl; \
slist->slh_fns.sizeof_entry = __skip_sizeof_entry_fn_##decl; \
slist->slh_fns.compare_entries = __skip_compare_entries_fn_##decl; \
rc = prefix##skip_alloc_node_##decl(slist, &slist->slh_head); \
if (rc) \
goto fail; \
rc = prefix##skip_alloc_node_##decl(slist, &slist->slh_tail); \
if (rc) \
goto fail; \
\
/* Initial height is 0 (meaning 1 level), all next point to tail */ \
slist->slh_head->field.sle_height = 0; \
for (i = 0; i < slist->slh_max_height; i++) \
slist->slh_head->field.sle_levels[i].next = slist->slh_tail; \
slist->slh_head->field.sle_prev = NULL; \
\
/* Initial height is 0 (meaning 1 level), all next point to tail */ \
slist->slh_tail->field.sle_height = slist->slh_head->field.sle_height; \
for (i = 0; i < slist->slh_max_height; i++) \
slist->slh_tail->field.sle_levels[i].next = NULL; \
slist->slh_tail->field.sle_prev = slist->slh_head; \
\
/* NOTE: Here's a testing aid, simply set `max` to a negative number to \
* seed the PRNG in a predictable way and have reproducible random numbers. \
*/ \
if (max < 0) \
slist->slh_prng_state = -max; \
else \
slist->slh_prng_state = ((unsigned int)time(NULL) ^ getpid()); \
fail:; \
return rc; \
} \
\
/** \
* -- skip_free_node_ \
* \
* Properly releases heap memory allocated for use as a node. \
* This function invokes the `free_node_blk` within which you \
* should release any heap objects or other resources held by \
* this node in the list. \
*/ \
void prefix##skip_free_node_##decl(decl##_t *slist, decl##_node_t *node) \
{ \
slist->slh_fns.free_entry(node); \
free(node); \
} \
\
/** \
* -- skip_length_ \
* \
* Returns the current length of the list. \
*/ \
size_t prefix##skip_length_##decl(decl##_t *slist) \
{ \
return slist->slh_length; \
} \
\
/** \
* -- skip_is_empty_ \
* \
* Returns non-zero when the list is empty. \
*/ \
int prefix##skip_is_empty_##decl(decl##_t *slist) \
{ \
return slist->slh_length == 0; \
} \
\
/** \
* -- skip_head_ \
* \
* Returns the node containing the first (smallest) element in the \
* list which can be used to traverse the list. \
*/ \
decl##_node_t *prefix##skip_head_##decl(decl##_t *slist) \
{ \
return slist->slh_head->field.sle_levels[0].next == slist->slh_tail ? NULL : slist->slh_head->field.sle_levels[0].next; \
} \
\
/** \
* -- skip_tail_ \
* \
* Returns the node containing the last (largest) element in the \
* list which can be used to traverse the list. \
*/ \
decl##_node_t *prefix##skip_tail_##decl(decl##_t *slist) \
{ \
return slist->slh_tail->field.sle_prev == slist->slh_head->field.sle_levels[0].next ? NULL : slist->slh_tail->field.sle_prev; \
} \
\
/** \
* -- skip_next_node_ \
* \
* A node reference can be thought of as a cursor. This moves the cursor \
* to the next node in the list or returns NULL if the next is the tail. \
*/ \
decl##_node_t *prefix##skip_next_node_##decl(decl##_t *slist, decl##_node_t *n) \
{ \
if (slist == NULL || n == NULL) \
return NULL; \
if (n->field.sle_levels[0].next == slist->slh_tail) \
return NULL; \
return n->field.sle_levels[0].next; \
} \
\
/** \
* -- skip_prev_node_ \
* \
* A node reference can be thought of as a cursor. This moves the cursor \
* to the previous node in the list or returns NULL if the previous node \
* is the head. \
*/ \
decl##_node_t *prefix##skip_prev_node_##decl(decl##_t *slist, decl##_node_t *n) \
{ \
if (slist == NULL || n == NULL) \
return NULL; \
if (n->field.sle_prev == slist->slh_head) \
return NULL; \
return n->field.sle_prev; \
} \
\
/** \
* -- skip_release_ \
* \
* Release all nodes and their associated heap objects, but not the list \
* itself. The list is still valid, only empty. \
*/ \
void prefix##skip_release_##decl(decl##_t *slist) \
{ \
decl##_node_t *node, *next; \
\
if (slist == NULL) \
return; \
if (prefix##skip_is_empty_##decl(slist)) \
return; \
node = slist->slh_head->field.sle_levels[0].next; \
while (node != slist->slh_tail) { \
next = node->field.sle_levels[0].next; \
prefix##skip_free_node_##decl(slist, node); \
node = next; \
} \
if (slist->slh_snap.pres_era > 0) \
slist->slh_snap.cur_era++; \
return; \
} \
\
/** \
* -- skip_to_array_ \
* \
* Returns a heap allocated array of nodes in the order they exist. \
* This isn't maintained by the list, if you add/remove nodes it is \
* no longer accurate. At [-1] is the length of the array. \
* NOTE: Caller must deallocate. \
*/ \
decl##_node_t **prefix##skip_to_array_##decl(decl##_t *slist) \
{ \
size_t nth, len = prefix##skip_length_##decl(slist); \
decl##_node_t *node, **nodes = NULL; \
nodes = (decl##_node_t **)calloc(sizeof(decl##_node_t *), len + 1); \
if (nodes != NULL) { \
nodes[0] = (decl##_node_t *)(uintptr_t)len; \
nodes++; \
SKIPLIST_FOREACH_H2T(decl, prefix, field, slist, node, nth) \
{ \
nodes[nth] = node; \
} \
} \
return nodes; \
} \
\
/** \
* -- __skip_locate_ \
* \
* Locates a node that matches another node updating `path` and then \
* returning the length of that path + 1 to the node and the matching \
* node in path[0], or NULL at path[0] where there wasn't a match. \
* sizeof(path) should be `slist->slh_max_height + 1` \
*/ \
static size_t __skip_locate_##decl(decl##_t *slist, decl##_node_t *n, __skiplist_path_##decl##_t path[]) \
{ \
unsigned int i; \
size_t len = 0; \
decl##_node_t *elm = slist->slh_head; \
\
if (slist == NULL || n == NULL) \
return 0; \
\
/* Find the node that matches `node` or NULL. */ \
i = slist->slh_head->field.sle_height; \
do { \
while (elm != slist->slh_tail && elm->field.sle_levels[i].next && \
__skip_compare_nodes_##decl(slist, elm->field.sle_levels[i].next, n, slist->slh_aux) < 0) { \
elm = elm->field.sle_levels[i].next; \
} \
path[i + 1].node = elm; \
len++; \
} while (i--); \
elm = elm->field.sle_levels[0].next; \
if (__skip_compare_nodes_##decl(slist, elm, n, slist->slh_aux) == 0) { \
path[0].node = elm; \
} \
return len; \
} \
\
/** \
* -- __skip_insert_ \
* \
* Inserts the node `new` into the list `slist`, when `flags` is non-zero \
* duplicate keys are allowed. Duplicates are grouped together by key but \
* are otherwise unordered. \
*/ \
static int __skip_insert_##decl(decl##_t *slist, decl##_node_t *new, int flags) \
{ \
static __skiplist_path_##decl##_t apath[SKIPLIST_MAX_HEIGHT + 1]; \
int rc = 0; \
size_t i, len, loc = 0, cur_height, new_height; \
decl##_node_t *node; \
__skiplist_path_##decl##_t *path = apath; \
\
if (slist == NULL || new == NULL) \
return ENOENT; \
\
/* Allocate a buffer, or use a static one. */ \
if (SKIPLIST_MAX_HEIGHT == 1) { \
path = malloc(sizeof(__skiplist_path_##decl##_t) * slist->slh_max_height + 1); \
if (path == NULL) \
return ENOMEM; \
} \
/* First element in path should be NULL, reset should start pointing at tail. */ \
path[0].node = NULL; \
for (i = 1; i < slist->slh_max_height + 1; i++) { \
path[i].node = slist->slh_tail; \
} \
\
/* Find a `path` to `new` in the list and a match (`path[0]`) if it exists. */ \
len = __skip_locate_##decl(slist, new, path); \
node = path[0].node; \
if (len > 0) { \
if ((node != NULL) && (flags == 0)) { \
/* Don't insert, duplicate if flag not set. */ \
return -1; \
} \
/* Coin toss to determine level of this new node [0, max) */ \
cur_height = slist->slh_head->field.sle_height; \
new_height = __skip_toss_##decl(slist, slist->slh_max_height - 1); \
new->field.sle_height = new_height; \
/* Trim the path to at most the new height for the new node. */ \
for (i = cur_height + 1; i <= new_height; i++) { \
path[i + 1].node = slist->slh_tail; \
} \
/* Ensure all next[] point to tail. */ \
__SKIP_ALL_ENTRIES_B2T(field, new) \
{ \
new->field.sle_levels[lvl].next = slist->slh_tail; \
} \
/* Adjust all forward pointers for each element in the path. */ \
for (i = 0; i <= new_height; i++) { \
/* The tail's next[i] is always NULL, we don't want that in the \
next[i] for our new node. Also, don't set the tail's next[i] \
because it is always NULL. */ \
if (path[i + 1].node != slist->slh_tail) { \
new->field.sle_levels[i].next = path[i + 1].node->field.sle_levels[i].next; \
path[i + 1].node->field.sle_levels[i].next = new; \
loc = path[i + 1].node == slist->slh_head ? i : loc; \
} else { \
new->field.sle_levels[i].next = slist->slh_tail; \
} \
} \
/* Ensure all slh_head->next[] above loc point to tail. */ \
if (path[1].node == slist->slh_head) { \
__SKIP_ENTRIES_B2T_FROM(field, slist->slh_head, loc + 1) \
{ \
slist->slh_head->field.sle_levels[lvl].next = slist->slh_tail; \
} \
} \
/* Adujust the previous pointers in the nodes. */ \
new->field.sle_prev = path[1].node; \
new->field.sle_levels[0].next->field.sle_prev = new; \
/* Account for insert at tail. */ \
if (new->field.sle_levels[0].next == slist->slh_tail) \
slist->slh_tail->field.sle_prev = new; \
/* Adjust the head/tail boundary node heights if necessary. */ \
if (new_height > cur_height) { \
slist->slh_head->field.sle_height = new_height; \
slist->slh_tail->field.sle_height = new_height; \
} \
/* Record the era for this node to enable snapshots. */ \
if (slist->slh_snap.pres_era > 0) { \
/* Increase the the list's era/age and record it. */ \
new->field.sle_era = slist->slh_snap.cur_era++; \
} \
/* Increase our list length (aka. size, count, etc.) by one. */ \
slist->slh_length++; \
\
if (SKIPLIST_MAX_HEIGHT == 1) \
free(path); \
} \
return rc; \
} \
\
/** \
* -- skip_insert_ \
* \
* Insert into the list `slist` the node `n`. \
*/ \
int prefix##skip_insert_##decl(decl##_t *slist, decl##_node_t *n) \
{ \
return __skip_insert_##decl(slist, n, 0); \
} \
\
/** \
* -- skip_insert_dup_ \
* \
* Inserts into `slist` the node `n` even if that node's key already \
* exists in the list. \
*/ \
int prefix##skip_insert_dup_##decl(decl##_t *slist, decl##_node_t *n) \
{ \
return __skip_insert_##decl(slist, n, 1); \
} \
\
/** \
* -- skip_position_eq_ \
* \
* Find a node that matches the node `n`. This differs from the locate() \
* API in that it does not return the path to the node, only the match. \
*/ \
decl##_node_t *prefix##skip_position_eq_##decl(decl##_t *slist, decl##_node_t *query) \
{ \
static __skiplist_path_##decl##_t apath[SKIPLIST_MAX_HEIGHT + 1]; \
decl##_node_t *node = NULL; \
__skiplist_path_##decl##_t *path = apath; \
\
/* Allocate a buffer, or use a static one. */ \
if (SKIPLIST_MAX_HEIGHT == 1) { \
path = malloc(sizeof(__skiplist_path_##decl##_t) * slist->slh_max_height + 1); \
if (path == NULL) \
goto done; \
} \
memset(path, 0, sizeof(__skiplist_path_##decl##_t) * slist->slh_max_height + 1); \
\
/* Find a `path` to `new` in the list and a match (`path[0]`) if it exists. */ \
__skip_locate_##decl(slist, query, path); \
node = path[0].node; \
done:; \
if (SKIPLIST_MAX_HEIGHT == 1) \
free(path); \
\
return node; \
} \
\
/** \
* -- skip_position_gte \
* \
* Position and return a cursor at the first node that is equal to \
* or greater than the provided node `n`, otherwise if the largest \
* key is less than the key in `n` return NULL. \
*/ \
decl##_node_t *prefix##skip_position_gte_##decl(decl##_t *slist, decl##_node_t *query) \
{ \
static __skiplist_path_##decl##_t apath[SKIPLIST_MAX_HEIGHT + 1]; \
int cmp; \
decl##_node_t *node; \
__skiplist_path_##decl##_t *path = apath; \
\
/* Allocate a buffer, or use a static one. */ \
if (SKIPLIST_MAX_HEIGHT == 1) { \
path = malloc(sizeof(__skiplist_path_##decl##_t) * slist->slh_max_height + 1); \
if (path == NULL) \
goto done; \
} \
memset(path, 0, sizeof(__skiplist_path_##decl##_t) * slist->slh_max_height + 1); \
\
/* Find a `path` to `new` in the list and a match (`path[0]`) if it exists. */ \
__skip_locate_##decl(slist, query, path); \
node = path[1].node; \
do { \
node = node->field.sle_levels[0].next; \
cmp = __skip_compare_nodes_##decl(slist, node, query, slist->slh_aux); \
} while (cmp < 0); \
\
done:; \
if (SKIPLIST_MAX_HEIGHT == 1) \
free(path); \
\
return node; \
} \
\
/** \
* -- skip_position_gt_ \
* \
* Position and return a cursor at the first node that is greater than \
* the provided node `n`. If the largestkey is less than the key in `n` \
* return NULL. \
*/ \
decl##_node_t *prefix##skip_position_gt_##decl(decl##_t *slist, decl##_node_t *query) \
{ \
static __skiplist_path_##decl##_t apath[SKIPLIST_MAX_HEIGHT + 1]; \
int cmp; \
decl##_node_t *node; \
__skiplist_path_##decl##_t *path = apath; \
\
/* Allocate a buffer, or use a static one. */ \
if (SKIPLIST_MAX_HEIGHT == 1) { \
path = malloc(sizeof(__skiplist_path_##decl##_t) * slist->slh_max_height + 1); \
if (path == NULL) \
goto done; \
} \
memset(path, 0, sizeof(__skiplist_path_##decl##_t) * slist->slh_max_height + 1); \
\
/* Find a `path` to `new` in the list and a match (`path[0]`) if it exists. */ \
__skip_locate_##decl(slist, query, path); \
node = path[1].node; \
if (node == slist->slh_tail) \
goto done; \
do { \
node = node->field.sle_levels[0].next; \
cmp = __skip_compare_nodes_##decl(slist, node, query, slist->slh_aux); \
} while (cmp <= 0 && node != slist->slh_tail); \
\
done:; \
if (SKIPLIST_MAX_HEIGHT == 1) \
free(path); \
\
return node; \
} \
\
/** \
* -- skip_position_lte \
* \
* Position and return a cursor at the last node that is less than \
* or equal to node `n`. \
* Return NULL if nothing is less than or equal. \
*/ \
decl##_node_t *prefix##skip_position_lte_##decl(decl##_t *slist, decl##_node_t *query) \
{ \
static __skiplist_path_##decl##_t apath[SKIPLIST_MAX_HEIGHT + 1]; \
decl##_node_t *node; \
__skiplist_path_##decl##_t *path = apath; \
\
/* Allocate a buffer, or use a static one. */ \
if (SKIPLIST_MAX_HEIGHT == 1) { \
path = malloc(sizeof(__skiplist_path_##decl##_t) * slist->slh_max_height + 1); \
if (path == NULL) \
goto done; \
} \
memset(path, 0, sizeof(__skiplist_path_##decl##_t) * slist->slh_max_height + 1); \
\
/* Find a `path` to `new` in the list and a match (`path[0]`) if it exists. */ \
__skip_locate_##decl(slist, query, path); \
node = path[0].node; \
if (node) \
goto done; \
node = path[1].node; \
\
done:; \
if (SKIPLIST_MAX_HEIGHT == 1) \
free(path); \
\
return node; \
} \
\
/** \
* -- skip_position_lt_ \
* \
* Position and return a cursor at the last node that is less than \
* to the node `n`. Return NULL if nothing is less than or equal. \
*/ \
decl##_node_t *prefix##skip_position_lt_##decl(decl##_t *slist, decl##_node_t *query) \
{ \
static __skiplist_path_##decl##_t apath[SKIPLIST_MAX_HEIGHT + 1]; \
decl##_node_t *node; \
__skiplist_path_##decl##_t *path = apath; \
\
/* Allocate a buffer, or use a static one. */ \
if (SKIPLIST_MAX_HEIGHT == 1) { \
path = malloc(sizeof(__skiplist_path_##decl##_t) * slist->slh_max_height + 1); \
if (path == NULL) \
goto done; \
} \
memset(path, 0, sizeof(__skiplist_path_##decl##_t) * slist->slh_max_height + 1); \
\
/* Find a `path` to `new` in the list and a match (`path[0]`) if it exists. */ \
__skip_locate_##decl(slist, query, path); \
node = path[1].node; \
\
done:; \
if (SKIPLIST_MAX_HEIGHT == 1) \
free(path); \
\
return node; \
} \
\
/** \
* -- skip_position_ \
* \
* Position a cursor relative to `n`. \
*/ \
decl##_node_t *prefix##skip_position_##decl(decl##_t *slist, skip_pos_##decl_t op, decl##_node_t *query) \
{ \
decl##_node_t *node; \
\
switch (op) { \
case (SKIP_LT): \
node = prefix##skip_position_lt_##decl(slist, query); \
break; \
case (SKIP_LTE): \
node = prefix##skip_position_lte_##decl(slist, query); \
break; \
case (SKIP_GTE): \
node = prefix##skip_position_gte_##decl(slist, query); \
break; \
case (SKIP_GT): \
node = prefix##skip_position_gt_##decl(slist, query); \
break; \
default: \
case (SKIP_EQ): \
node = prefix##skip_position_eq_##decl(slist, query); \
break; \
} \
return node; \
} \
\
/** \
* -- skip_update_ \
* \
* Locates a node in the list that equals the `new` node and then \
* uses the `update_entry_blk` to update the contents. \
* \
* WARNING: Do not update the portion of the node used for ordering \
* (e.g. `key`) unless you really know what you're doing. \
*/ \
int prefix##skip_update_##decl(decl##_t *slist, decl##_node_t *query, void *value) \
{ \
static __skiplist_path_##decl##_t apath[SKIPLIST_MAX_HEIGHT + 1]; \
int rc = 0, np; \
decl##_node_t *node; \
__skiplist_path_##decl##_t *path = apath; \
\
if (slist == NULL) \
return -1; \
\
/* Allocate a buffer, or use a static one. */ \
if (SKIPLIST_MAX_HEIGHT == 1) { \
path = malloc(sizeof(__skiplist_path_##decl##_t) * slist->slh_max_height + 1); \
if (path == NULL) \
return ENOMEM; \
} \
memset(path, 0, sizeof(__skiplist_path_##decl##_t) * slist->slh_max_height + 1); \
\
__skip_locate_##decl(slist, query, path); \
node = path[0].node; \
\
if (SKIPLIST_MAX_HEIGHT == 1) \
free(path); \
\
if (node == NULL) \
return -1; \
\
/* If the optional snapshots feature is configured, use it now. \
Snapshots preserve the node if it is older than our snapshot \
and about to be mutated. */ \
if (slist->slh_snap.pres_era > 0) { \
/* Preserve the node. */ \
np = slist->slh_fns.snapshot_preserve_node(slist, node, NULL); \
if (np > 0) \
return np; \
\
/* Increase the the list's era/age. */ \
slist->slh_snap.cur_era++; \
} \
\
slist->slh_fns.update_entry(node, value); \
\
return rc; \
} \
\
/** \
* -- skip_remove_node_ \
* \
* Removes the node `n` from the `slist` if present. \
*/ \
int prefix##skip_remove_node_##decl(decl##_t *slist, decl##_node_t *query) \
{ \
static __skiplist_path_##decl##_t apath[SKIPLIST_MAX_HEIGHT + 1]; \
int np = 0; \
size_t i, len, height; \
decl##_node_t *node; \
__skiplist_path_##decl##_t *path = apath; \
\
if (slist == NULL || query == NULL) \
return -1; \
if (slist->slh_length == 0) \
return 0; \
\
/* Allocate a buffer */ \
if (SKIPLIST_MAX_HEIGHT == 1) { \
path = malloc(sizeof(__skiplist_path_##decl##_t) * slist->slh_max_height + 1); \
if (path == NULL) \
return ENOMEM; \
} \
memset(path, 0, sizeof(__skiplist_path_##decl##_t) * slist->slh_max_height + 1); \
\
/* Attempt to locate the node in the list. */ \
len = __skip_locate_##decl(slist, query, path); \
node = path[0].node; \
if (node) { \
/* If the optional snapshots feature is configured, use it now. \
Snapshots preserve the node if it is older than our snapshot \
and about to be mutated. */ \
if (slist->slh_snap.pres_era > 0) { \
/* Preserve the node. */ \
np = slist->slh_fns.snapshot_preserve_node(slist, node, NULL); \
if (np > 0) \
return np; \
\
/* Increase the the list's era/age. */ \
slist->slh_snap.cur_era++; \
} \
/* We found it, set the next->prev to the node->prev keeping in mind \
that the next node might be the tail). */ \
node->field.sle_levels[0].next->field.sle_prev = node->field.sle_prev; \
/* Walk the path, stop when the next node is not the one we're \
removing. At each step along our walk... */ \
for (i = 0; i < len; i++) { \
if (path[i + 1].node->field.sle_levels[i].next != node) \
break; \
/* ... adjust the next pointer at that level. */ \
path[i + 1].node->field.sle_levels[i].next = node->field.sle_levels[i].next; \
/* Adjust the height so we're only pointing at the tail once at \
the top so we don't waste steps later when searching. */ \
if (path[i + 1].node->field.sle_levels[i].next == slist->slh_tail) { \
height = path[i + 1].node->field.sle_height; \
path[i + 1].node->field.sle_height = height - 1; \
} \
} \
/* Account for delete at tail. */ \
if (node->field.sle_levels[0].next == slist->slh_tail) { \
slist->slh_tail->field.sle_prev = query->field.sle_prev; \
} \
\
if (SKIPLIST_MAX_HEIGHT == 1) \
free(path); \
\
slist->slh_fns.free_entry(node); \
\
/* Reduce the height of the head node. */ \
i = 0; \
while (slist->slh_head->field.sle_levels[i].next != slist->slh_tail && i < slist->slh_head->field.sle_height) \
i++; \
slist->slh_head->field.sle_height = i; \
slist->slh_tail->field.sle_height = i; \
\
slist->slh_length--; \
} \
return 0; \
} \
\
/** \
* -- skip_free_ \
* \
* Release all nodes and their associated heap objects. The list reference \
* is no longer valid after this call. To make it valid again call _init(). \
*/ \
void prefix##skip_free_##decl(decl##_t *slist) \
{ \
if (slist == NULL) \
return; \
\
if (slist->slh_snap.pres_era > 0 && slist->slh_fns.snapshot_release) \
slist->slh_fns.snapshot_release(slist); \
\
prefix##skip_release_##decl(slist); \
\
free(slist->slh_head); \
free(slist->slh_tail); \
}
#define SKIPLIST_DECL_SNAPSHOTS(decl, prefix, field) \
\
/** \
* -- skip_snapshot_ \
* \
* A snapshot is a read-only view of a Skiplist at a point in time. Once \
* taken, a snapshot must be restored or released. Any number of snapshots \
* can be created. Return the `era` of the snapshot. \
*/ \
uint64_t prefix##skip_snapshot_##decl(decl##_t *slist) \
{ \
if (slist == NULL) \
return 0; \
\
return ++slist->slh_snap.pres_era; \
} \
\
/** \
* -- skip_release_snapshots_ \
* \
*/ \
void prefix##skip_release_snapshots_##decl(decl##_t *slist) \
{ \
decl##_node_t *node, *next; \
\
if (slist == NULL) \
return; \
\
if (slist->slh_snap.pres_era == 0) \
return; \
\
node = slist->slh_snap.pres; \
while (node) { \
next = node->field.sle_levels[0].next; \
prefix##skip_free_node_##decl(slist, node); \
node = next; \
} \
slist->slh_snap.pres = NULL; \
slist->slh_snap.pres_era = 0; \
} \
\
/** \
* -- __skip_preserve_node_ \
* \
* Preserve given node in the slh_snap.pres list. \
* \
* ALGORITHM: \
* a) allocate a new node \
* b) copy the node into the new node \
* c) as necessary, allocate/copy any user-supplied items. \
* d) determine if this is a duplicate, if so in (d) we set \
* the sle.next[1] field to 0x1 as a reminder to re-insert \
* this element as a duplicate in the restore function. \
* e) zero out the next sle.prev/next[] pointers \
* f) mark as duplicate, set sle.next[1] = 0x1 \
* g) insert the node's copy into the slh_pres singly-linked \
* list. \
*/ \
static int __skip_preserve_node_##decl(decl##_t *slist, const decl##_node_t *src, decl##_node_t **preserved) \
{ \
int rc = 0; \
decl##_node_t *dest, *is_dup = 0; \
\
if (slist == NULL || src == NULL) \
return 0; \
\
/* Never preserve the head or the tail. */ \
if (src == slist->slh_head || src == slist->slh_tail) \
return 0; \
\
/* If the era into which the node `src` was born preceeded the latest \
snapshot era, then we need to preserve the older version of this \
node. Said another way, we preserve anything with an era that is \
less than the slh_snap.cur_era. */ \
if (src->field.sle_era > slist->slh_snap.pres_era) \
return 0; \
\
/* (a) alloc, ... */ \
size_t sle_arr_sz = sizeof(struct __skiplist_##decl##_level) * slist->slh_max_height; \
rc = prefix##skip_alloc_node_##decl(slist, &dest); \
if (rc) \
return rc; \
\
/* (b) shallow copy, copied sle_levels pointer is to the src list, so \
update that to point to the offset in this heap object, ... */ \
memcpy(dest, src, sizeof(decl##_node_t) + sle_arr_sz); \
dest->field.sle_levels = (struct __skiplist_##decl##_level *)((uintptr_t)dest + sizeof(decl##_node_t)); \
\
/* (c) then user-supplied copy */ \
slist->slh_fns.archive_entry(dest, src); \
if (rc) { \
prefix##skip_free_node_##decl(slist, dest); \
return rc; \
} \
\
/* (d) is this a duplicate? */ \
if (__skip_compare_nodes_##decl(slist, dest, dest->field.sle_levels[0].next, slist->slh_aux) == 0 || \
__skip_compare_nodes_##decl(slist, dest, dest->field.sle_prev, slist->slh_aux) == 0) \
is_dup = (decl##_node_t *)0x1; \
\
/* (e) zero out the next pointers */ \
dest->field.sle_prev = NULL; \
__SKIP_ALL_ENTRIES_B2T(field, dest) \
{ \
dest->field.sle_levels[lvl].next = NULL; \
} \
\
/* (f) set duplicate flag */ \
dest->field.sle_levels[1].next = is_dup; \
\
/* (g) insert node into slh_pres list at head */ \
if (slist->slh_snap.pres == NULL) { \
dest->field.sle_levels[0].next = NULL; \
slist->slh_snap.pres = dest; \
} else { \
/* The next[0] pointer forms the singly-linked list when \
preserved. */ \
dest->field.sle_levels[0].next = slist->slh_snap.pres; \
slist->slh_snap.pres = dest; \
} \
\
if (preserved) \
*preserved = dest; \
\
rc = 1; \
return -rc; \
} \
\
/** \
* -- skip_restore_snapshot_ TODO/WIP \
* \
* Restores the Skiplist to generation `era`. Once you restore `era` you \
* can no longer restore any [era, current era] only those earlier than \
* era. \
* \
* ALGORITHM: \
* iterate over the preserved nodes (slist->slh_snap.pres) \
* a) remove/free nodes with node->era > era from slist \
* b) remove/free nodes > era from slh_pres \
* c) restore nodes == era by... \
* i) remove node from slh_pres list \
* ii) _insert(node) or \
* _insert_dup() if node->field.sle_levels[1].next != 0 (clear that) \
* d) set slist's era to `era` \
* \
* NOTES: \
* - Starting with slh_pres, the `node->field.sle_levels[0].next` form a \
* singly-linked list. \
*/ \
decl##_t *prefix##skip_restore_snapshot_##decl(decl##_t *slist, size_t era) \
{ \
size_t i, cur_era; \
decl##_node_t *node, *prev; \
\
if (slist == NULL) \
return NULL; \
\
if (slist->slh_snap.pres_era == 0) \
return NULL; \
\
if (era >= slist->slh_snap.cur_era || slist->slh_snap.pres == NULL) \
return slist; \
\
cur_era = slist->slh_snap.cur_era; \
\
/* (a) remove and free nodes from slist that are newer than era */ \
SKIPLIST_FOREACH_H2T(decl, prefix, field, slist, node, i) \
{ \
((void)i); \
if (node->field.sle_era > era) { \
prefix##skip_remove_node_##decl(slist, node); \
} \
} \
\
prev = NULL; \
node = slist->slh_snap.pres; \
while (node) { \
/* (b) remove nodes from slh_pres that are newer than era */ \
if (node->field.sle_era > era) { \
/* remove node from slh_snap.pres list */ \
if (slist->slh_snap.pres == node) \
slist->slh_snap.pres = node->field.sle_levels[0].next; \
else { \
if (node->field.sle_levels[0].next == NULL) \
if (node == slist->slh_snap.pres) \
slist->slh_snap.pres = NULL; \
else \
prev->field.sle_levels[0].next = NULL; \
else \
prev->field.sle_levels[0].next = node->field.sle_levels[0].next; \
} \
prefix##skip_free_node_##decl(slist, node); \
} \
\
/* (c) restore nodes from slh_pres that match the era */ \
prev = NULL; \
if (node->field.sle_era == era) { \
/* remove node from slh_snap.pres list */ \
if (slist->slh_snap.pres == node) \
slist->slh_snap.pres = node->field.sle_levels[0].next; \
else { \
if (node->field.sle_levels[0].next == NULL) \
if (node == slist->slh_snap.pres) \
slist->slh_snap.pres = NULL; \
else \
prev->field.sle_levels[0].next = NULL; \
else \
prev->field.sle_levels[0].next = node->field.sle_levels[0].next; \
} \
\
node->field.sle_prev = NULL; \
if (node->field.sle_levels[1].next != 0) { \
node->field.sle_levels[1].next = NULL; \
prefix##skip_insert_dup_##decl(slist, node); \
} else { \
prefix##skip_insert_##decl(slist, node); \
} \
} \
prev = node; \
node = node->field.sle_levels[0].next; \
} \
\
/* (d) set list's era */ \
slist->slh_snap.pres_era = slist->slh_snap.pres == NULL ? 0 : cur_era; \
\
return slist; \
} \
\
/** \
* -- skip_snapshots_init_ \
* \
* Adds the ability to take a single stable snapshot to the Skiplist API. \
*/ \
void prefix##skip_snapshots_init_##decl(decl##_t *slist) \
{ \
if (slist != NULL) { \
slist->slh_fns.snapshot_preserve_node = __skip_preserve_node_##decl; \
slist->slh_fns.snapshot_release = prefix##skip_release_snapshots_##decl; \
} \
}
#define SKIPLIST_DECL_VALIDATE(decl, prefix, field) \
/** \
* -- __skip_integrity_failure_ \
*/ \
static void __attribute__((format(printf, 1, 2))) __skip_integrity_failure_##decl(const char *format, ...) \
{ \
va_list args; \
va_start(args, format); \
vfprintf(stderr, format, args); \
va_end(args); \
} \
\
/** \
* -- __skip_integrity_check_ \
*/ \
static int __skip_integrity_check_##decl(decl##_t *slist, int flags) \
{ \
size_t n = 0; \
unsigned long nth, n_err = 0; \
decl##_node_t *node, *prev, *next; \
struct __skiplist_##decl##_entry *this; \
\
if (slist == NULL) { \
__skip_integrity_failure_##decl("slist was NULL, nothing to check\n"); \
n_err++; \
return n_err; \
} \
\
/* Check the Skiplist header (slh) */ \
\
if (slist->slh_head == NULL) { \
__skip_integrity_failure_##decl("skiplist slh_head is NULL\n"); \
n_err++; \
return n_err; \
} \
\
if (slist->slh_tail == NULL) { \
__skip_integrity_failure_##decl("skiplist slh_tail is NULL\n"); \
n_err++; \
return n_err; \
} \
\
if (slist->slh_fns.free_entry == NULL) { \
__skip_integrity_failure_##decl("skiplist free_entry fn is NULL\n"); \
n_err++; \
return n_err; \
} \
\
if (slist->slh_fns.update_entry == NULL) { \
__skip_integrity_failure_##decl("skiplist update_entry fn is NULL\n"); \
n_err++; \
return n_err; \
} \
\
if (slist->slh_fns.archive_entry == NULL) { \
__skip_integrity_failure_##decl("skiplist archive_entry fn is NULL\n"); \
n_err++; \
return n_err; \
} \
\
if (slist->slh_fns.sizeof_entry == NULL) { \
__skip_integrity_failure_##decl("skiplist sizeof_entry fn is NULL\n"); \
n_err++; \
return n_err; \
} \
\
if (slist->slh_fns.compare_entries == NULL) { \
__skip_integrity_failure_##decl("skiplist compare_entries fn is NULL\n"); \
n_err++; \
return n_err; \
} \
\
if (slist->slh_max_height < 1) { \
__skip_integrity_failure_##decl("skiplist max level must be 1 at minimum\n"); \
n_err++; \
if (flags) \
return n_err; \
} \
\
if (slist->slh_head->field.sle_height >= slist->slh_max_height) { \
/* level is 0-based, max of 12 means level cannot be > 11 */ \
__skip_integrity_failure_##decl("skiplist level %lu in header was >= max %lu\n", slist->slh_head->field.sle_height, slist->slh_max_height); \
n_err++; \
if (flags) \
return n_err; \
} \
\
if (SKIPLIST_MAX_HEIGHT < 1) { \
__skip_integrity_failure_##decl("SKIPLIST_MAX_HEIGHT cannot be less than 1\n"); \
n_err++; \
if (flags) \
return n_err; \
} \
\
if (SKIPLIST_MAX_HEIGHT > 1 && slist->slh_max_height > SKIPLIST_MAX_HEIGHT) { \
__skip_integrity_failure_##decl("slist->slh_max_height %lu cannot be greater than SKIPLIST_MAX_HEIGHT %lu\n", slist->slh_max_height, \
(size_t)SKIPLIST_MAX_HEIGHT); \
n_err++; \
if (flags) \
return n_err; \
} \
\
node = slist->slh_head; \
__SKIP_ENTRIES_B2T(field, node) \
{ \
if (node->field.sle_levels[lvl].next == NULL) { \
__skip_integrity_failure_##decl("the head's %lu next node should not be NULL\n", lvl); \
n_err++; \
if (flags) \
return n_err; \
} \
n = lvl; \
if (node->field.sle_levels[lvl].next == slist->slh_tail) \
break; \
} \
n++; \
__SKIP_ENTRIES_B2T_FROM(field, node, n) \
{ \
if (node->field.sle_levels[lvl].next == NULL) { \
__skip_integrity_failure_##decl("the head's %lu next node should not be NULL\n", lvl); \
n_err++; \
if (flags) \
return n_err; \
} \
/* TODO: really? \
if (node->field.sle_levels[lvl].next != slist->slh_tail) { \
__skip_integrity_failure_##decl("after internal nodes, the head's %lu next node should always be the tail\n", lvl); \
n_err++; \
if (flags) \
return n_err; \
} \
*/ \
} \
\
if (slist->slh_length > 0 && slist->slh_tail->field.sle_prev == slist->slh_head) { \
__skip_integrity_failure_##decl("slist->slh_length is 0, but tail->prev == head, not an internal node\n"); \
n_err++; \
if (flags) \
return n_err; \
} \
\
/* Validate the head node */ \
\
/* Validate the tail node */ \
\
/* Validate each node */ \
SKIPLIST_FOREACH_H2T(decl, prefix, field, slist, node, nth) \
{ \
this = &node->field; \
\
if (this->sle_height >= slist->slh_max_height) { \
__skip_integrity_failure_##decl("the %lu node's [%p] height %lu is >= max %lu\n", nth, (void *)node, this->sle_height, slist->slh_max_height); \
n_err++; \
if (flags) \
return n_err; \
} \
\
if (this->sle_levels == NULL) { \
__skip_integrity_failure_##decl("the %lu node's [%p] next field should never be NULL\n", nth, (void *)node); \
n_err++; \
if (flags) \
return n_err; \
} \
\
if (this->sle_prev == NULL) { \
__skip_integrity_failure_##decl("the %lu node [%p] prev field should never be NULL\n", nth, (void *)node); \
n_err++; \
if (flags) \
return n_err; \
} \
\
__SKIP_ENTRIES_B2T(field, node) \
{ \
if (this->sle_levels[lvl].next == NULL) { \
__skip_integrity_failure_##decl("the %lu node's next[%lu] should not be NULL\n", nth, lvl); \
n_err++; \
if (flags) \
return n_err; \
} \
n = lvl; \
if (this->sle_levels[lvl].next == slist->slh_tail) \
break; \
} \
n++; \
__SKIP_ENTRIES_B2T_FROM(field, node, n) \
{ \
if (this->sle_levels[lvl].next == NULL) { \
__skip_integrity_failure_##decl("after the %lunth the %lu node's next[%lu] should not be NULL\n", n, nth, lvl); \
n_err++; \
if (flags) \
return n_err; \
} else if (this->sle_levels[lvl].next != slist->slh_tail) { \
__skip_integrity_failure_##decl("after the %lunth the %lu node's next[%lu] should point to the tail\n", n, nth, lvl); \
n_err++; \
if (flags) \
return n_err; \
} \
} \
\
decl##_node_t *a = (decl##_node_t *)(uintptr_t)this->sle_levels; \
decl##_node_t *b = (decl##_node_t *)(intptr_t)((uintptr_t)node + sizeof(decl##_node_t)); \
if (a != b) { \
__skip_integrity_failure_##decl("the %lu node's [%p] next field isn't at the proper offset relative to the node\n", nth, (void *)node); \
n_err++; \
if (flags) \
return n_err; \
} \
\
next = this->sle_levels[0].next; \
prev = this->sle_prev; \
if (__skip_compare_nodes_##decl(slist, node, node, slist->slh_aux) != 0) { \
__skip_integrity_failure_##decl("the %lu node [%p] is not equal to itself\n", nth, (void *)node); \
n_err++; \
if (flags) \
return n_err; \
} \
\
if (__skip_compare_nodes_##decl(slist, node, prev, slist->slh_aux) < 0) { \
__skip_integrity_failure_##decl("the %lu node [%p] is not greater than the prev node [%p]\n", nth, (void *)node, (void *)prev); \
n_err++; \
if (flags) \
return n_err; \
} \
\
if (__skip_compare_nodes_##decl(slist, node, next, slist->slh_aux) > 0) { \
__skip_integrity_failure_##decl("the %lu node [%p] is not less than the next node [%p]\n", nth, (void *)node, (void *)next); \
n_err++; \
if (flags) \
return n_err; \
} \
\
if (__skip_compare_nodes_##decl(slist, prev, node, slist->slh_aux) > 0) { \
__skip_integrity_failure_##decl("the prev node [%p] is not less than the %lu node [%p]\n", (void *)prev, nth, (void *)node); \
n_err++; \
if (flags) \
return n_err; \
} \
\
if (__skip_compare_nodes_##decl(slist, next, node, slist->slh_aux) < 0) { \
__skip_integrity_failure_##decl("the next node [%p] is not greater than the %lu node [%p]\n", (void *)next, nth, (void *)node); \
n_err++; \
if (flags) \
return n_err; \
} \
} \
\
if (slist->slh_length != nth) { \
__skip_integrity_failure_##decl("slist->slh_length (%lu) doesn't match the count (%lu) of nodes between the head and tail\n", slist->slh_length, \
nth); \
n_err++; \
if (flags) \
return n_err; \
} \
\
return 0; \
}
#define SKIPLIST_DECL_ACCESS(decl, prefix, key, ktype, value, vtype, qblk, rblk) \
/** \
* skip_get_ -- \
* \
* Get the value for the given key. In the presence of duplicate keys this \
* returns the value from the first duplicate. \
*/ \
vtype prefix##skip_get_##decl(decl##_t *slist, ktype key) \
{ \
decl##_node_t *node, query; \
\
qblk; \
node = prefix##skip_position_eq_##decl(slist, &query); \
if (node) { \
rblk; \
} \
return (vtype)0; \
} \
\
/** \
* skip_contains_ -- \
* \
* Returns true if there is at least one match for the `key` in the list. \
*/ \
int prefix##skip_contains_##decl(decl##_t *slist, ktype key) \
{ \
decl##_node_t *node, query; \
\
qblk; \
node = prefix##skip_position_eq_##decl(slist, &query); \
if (node) \
return 1; \
return 0; \
} \
\
/** \
* skip_pos_ -- \
* \
* Position a "cursor" (get a "node") from the list that satisfies the \
* condition (`op`) or return NULL if the condition cannot be satisfied. \
* The condition is a skip_pos_##decl_t enum type: \
* \
* SKIP_GT -> greater than \
* SKIP_GTE -> greater than or equal to \
* SKIP_EQ -> equal to \
* SKIP_LTE -> less than or equal to \
* SKIP_LT -> less than \
* \
*/ \
decl##_node_t *prefix##skip_pos_##decl(decl##_t *slist, skip_pos_##decl_t op, ktype key) \
{ \
decl##_node_t *node, query; \
\
qblk; \
node = prefix##skip_position_##decl(slist, op, &query); \
if (node != slist->slh_head && node != slist->slh_tail) \
return node; \
return NULL; \
} \
\
/** \
* skip_put_ -- \
* \
* Inserts `key` into the list within a node that contains `value`. \
*/ \
int prefix##skip_put_##decl(decl##_t *slist, ktype key, vtype value) \
{ \
int rc; \
decl##_node_t *node; \
rc = prefix##skip_alloc_node_##decl(slist, &node); \
if (rc) \
return rc; \
node->key = key; \
node->value = value; \
rc = prefix##skip_insert_##decl(slist, node); \
if (rc) \
prefix##skip_free_node_##decl(slist, node); \
return rc; \
} \
\
/** \
* skip_dup_ -- \
* \
* Inserts `key` into the list allowing for duplicates within a node that \
* contains `value`. \
*/ \
int prefix##skip_dup_##decl(decl##_t *slist, ktype key, vtype value) \
{ \
int rc; \
decl##_node_t *node; \
rc = prefix##skip_alloc_node_##decl(slist, &node); \
if (rc) \
return rc; \
node->key = key; \
node->value = value; \
rc = prefix##skip_insert_dup_##decl(slist, node); \
if (rc) \
prefix##skip_free_node_##decl(slist, node); \
return rc; \
} \
\
/** \
* skip_set_ -- \
* \
* Updates in-place the node to contain the new `value`. In the presence of \
* duplicate keys in the list, the first key's value will be updated. \
*/ \
int prefix##skip_set_##decl(decl##_t *slist, ktype key, vtype value) \
{ \
decl##_node_t node; \
node.key = key; \
return prefix##skip_update_##decl(slist, &node, (void *)value); \
} \
\
/** \
* skip_del_ -- \
* \
* Removes the node from the list with a matching `key`. In the presence of \
* duplicate keys in the list, this will remove the first duplicate. \
*/ \
int prefix##skip_del_##decl(decl##_t *slist, ktype key) \
{ \
decl##_node_t node; \
node.key = key; \
return prefix##skip_remove_node_##decl(slist, &node); \
}
#define SKIPLIST_DECL_DOT(decl, prefix, field) \
\
/* A type for a function that writes into a char[2048] buffer \
* a description of the value within the node. */ \
typedef void (*skip_sprintf_node_##decl##_t)(decl##_node_t *, char *); \
\
/* -- __skip_dot_node_ \
* Writes out a fragment of a DOT file representing a node. \
*/ \
static size_t __skip_dot_width_##decl(decl##_t *slist, decl##_node_t *from, decl##_node_t *to) \
{ \
size_t w = 1; \
decl##_node_t *n = to; \
\
if (from == NULL || to == NULL) \
return 0; \
\
while (n->field.sle_prev != from) { \
w++; \
n = prefix##skip_prev_node_##decl(slist, n); \
} \
\
return w; \
} \
\
static inline void __skip_dot_write_node_##decl(FILE *os, size_t nsg, decl##_node_t *node) \
{ \
if (node) \
fprintf(os, "\"node%lu %p\"", nsg, (void *)node); \
else \
fprintf(os, "\"node%lu NULL\"", nsg); \
} \
\
/* -- __skip_dot_node_ \
* Writes out a fragment of a DOT file representing a node. \
*/ \
static void __skip_dot_node_##decl(FILE *os, decl##_t *slist, decl##_node_t *node, size_t nsg, skip_sprintf_node_##decl##_t fn) \
{ \
char buf[2048]; \
size_t width; \
decl##_node_t *next; \
\
__skip_dot_write_node_##decl(os, nsg, node); \
fprintf(os, " [label = \""); \
fflush(os); \
__SKIP_ENTRIES_T2B(field, node) \
{ \
next = (node->field.sle_levels[lvl].next == slist->slh_tail) ? NULL : node->field.sle_levels[lvl].next; \
width = __skip_dot_width_##decl(slist, node, next ? next : slist->slh_tail); \
fprintf(os, " { <w%lu> %lu | <f%lu> ", lvl, width, lvl); \
if (next) \
fprintf(os, "%p } |", (void *)next); \
else \
fprintf(os, "0x0 } |"); \
fflush(os); \
} \
if (fn) { \
fn(node, buf); \
fprintf(os, " <f0> \u219F %lu \u226B %s \"\n", node->field.sle_height + 1, buf); \
} else { \
fprintf(os, " <f0> \u219F %lu \"\n", node->field.sle_height); \
} \
fprintf(os, "shape = \"record\"\n"); \
fprintf(os, "];\n"); \
fflush(os); \
\
/* Now edges */ \
__SKIP_ENTRIES_B2T(field, node) \
{ \
next = (node->field.sle_levels[lvl].next == slist->slh_tail) ? NULL : node->field.sle_levels[lvl].next; \
__skip_dot_write_node_##decl(os, nsg, node); \
fprintf(os, ":f%lu -> ", lvl); \
__skip_dot_write_node_##decl(os, nsg, next); \
fprintf(os, ":w%lu [];\n", lvl); \
fflush(os); \
} \
} \
\
/* -- _skip_dot_finish_ \
* Finalize the DOT file of the internal representation. \
*/ \
void prefix##skip_dot_end_##decl(FILE *os, size_t nsg) \
{ \
size_t i; \
if (nsg > 0) { \
/* Link the nodes together with an invisible node. \
* node0 [shape=record, label = "<f0> | <f1> | <f2> | <f3> | \
* <f4> | <f5> | <f6> | <f7> | <f8> | ", style=invis, width=0.01]; \
*/ \
fprintf(os, "node0 [shape=record, label = \""); \
for (i = 0; i < nsg; ++i) { \
fprintf(os, "<f%lu> | ", i); \
} \
fprintf(os, "\", style=invis, width=0.01];\n"); \
\
/* Now connect nodes with invisible edges \
* \
* node0:f0 -> HeadNode [style=invis]; \
* node0:f1 -> HeadNode1 [style=invis]; \
*/ \
for (i = 0; i < nsg; ++i) { \
fprintf(os, "node0:f%lu -> HeadNode%lu [style=invis];\n", i, i); \
} \
nsg = 0; \
} \
fprintf(os, "}\n"); \
} \
\
/* -- skip_dot_ \
* Create a DOT file of the internal representation of the \
* Skiplist on the provided file descriptor (default: STDOUT). \
* \
* To view the output: \
* $ dot -Tps filename.dot -o outfile.ps \
* You can change the output format by varying the value after -T and \
* choosing an appropriate filename extension after -o. \
* See: https://graphviz.org/docs/outputs/ for the format options. \
* \
* https://en.wikipedia.org/wiki/DOT_(graph_description_language) \
*/ \
int prefix##skip_dot_##decl(FILE *os, decl##_t *slist, size_t nsg, char *msg, skip_sprintf_node_##decl##_t fn) \
{ \
int letitgo = 0; \
size_t width, i; \
decl##_node_t *node, *next; \
\
if (slist == NULL || fn == NULL) \
return nsg; \
if (__skip_integrity_check_##decl(slist, 1) != 0) { \
perror("Skiplist failed integrity checks, impossible to diagram."); \
return -1; \
} \
if (nsg == 0) { \
fprintf(os, "digraph Skiplist {\n"); \
fprintf(os, "label = \"Skiplist.\"\n"); \
fprintf(os, "graph [rankdir = \"LR\"];\n"); \
fprintf(os, "node [fontsize = \"12\" shape = \"ellipse\"];\n"); \
fprintf(os, "edge [];\n\n"); \
} \
fprintf(os, "subgraph cluster%lu {\n", nsg); \
fprintf(os, "style=dashed\n"); \
fprintf(os, "label=\"Skiplist iteration %lu", nsg); \
if (msg) \
fprintf(os, ", %s", msg); \
fprintf(os, "\"\n\n"); \
fprintf(os, "\"HeadNode%lu\" [\n", nsg); \
fprintf(os, "label = \""); \
\
if (slist->slh_head->field.sle_height || slist->slh_head->field.sle_levels[0].next != slist->slh_tail) \
letitgo = 1; \
\
/* Write out the fields */ \
node = slist->slh_head; \
if (letitgo) { \
__SKIP_ENTRIES_T2B(field, node) \
{ \
next = (node->field.sle_levels[lvl].next == slist->slh_tail) ? NULL : node->field.sle_levels[lvl].next; \
width = __skip_dot_width_##decl(slist, node, next ? next : slist->slh_tail); \
fprintf(os, "{ %lu | <f%lu> ", width, lvl); \
if (next) \
fprintf(os, "%p }", (void *)next); \
else \
fprintf(os, "0x0 }"); \
__SKIP_IS_LAST_ENTRY_T2B() continue; \
fprintf(os, " | "); \
} \
} else { \
fprintf(os, "Empty HeadNode"); \
} \
fprintf(os, "\"\n"); \
fprintf(os, "shape = \"record\"\n"); \
fprintf(os, "];\n"); \
fflush(os); \
\
/* Edges for head node */ \
node = slist->slh_head; \
if (letitgo) { \
node = slist->slh_head; \
__SKIP_ENTRIES_B2T(field, node) \
{ \
next = (node->field.sle_levels[lvl].next == slist->slh_tail) ? NULL : node->field.sle_levels[lvl].next; \
fprintf(os, "\"HeadNode%lu\":f%lu -> ", nsg, lvl); \
__skip_dot_write_node_##decl(os, nsg, next); \
fprintf(os, ":w%lu [];\n", lvl); \
} \
fprintf(os, "\n"); \
} \
fflush(os); \
\
/* Now all nodes via level 0, if non-empty */ \
node = slist->slh_head; \
if (letitgo) { \
SKIPLIST_FOREACH_H2T(decl, prefix, field, slist, next, i) \
{ \
((void)i); \
__skip_dot_node_##decl(os, slist, next, nsg, fn); \
fflush(os); \
} \
fprintf(os, "\n"); \
} \
fflush(os); \
\
/* The tail, sentinal node */ \
if (letitgo) { \
__skip_dot_write_node_##decl(os, nsg, NULL); \
fprintf(os, " [label = \""); \
node = slist->slh_tail; \
size_t th = slist->slh_head->field.sle_height; \
for (size_t lvl = th; lvl != (size_t)-1; lvl--) { \
next = (node->field.sle_levels[lvl].next == slist->slh_tail) ? NULL : node->field.sle_levels[lvl].next; \
fprintf(os, "<w%lu> 0x0", lvl); \
__SKIP_IS_LAST_ENTRY_T2B() continue; \
fprintf(os, " | "); \
} \
fprintf(os, "\" shape = \"record\"];\n"); \
} \
\
/* End: "subgraph cluster0 {" */ \
fprintf(os, "}\n\n"); \
nsg += 1; \
fflush(os); \
\
return nsg; \
}
#endif /* _SKIPLIST_H_ */