sparsemap/tests/tdigest.c

681 lines
24 KiB
C
Raw Normal View History

#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <math.h>
#include "tdigest.h"
#include <errno.h>
#include <stdint.h>
#ifndef TD_MALLOC_INCLUDE
#define TD_MALLOC_INCLUDE "td_malloc.h"
#endif
#ifndef TD_ALLOC_H
#define TD_ALLOC_H
#define __td_malloc malloc
#define __td_calloc calloc
#define __td_realloc realloc
#define __td_free free
#endif
#define __td_max(x, y) (((x) > (y)) ? (x) : (y))
#define __td_min(x, y) (((x) < (y)) ? (x) : (y))
static inline double weighted_average_sorted(double x1, double w1, double x2, double w2) {
const double x = (x1 * w1 + x2 * w2) / (w1 + w2);
return __td_max(x1, __td_min(x, x2));
}
static inline bool _tdigest_long_long_add_safe(long long a, long long b) {
if (b < 0) {
return (a >= __LONG_LONG_MAX__ - b);
} else {
return (a <= __LONG_LONG_MAX__ - b);
}
}
static inline double weighted_average(double x1, double w1, double x2, double w2) {
if (x1 <= x2) {
return weighted_average_sorted(x1, w1, x2, w2);
} else {
return weighted_average_sorted(x2, w2, x1, w1);
}
}
static inline void swap(double *arr, int i, int j) {
const double temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
static inline void swap_l(long long *arr, int i, int j) {
const long long temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
static unsigned int partition(double *means, long long *weights, unsigned int start,
unsigned int end, unsigned int pivot_idx) {
const double pivotMean = means[pivot_idx];
swap(means, pivot_idx, end);
swap_l(weights, pivot_idx, end);
int i = start - 1;
for (unsigned int j = start; j < end; j++) {
// If current element is smaller than the pivot
if (means[j] < pivotMean) {
// increment index of smaller element
i++;
swap(means, i, j);
swap_l(weights, i, j);
}
}
swap(means, i + 1, end);
swap_l(weights, i + 1, end);
return i + 1;
}
/**
* Standard quick sort except that sorting rearranges parallel arrays
*
* @param means Values to sort on
* @param weights The auxillary values to sort.
* @param start The beginning of the values to sort
* @param end The value after the last value to sort
*/
static void td_qsort(double *means, long long *weights, unsigned int start, unsigned int end) {
if (start < end) {
// two elements can be directly compared
if ((end - start) == 1) {
if (means[start] > means[end]) {
swap(means, start, end);
swap_l(weights, start, end);
}
return;
}
// generating a random number as a pivot was very expensive vs the array size
// const unsigned int pivot_idx = start + rand()%(end - start + 1);
const unsigned int pivot_idx = (end + start) / 2; // central pivot
const unsigned int new_pivot_idx = partition(means, weights, start, end, pivot_idx);
if (new_pivot_idx > start) {
td_qsort(means, weights, start, new_pivot_idx - 1);
}
td_qsort(means, weights, new_pivot_idx + 1, end);
}
}
static inline size_t cap_from_compression(double compression) {
if ((size_t)compression > ((SIZE_MAX / sizeof(double) / 6) - 10)) {
return 0;
}
return (6 * (size_t)(compression)) + 10;
}
static inline bool should_td_compress(td_histogram_t *h) {
return ((h->merged_nodes + h->unmerged_nodes) >= (h->cap - 1));
}
static inline int next_node(td_histogram_t *h) { return h->merged_nodes + h->unmerged_nodes; }
int td_compress(td_histogram_t *h);
static inline int _check_overflow(const double v) {
// double-precision overflow detected on h->unmerged_weight
if (v == INFINITY) {
return EDOM;
}
return 0;
}
static inline int _check_td_overflow(const double new_unmerged_weight,
const double new_total_weight) {
// double-precision overflow detected on h->unmerged_weight
if (new_unmerged_weight == INFINITY) {
return EDOM;
}
if (new_total_weight == INFINITY) {
return EDOM;
}
const double denom = 2 * MM_PI * new_total_weight * log(new_total_weight);
if (denom == INFINITY) {
return EDOM;
}
return 0;
}
int td_centroid_count(td_histogram_t *h) { return next_node(h); }
void td_reset(td_histogram_t *h) {
if (!h) {
return;
}
h->min = __DBL_MAX__;
h->max = -h->min;
h->merged_nodes = 0;
h->merged_weight = 0;
h->unmerged_nodes = 0;
h->unmerged_weight = 0;
h->total_compressions = 0;
}
int td_init(double compression, td_histogram_t **result) {
const size_t capacity = cap_from_compression(compression);
if (capacity < 1) {
return 1;
}
td_histogram_t *histogram;
histogram = (td_histogram_t *)__td_malloc(sizeof(td_histogram_t));
if (!histogram) {
return 1;
}
histogram->cap = capacity;
histogram->compression = (double)compression;
td_reset(histogram);
histogram->nodes_mean = (double *)__td_calloc(capacity, sizeof(double));
if (!histogram->nodes_mean) {
td_free(histogram);
return 1;
}
histogram->nodes_weight = (long long *)__td_calloc(capacity, sizeof(long long));
if (!histogram->nodes_weight) {
td_free(histogram);
return 1;
}
*result = histogram;
return 0;
}
td_histogram_t *td_new(double compression) {
td_histogram_t *mdigest = NULL;
td_init(compression, &mdigest);
return mdigest;
}
void td_free(td_histogram_t *histogram) {
if (histogram->nodes_mean) {
__td_free((void *)(histogram->nodes_mean));
}
if (histogram->nodes_weight) {
__td_free((void *)(histogram->nodes_weight));
}
__td_free((void *)(histogram));
}
int td_merge(td_histogram_t *into, td_histogram_t *from) {
if (td_compress(into) != 0)
return EDOM;
if (td_compress(from) != 0)
return EDOM;
const int pos = from->merged_nodes + from->unmerged_nodes;
for (int i = 0; i < pos; i++) {
const double mean = from->nodes_mean[i];
const long long weight = from->nodes_weight[i];
if (td_add(into, mean, weight) != 0) {
return EDOM;
}
}
return 0;
}
long long td_size(td_histogram_t *h) { return h->merged_weight + h->unmerged_weight; }
double td_cdf(td_histogram_t *h, double val) {
td_compress(h);
// no data to examine
if (h->merged_nodes == 0) {
return NAN;
}
// bellow lower bound
if (val < h->min) {
return 0;
}
// above upper bound
if (val > h->max) {
return 1;
}
if (h->merged_nodes == 1) {
// exactly one centroid, should have max==min
const double width = h->max - h->min;
if (val - h->min <= width) {
// min and max are too close together to do any viable interpolation
return 0.5;
} else {
// interpolate if somehow we have weight > 0 and max != min
return (val - h->min) / width;
}
}
const int n = h->merged_nodes;
// check for the left tail
const double left_centroid_mean = h->nodes_mean[0];
const double left_centroid_weight = (double)h->nodes_weight[0];
const double merged_weight_d = (double)h->merged_weight;
if (val < left_centroid_mean) {
// note that this is different than h->nodes_mean[0] > min
// ... this guarantees we divide by non-zero number and interpolation works
const double width = left_centroid_mean - h->min;
if (width > 0) {
// must be a sample exactly at min
if (val == h->min) {
return 0.5 / merged_weight_d;
} else {
return (1 + (val - h->min) / width * (left_centroid_weight / 2 - 1)) /
merged_weight_d;
}
} else {
// this should be redundant with the check val < h->min
return 0;
}
}
// and the right tail
const double right_centroid_mean = h->nodes_mean[n - 1];
const double right_centroid_weight = (double)h->nodes_weight[n - 1];
if (val > right_centroid_mean) {
const double width = h->max - right_centroid_mean;
if (width > 0) {
if (val == h->max) {
return 1 - 0.5 / merged_weight_d;
} else {
// there has to be a single sample exactly at max
const double dq = (1 + (h->max - val) / width * (right_centroid_weight / 2 - 1)) /
merged_weight_d;
return 1 - dq;
}
} else {
return 1;
}
}
// we know that there are at least two centroids and mean[0] < x < mean[n-1]
// that means that there are either one or more consecutive centroids all at exactly x
// or there are consecutive centroids, c0 < x < c1
double weightSoFar = 0;
for (int it = 0; it < n - 1; it++) {
// weightSoFar does not include weight[it] yet
if (h->nodes_mean[it] == val) {
// we have one or more centroids == x, treat them as one
// dw will accumulate the weight of all of the centroids at x
double dw = 0;
while (it < n && h->nodes_mean[it] == val) {
dw += (double)h->nodes_weight[it];
it++;
}
return (weightSoFar + dw / 2) / (double)h->merged_weight;
} else if (h->nodes_mean[it] <= val && val < h->nodes_mean[it + 1]) {
const double node_weight = (double)h->nodes_weight[it];
const double node_weight_next = (double)h->nodes_weight[it + 1];
const double node_mean = h->nodes_mean[it];
const double node_mean_next = h->nodes_mean[it + 1];
// landed between centroids ... check for floating point madness
if (node_mean_next - node_mean > 0) {
// note how we handle singleton centroids here
// the point is that for singleton centroids, we know that their entire
// weight is exactly at the centroid and thus shouldn't be involved in
// interpolation
double leftExcludedW = 0;
double rightExcludedW = 0;
if (node_weight == 1) {
if (node_weight_next == 1) {
// two singletons means no interpolation
// left singleton is in, right is out
return (weightSoFar + 1) / merged_weight_d;
} else {
leftExcludedW = 0.5;
}
} else if (node_weight_next == 1) {
rightExcludedW = 0.5;
}
double dw = (node_weight + node_weight_next) / 2;
// adjust endpoints for any singleton
double dwNoSingleton = dw - leftExcludedW - rightExcludedW;
double base = weightSoFar + node_weight / 2 + leftExcludedW;
return (base + dwNoSingleton * (val - node_mean) / (node_mean_next - node_mean)) /
merged_weight_d;
} else {
// this is simply caution against floating point madness
// it is conceivable that the centroids will be different
// but too near to allow safe interpolation
double dw = (node_weight + node_weight_next) / 2;
return (weightSoFar + dw) / merged_weight_d;
}
} else {
weightSoFar += (double)h->nodes_weight[it];
}
}
return 1 - 0.5 / merged_weight_d;
}
static double td_internal_iterate_centroids_to_index(const td_histogram_t *h, const double index,
const double left_centroid_weight,
const int total_centroids, double *weightSoFar,
int *node_pos) {
if (left_centroid_weight > 1 && index < left_centroid_weight / 2) {
// there is a single sample at min so we interpolate with less weight
return h->min + (index - 1) / (left_centroid_weight / 2 - 1) * (h->nodes_mean[0] - h->min);
}
// usually the last centroid will have unit weight so this test will make it moot
if (index > h->merged_weight - 1) {
return h->max;
}
// if the right-most centroid has more than one sample, we still know
// that one sample occurred at max so we can do some interpolation
const double right_centroid_weight = (double)h->nodes_weight[total_centroids - 1];
const double right_centroid_mean = h->nodes_mean[total_centroids - 1];
if (right_centroid_weight > 1 &&
(double)h->merged_weight - index <= right_centroid_weight / 2) {
return h->max - ((double)h->merged_weight - index - 1) / (right_centroid_weight / 2 - 1) *
(h->max - right_centroid_mean);
}
for (; *node_pos < total_centroids - 1; (*node_pos)++) {
const int i = *node_pos;
const double node_weight = (double)h->nodes_weight[i];
const double node_weight_next = (double)h->nodes_weight[i + 1];
const double node_mean = h->nodes_mean[i];
const double node_mean_next = h->nodes_mean[i + 1];
const double dw = (node_weight + node_weight_next) / 2;
if (*weightSoFar + dw > index) {
// centroids i and i+1 bracket our current point
// check for unit weight
double leftUnit = 0;
if (node_weight == 1) {
if (index - *weightSoFar < 0.5) {
// within the singleton's sphere
return node_mean;
} else {
leftUnit = 0.5;
}
}
double rightUnit = 0;
if (node_weight_next == 1) {
if (*weightSoFar + dw - index <= 0.5) {
// no interpolation needed near singleton
return node_mean_next;
}
rightUnit = 0.5;
}
const double z1 = index - *weightSoFar - leftUnit;
const double z2 = *weightSoFar + dw - index - rightUnit;
return weighted_average(node_mean, z2, node_mean_next, z1);
}
*weightSoFar += dw;
}
// weightSoFar = totalWeight - weight[total_centroids-1]/2 (very nearly)
// so we interpolate out to max value ever seen
const double z1 = index - h->merged_weight - right_centroid_weight / 2.0;
const double z2 = right_centroid_weight / 2 - z1;
return weighted_average(right_centroid_mean, z1, h->max, z2);
}
double td_quantile(td_histogram_t *h, double q) {
td_compress(h);
// q should be in [0,1]
if (q < 0.0 || q > 1.0 || h->merged_nodes == 0) {
return NAN;
}
// with one data point, all quantiles lead to Rome
if (h->merged_nodes == 1) {
return h->nodes_mean[0];
}
// if values were stored in a sorted array, index would be the offset we are interested in
const double index = q * (double)h->merged_weight;
// beyond the boundaries, we return min or max
// usually, the first centroid will have unit weight so this will make it moot
if (index < 1) {
return h->min;
}
// we know that there are at least two centroids now
const int n = h->merged_nodes;
// if the left centroid has more than one sample, we still know
// that one sample occurred at min so we can do some interpolation
const double left_centroid_weight = (double)h->nodes_weight[0];
// in between extremes we interpolate between centroids
double weightSoFar = left_centroid_weight / 2;
int i = 0;
return td_internal_iterate_centroids_to_index(h, index, left_centroid_weight, n, &weightSoFar,
&i);
}
int td_quantiles(td_histogram_t *h, const double *quantiles, double *values, size_t length) {
td_compress(h);
if (NULL == quantiles || NULL == values) {
return EINVAL;
}
const int n = h->merged_nodes;
if (n == 0) {
for (size_t i = 0; i < length; i++) {
values[i] = NAN;
}
return 0;
}
if (n == 1) {
for (size_t i = 0; i < length; i++) {
const double requested_quantile = quantiles[i];
// q should be in [0,1]
if (requested_quantile < 0.0 || requested_quantile > 1.0) {
values[i] = NAN;
} else {
// with one data point, all quantiles lead to Rome
values[i] = h->nodes_mean[0];
}
}
return 0;
}
// we know that there are at least two centroids now
// if the left centroid has more than one sample, we still know
// that one sample occurred at min so we can do some interpolation
const double left_centroid_weight = (double)h->nodes_weight[0];
// in between extremes we interpolate between centroids
double weightSoFar = left_centroid_weight / 2;
int node_pos = 0;
// to avoid allocations we use the values array for intermediate computation
// i.e. to store the expected cumulative count at each percentile
for (size_t qpos = 0; qpos < length; qpos++) {
const double index = quantiles[qpos] * (double)h->merged_weight;
values[qpos] = td_internal_iterate_centroids_to_index(h, index, left_centroid_weight, n,
&weightSoFar, &node_pos);
}
return 0;
}
static double td_internal_trimmed_mean(const td_histogram_t *h, const double leftmost_weight,
const double rightmost_weight) {
double count_done = 0;
double trimmed_sum = 0;
double trimmed_count = 0;
for (int i = 0; i < h->merged_nodes; i++) {
const double n_weight = (double)h->nodes_weight[i];
// Assume the whole centroid falls into the range
double count_add = n_weight;
// If we haven't reached the low threshold yet, skip appropriate part of the centroid.
count_add -= __td_min(__td_max(0, leftmost_weight - count_done), count_add);
// If we have reached the upper threshold, ignore the overflowing part of the centroid.
count_add = __td_min(__td_max(0, rightmost_weight - count_done), count_add);
// consider the whole centroid processed
count_done += n_weight;
// increment the sum / count
trimmed_sum += h->nodes_mean[i] * count_add;
trimmed_count += count_add;
// break once we cross the high threshold
if (count_done >= rightmost_weight)
break;
}
return trimmed_sum / trimmed_count;
}
double td_trimmed_mean_symmetric(td_histogram_t *h, double proportion_to_cut) {
td_compress(h);
// proportion_to_cut should be in [0,1]
if (h->merged_nodes == 0 || proportion_to_cut < 0.0 || proportion_to_cut > 1.0) {
return NAN;
}
// with one data point, all values lead to Rome
if (h->merged_nodes == 1) {
return h->nodes_mean[0];
}
/* translate the percentiles to counts */
const double leftmost_weight = floor((double)h->merged_weight * proportion_to_cut);
const double rightmost_weight = ceil((double)h->merged_weight * (1.0 - proportion_to_cut));
return td_internal_trimmed_mean(h, leftmost_weight, rightmost_weight);
}
double td_trimmed_mean(td_histogram_t *h, double leftmost_cut, double rightmost_cut) {
td_compress(h);
// leftmost_cut and rightmost_cut should be in [0,1]
if (h->merged_nodes == 0 || leftmost_cut < 0.0 || leftmost_cut > 1.0 || rightmost_cut < 0.0 ||
rightmost_cut > 1.0) {
return NAN;
}
// with one data point, all values lead to Rome
if (h->merged_nodes == 1) {
return h->nodes_mean[0];
}
/* translate the percentiles to counts */
const double leftmost_weight = floor((double)h->merged_weight * leftmost_cut);
const double rightmost_weight = ceil((double)h->merged_weight * rightmost_cut);
return td_internal_trimmed_mean(h, leftmost_weight, rightmost_weight);
}
int td_add(td_histogram_t *h, double mean, long long weight) {
if (should_td_compress(h)) {
const int overflow_res = td_compress(h);
if (overflow_res != 0)
return overflow_res;
}
const int pos = next_node(h);
if (pos >= h->cap)
return EDOM;
if (_tdigest_long_long_add_safe(h->unmerged_weight, weight) == false)
return EDOM;
const long long new_unmerged_weight = h->unmerged_weight + weight;
if (_tdigest_long_long_add_safe(new_unmerged_weight, h->merged_weight) == false)
return EDOM;
const long long new_total_weight = new_unmerged_weight + h->merged_weight;
// double-precision overflow detected
const int overflow_res =
_check_td_overflow((double)new_unmerged_weight, (double)new_total_weight);
if (overflow_res != 0)
return overflow_res;
if (mean < h->min) {
h->min = mean;
}
if (mean > h->max) {
h->max = mean;
}
h->nodes_mean[pos] = mean;
h->nodes_weight[pos] = weight;
h->unmerged_nodes++;
h->unmerged_weight = new_unmerged_weight;
return 0;
}
int td_compress(td_histogram_t *h) {
if (h->unmerged_nodes == 0) {
return 0;
}
int N = h->merged_nodes + h->unmerged_nodes;
td_qsort(h->nodes_mean, h->nodes_weight, 0, N - 1);
const double total_weight = (double)h->merged_weight + (double)h->unmerged_weight;
// double-precision overflow detected
const int overflow_res = _check_td_overflow((double)h->unmerged_weight, (double)total_weight);
if (overflow_res != 0)
return overflow_res;
if (total_weight <= 1)
return 0;
const double denom = 2 * MM_PI * total_weight * log(total_weight);
if (_check_overflow(denom) != 0)
return EDOM;
// Compute the normalizer given compression and number of points.
const double normalizer = h->compression / denom;
if (_check_overflow(normalizer) != 0)
return EDOM;
int cur = 0;
double weight_so_far = 0;
for (int i = 1; i < N; i++) {
const double proposed_weight = (double)h->nodes_weight[cur] + (double)h->nodes_weight[i];
const double z = proposed_weight * normalizer;
// quantile up to cur
const double q0 = weight_so_far / total_weight;
// quantile up to cur + i
const double q2 = (weight_so_far + proposed_weight) / total_weight;
// Convert a quantile to the k-scale
const bool should_add = (z <= (q0 * (1 - q0))) && (z <= (q2 * (1 - q2)));
// next point will fit
// so merge into existing centroid
if (should_add) {
h->nodes_weight[cur] += h->nodes_weight[i];
const double delta = h->nodes_mean[i] - h->nodes_mean[cur];
const double weighted_delta = (delta * h->nodes_weight[i]) / h->nodes_weight[cur];
h->nodes_mean[cur] += weighted_delta;
} else {
weight_so_far += h->nodes_weight[cur];
cur++;
h->nodes_weight[cur] = h->nodes_weight[i];
h->nodes_mean[cur] = h->nodes_mean[i];
}
if (cur != i) {
h->nodes_weight[i] = 0;
h->nodes_mean[i] = 0.0;
}
}
h->merged_nodes = cur + 1;
h->merged_weight = total_weight;
h->unmerged_nodes = 0;
h->unmerged_weight = 0;
h->total_compressions++;
return 0;
}
double td_min(td_histogram_t *h) { return h->min; }
double td_max(td_histogram_t *h) { return h->max; }
int td_compression(td_histogram_t *h) { return h->compression; }
const long long *td_centroids_weight(td_histogram_t *h) { return h->nodes_weight; }
const double *td_centroids_mean(td_histogram_t *h) { return h->nodes_mean; }
long long td_centroids_weight_at(td_histogram_t *h, int pos) { return h->nodes_weight[pos]; }
double td_centroids_mean_at(td_histogram_t *h, int pos) {
if (pos < 0 || pos > h->merged_nodes) {
return NAN;
}
return h->nodes_mean[pos];
}