rewrite soak with more flexibility and ability to record/playback events to reproduce bugs (#10)

Reviewed-on: #10
This commit is contained in:
Gregory Burd 2024-05-21 00:29:26 +00:00
parent 68c8cd0858
commit eae0743b56
7 changed files with 2452 additions and 839 deletions

View file

@ -60,7 +60,7 @@ clean:
rm -f $(EXAMPLES) examples/*.o
format:
clang-format -i src/sparsemap.c include/sparsemap.h examples/ex_*.c tests/soak.c tests/test.c lib/common.c include/common.h
clang-format -i src/sparsemap.c include/sparsemap.h examples/ex_*.c tests/soak.c tests/test.c tests/midl.c lib/common.c include/common.h
# clang-format -i include/*.h src/*.c tests/*.c tests/*.h examples/*.c
%.o: src/%.c

141
include/bencode.h Normal file
View file

@ -0,0 +1,141 @@
// https://github.com/willemt/heapless-bencode
//
#ifndef BENCODE_H_
#define BENCODE_H_
typedef struct
{
const char *str;
const char *start;
void *parent;
int val;
int len;
} bencode_t;
/**
* Initialise a bencode object.
* @param be The bencode object
* @param str Buffer we expect input from
* @param len Length of buffer
*/
void bencode_init(
bencode_t * be,
const char *str,
int len
);
/**
* @return 1 if the bencode object is an int; otherwise 0.
*/
int bencode_is_int(
const bencode_t * be
);
/**
* @return 1 if the bencode object is a string; otherwise 0.
*/
int bencode_is_string(
const bencode_t * be
);
/**
* @return 1 if the bencode object is a list; otherwise 0.
*/
int bencode_is_list(
const bencode_t * be
);
/**
* @return 1 if the bencode object is a dict; otherwise 0.
*/
int bencode_is_dict(
const bencode_t * be
);
/**
* Obtain value from integer bencode object.
* @param val Long int we are writing the result to
* @return 1 on success, otherwise 0
*/
int bencode_int_value(
bencode_t * be,
long int *val
);
/**
* @return 1 if there is another item on this dict; otherwise 0.
*/
int bencode_dict_has_next(
bencode_t * be
);
/**
* Get the next item within this dictionary.
* @param be_item Next item.
* @param key Const pointer to key string of next item.
* @param klen Length of the key of next item.
* @return 1 on success; otherwise 0.
*/
int bencode_dict_get_next(
bencode_t * be,
bencode_t * be_item,
const char **key,
int *klen
);
/**
* Get the string value from this bencode object.
* The buffer returned is stored on the stack.
* @param be The bencode object.
* @param str Const pointer to the buffer.
* @param slen Length of the buffer we are outputting.
* @return 1 on success; otherwise 0
*/
int bencode_string_value(
bencode_t * be,
const char **str,
int *len
);
/**
* Tell if there is another item within this list.
* @param be The bencode object
* @return 1 if another item exists on the list; 0 otherwise; -1 on invalid processing
*/
int bencode_list_has_next(
bencode_t * be
);
/**
* Get the next item within this list.
* @param be The bencode object
* @param be_item The next bencode object that we are going to initiate.
* @return return 0 on end; 1 on have next; -1 on error
*/
int bencode_list_get_next(
bencode_t * be,
bencode_t * be_item
);
/**
* Copy bencode object into other bencode object
*/
void bencode_clone(
bencode_t * be,
bencode_t * output
);
/**
* Get the start and end position of this dictionary
* @param be Bencode object
* @param start Starting string
* @param len Length of the dictionary
* @return 0 on success
*/
int bencode_dict_get_start_and_len(
bencode_t * be,
const char **start,
int *len
);
#endif /* BENCODE_H_ */

511
lib/bencode.c Normal file
View file

@ -0,0 +1,511 @@
/**
* Copyright (c) 2014, Willem-Hendrik Thiart
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* @file
* @brief Read bencoded data
* @author Willem Thiart himself@willemthiart.com
* @version 0.1
* https://github.com/willemt/heapless-bencode
*/
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include "bencode.h"
/**
* Carry length over to a new bencode object.
* This is done so that we don't exhaust the buffer */
static int __carry_length(
bencode_t * be,
const char *pos
)
{
assert(0 < be->len);
return be->len - (pos - be->str);
}
/**
* @param end The point that we read out to
* @param val Output of number represented by string
* @return 0 if error; otherwise 1 */
static long int __read_string_int(
const char *sp,
const char **end,
long int *val
)
{
*val = 0;
int sign = 1;
/* negative */
if ('-' == *sp)
{
sign = -1;
sp++;
}
if (!isdigit(*sp))
return 0;
/* work out number */
do
{
*val *= 10;
*val += *sp - '0';
sp++;
}
while (isdigit(*sp));
*val *= sign;
*end = sp;
return 1;
}
int bencode_is_dict(
const bencode_t * be
)
{
return be->str && *be->str == 'd';
}
int bencode_is_int(
const bencode_t * be
)
{
return be->str && *be->str == 'i';
}
int bencode_is_list(
const bencode_t * be
)
{
return be->str && *be->str == 'l';
}
int bencode_is_string(
const bencode_t * be
)
{
const char *sp;
sp = be->str;
assert(sp);
if (!isdigit(*sp))
return 0;
do sp++;
while (isdigit(*sp));
return *sp == ':';
}
/**
* Move to next item
* @param sp The bencode string we are processing
* @return Pointer to string on success, otherwise NULL */
static const char *__iterate_to_next_string_pos(
bencode_t * be,
const char *sp
)
{
bencode_t iter;
bencode_init(&iter, sp, __carry_length(be, sp));
if (bencode_is_dict(&iter))
{
/* navigate to the end of the dictionary */
while (bencode_dict_has_next(&iter))
{
/* ERROR: input string is invalid */
if (0 == bencode_dict_get_next(&iter, NULL, NULL, NULL))
return NULL;
}
/* special case for empty dict */
if (*iter.str == 'd' && *(iter.str + 1) == 'e')
return iter.str + 2;
return iter.str + 1;
}
else if (bencode_is_list(&iter))
{
/* navigate to the end of the list */
while (bencode_list_has_next(&iter))
{
/* ERROR: input string is invalid */
if (-1 == bencode_list_get_next(&iter, NULL))
return NULL;
}
return iter.str + 1;
}
else if (bencode_is_string(&iter))
{
int len;
const char *str;
/* ERROR: input string is invalid */
if (0 == bencode_string_value(&iter, &str, &len))
return NULL;
return str + len;
}
else if (bencode_is_int(&iter))
{
const char *end;
long int val;
if (0 == __read_string_int(&iter.str[1], &end, &val))
return NULL;
assert(end[0] == 'e');
return end + 1;
}
/* input string is invalid */
return NULL;
}
static const char *__read_string_len(
const char *sp,
int *slen
)
{
*slen = 0;
if (!isdigit(*sp))
return NULL;
do
{
*slen *= 10;
*slen += *sp - '0';
sp++;
}
while (isdigit(*sp));
assert(*sp == ':');
assert(0 <= *slen);
return sp + 1;
}
void bencode_init(
bencode_t * be,
const char *str,
const int len
)
{
memset(be, 0, sizeof(bencode_t));
be->str = be->start = str;
be->str = str;
be->len = len;
/* assert(0 < be->len); */
}
int bencode_int_value(
bencode_t * be,
long int *val
)
{
const char *end;
if (0 == __read_string_int(&be->str[1], &end, val))
return 0;
assert(end[0] == 'e');
return 1;
}
int bencode_dict_has_next(
bencode_t * be
)
{
const char *sp = be->str;
assert(be);
if (!sp
/* at end of dict */
|| *sp == 'e'
/* at end of string */
|| *sp == '\0'
|| *sp == '\r'
/* empty dict */
|| (*sp == 'd' && *(sp + 1) == 'e')
/* at the end of the input string */
|| be->str >= be->start + be->len - 1)
{
return 0;
}
return 1;
}
int bencode_dict_get_next(
bencode_t * be,
bencode_t * be_item,
const char **key,
int *klen
)
{
const char *sp = be->str;
const char *keyin;
int len;
assert(*sp != 'e');
/* if at start increment to 1st key */
if (*sp == 'd')
{
sp++;
}
/* can't get the next item if we are at the end of the dict */
if (*sp == 'e')
{
return 0;
}
/* 1. find out what the key's length is */
keyin = __read_string_len(sp, &len);
/* 2. if we have a value bencode, lets put the value inside */
if (be_item)
{
*klen = len;
bencode_init(be_item, keyin + len, __carry_length(be, keyin + len));
}
/* 3. iterate to next dict key, or move to next item in parent */
if (!(be->str = __iterate_to_next_string_pos(be, keyin + len)))
{
/* if there isn't anything else or we are at the end of the string */
return 0;
}
#if 0
/* if at the end of bencode, check that the 'e' terminator is there */
if (be->str == be->start + be->len - 1 && *be->str != 'e')
{
be->str = NULL;
return 0;
}
#endif
assert(be->str);
if (key)
{
*key = keyin;
}
return 1;
}
int bencode_string_value(
bencode_t * be,
const char **str,
int *slen
)
{
const char *sp;
*slen = 0;
assert(bencode_is_string(be));
sp = __read_string_len(be->str, slen);
assert(sp);
assert(0 < be->len);
/* make sure we still fit within the buffer */
if (sp + *slen > be->start + (long int) be->len)
{
*str = NULL;
return 0;
}
*str = sp;
return 1;
}
int bencode_list_has_next(
bencode_t * be
)
{
const char *sp;
sp = be->str;
/* empty list */
if (*sp == 'l' &&
sp == be->start &&
*(sp + 1) == 'e')
{
be->str++;
return 0;
}
/* end of list */
if (*sp == 'e')
{
return 0;
}
return 1;
}
int bencode_list_get_next(
bencode_t * be,
bencode_t * be_item
)
{
const char *sp;
sp = be->str;
#if 0 /* debugging */
printf("%.*s\n", (int)(be->len - (be->str - be->start)), be->str);
#endif
/* we're at the end */
if (!sp || *sp == 'e')
return 0;
if (*sp == 'l')
{
/* just move off the start of this list */
if (be->start == be->str)
{
sp++;
}
}
/* can't get the next item if we are at the end of the list */
if (*sp == 'e')
{
be->str = sp;
return 0;
}
/* populate the be_item if it is available */
if (be_item)
{
bencode_init(be_item, sp, __carry_length(be, sp));
}
/* iterate to next value */
if (!(be->str = __iterate_to_next_string_pos(be, sp)))
{
return -1;
}
return 1;
}
void bencode_clone(
bencode_t * be,
bencode_t * output
)
{
memcpy(output, be, sizeof(bencode_t));
}
int bencode_dict_get_start_and_len(
bencode_t * be,
const char **start,
int *len
)
{
bencode_t ben, ben2;
const char *ren;
int tmplen;
bencode_clone(be, &ben);
*start = ben.str;
while (bencode_dict_has_next(&ben))
bencode_dict_get_next(&ben, &ben2, &ren, &tmplen);
*len = ben.str - *start + 1;
return 0;
}
static int __validate(bencode_t *ben)
{
if (bencode_is_dict(ben))
{
while (bencode_dict_has_next(ben))
{
int klen;
const char *key;
bencode_t benk;
if (0 == bencode_dict_get_next(ben, &benk, &key, &klen))
return -1;
int ret = __validate(&benk);
if (0 != ret)
return ret;
}
}
else if (bencode_is_list(ben))
{
while (bencode_list_has_next(ben))
{
bencode_t benl;
if (-1 == bencode_list_get_next(ben, &benl))
return -1;
int ret = __validate(&benl);
if (0 != ret)
return ret;
}
}
else if (bencode_is_string(ben))
{
const char *str;
int len;
if (0 == bencode_string_value(ben, &str, &len))
return -1;
}
else if (bencode_is_int(ben))
{
long int val;
if (0 == bencode_int_value(ben, &val))
return -1;
}
else
return -1;
return 0;
}
int bencode_validate(char* buf, int len)
{
bencode_t ben;
if (0 == len)
return 0;
bencode_init(&ben, buf, len);
return __validate(&ben);
}

View file

@ -51,6 +51,29 @@ tsc(void)
return 0;
}
// get microsecond timestamp
uint64_t
msts()
{
#ifdef _SC_MONOTONIC_CLOCK
struct timespec ts;
if (sysconf(_SC_MONOTONIC_CLOCK) > 0) {
/* A monotonic clock presents */
if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0)
return (uint64_t)(ts.tv_sec * 1000000 + ts.tv_nsec / 1000);
else
return 0;
}
return 0;
#else
struct timeval tv;
if (gettimeofday(&tv, NULL) == 0)
return (uint64_t)(tv.tv_sec * 1000000 + tv.tv_usec);
else
return 0;
#endif
}
double
nsts(void)
{

View file

@ -730,15 +730,15 @@ __sm_chunk_scan(__sm_chunk_t *chunk, sm_idx_t start, void (*scanner)(sm_idx_t[],
continue;
}
size_t n = 0;
for (size_t b = skip; b < SM_BITS_PER_VECTOR; b++) {
buffer[n++] = start + b;
for (size_t b = 0; b < SM_BITS_PER_VECTOR; b++) {
buffer[n++] = start + ret + b;
}
scanner(&buffer[0], n, aux);
ret += n;
skip = 0;
} else {
for (size_t b = 0; b < SM_BITS_PER_VECTOR; b++) {
buffer[b] = start + b;
buffer[b] = start + ret + b;
}
scanner(&buffer[0], SM_BITS_PER_VECTOR, aux);
ret += SM_BITS_PER_VECTOR;
@ -758,14 +758,14 @@ __sm_chunk_scan(__sm_chunk_t *chunk, sm_idx_t start, void (*scanner)(sm_idx_t[],
continue;
}
if (w & ((sm_bitvec_t)1 << b)) {
buffer[n++] = start + b;
buffer[n++] = start + ret + b;
ret++;
}
}
} else {
for (int b = 0; b < SM_BITS_PER_VECTOR; b++) {
if (w & ((sm_bitvec_t)1 << b)) {
buffer[n++] = start + b;
buffer[n++] = start + ret + b;
}
}
ret += n;

417
tests/midl.c Normal file
View file

@ -0,0 +1,417 @@
/** @defgroup idls ID List Management
* @{
*/
/** A generic unsigned ID number. These were entryIDs in back-bdb.
* Preferably it should have the same size as a pointer.
*/
typedef size_t MDB_ID;
/** An IDL is an ID List, a sorted array of IDs. The first
* element of the array is a counter for how many actual
* IDs are in the list. In the original back-bdb code, IDLs are
* sorted in ascending order. For libmdb IDLs are sorted in
* descending order.
*/
typedef MDB_ID *MDB_IDL;
/* IDL sizes - likely should be even bigger
* limiting factors: sizeof(ID), thread stack size
*/
#define MDB_IDL_LOGN 16 /* DB_SIZE is 2^16, UM_SIZE is 2^17 */
#define MDB_IDL_DB_SIZE (1 << MDB_IDL_LOGN)
#define MDB_IDL_UM_SIZE (1 << (MDB_IDL_LOGN + 1))
#define MDB_IDL_DB_MAX (MDB_IDL_DB_SIZE - 1)
#define MDB_IDL_UM_MAX (MDB_IDL_UM_SIZE - 1)
#define MDB_IDL_SIZEOF(ids) (((ids)[0] + 1) * sizeof(MDB_ID))
#define MDB_IDL_IS_ZERO(ids) ((ids)[0] == 0)
#define MDB_IDL_CPY(dst, src) (memcpy(dst, src, MDB_IDL_SIZEOF(src)))
#define MDB_IDL_FIRST(ids) ((ids)[1])
#define MDB_IDL_LAST(ids) ((ids)[(ids)[0]])
/** Current max length of an #mdb_midl_alloc()ed IDL */
#define MDB_IDL_ALLOCLEN(ids) ((ids)[-1])
/** Append ID to IDL. The IDL must be big enough. */
#define mdb_midl_xappend(idl, id) \
do { \
MDB_ID *xidl = (idl), xlen = ++(xidl[0]); \
xidl[xlen] = (id); \
} while (0)
/** Search for an ID in an IDL.
* @param[in] ids The IDL to search.
* @param[in] id The ID to search for.
* @return The index of the first ID greater than or equal to \b id.
*/
unsigned mdb_midl_search(MDB_IDL ids, MDB_ID id);
/** Allocate an IDL.
* Allocates memory for an IDL of the given size.
* @return IDL on success, NULL on failure.
*/
MDB_IDL mdb_midl_alloc(int num);
/** Free an IDL.
* @param[in] ids The IDL to free.
*/
void mdb_midl_free(MDB_IDL ids);
/** Shrink an IDL.
* Return the IDL to the default size if it has grown larger.
* @param[in,out] idp Address of the IDL to shrink.
*/
void mdb_midl_shrink(MDB_IDL *idp);
/** Shrink an IDL to a specific size.
* Resize the IDL to \b size if it is larger.
* @param[in,out] idp Address of the IDL to shrink.
* @param[in] size Capacity to have once resized.
*/
void mdb_midl_shrink(MDB_IDL *idp);
/** Make room for num additional elements in an IDL.
* @param[in,out] idp Address of the IDL.
* @param[in] num Number of elements to make room for.
* @return 0 on success, ENOMEM on failure.
*/
int mdb_midl_need(MDB_IDL *idp, unsigned num);
/** Append an ID onto an IDL.
* @param[in,out] idp Address of the IDL to append to.
* @param[in] id The ID to append.
* @return 0 on success, ENOMEM if the IDL is too large.
*/
int mdb_midl_append(MDB_IDL *idp, MDB_ID id);
/** Append an IDL onto an IDL.
* @param[in,out] idp Address of the IDL to append to.
* @param[in] app The IDL to append.
* @return 0 on success, ENOMEM if the IDL is too large.
*/
int mdb_midl_append_list(MDB_IDL *idp, MDB_IDL app);
/** Append an ID range onto an IDL.
* @param[in,out] idp Address of the IDL to append to.
* @param[in] id The lowest ID to append.
* @param[in] n Number of IDs to append.
* @return 0 on success, ENOMEM if the IDL is too large.
*/
int mdb_midl_append_range(MDB_IDL *idp, MDB_ID id, unsigned n);
/** Merge an IDL onto an IDL. The destination IDL must be big enough.
* @param[in] idl The IDL to merge into.
* @param[in] merge The IDL to merge.
*/
void mdb_midl_xmerge(MDB_IDL idl, MDB_IDL merge);
/** Sort an IDL.
* @param[in,out] ids The IDL to sort.
*/
void mdb_midl_sort(MDB_IDL ids);
/* midl.c ------------------------------------------------------------------ */
/** @defgroup idls ID List Management
* @{
*/
#define CMP(x, y) ((x) < (y) ? -1 : (x) > (y))
unsigned
mdb_midl_search(MDB_IDL ids, MDB_ID id)
{
/*
* binary search of id in ids
* if found, returns position of id
* if not found, returns first position greater than id
*/
unsigned base = 0;
unsigned cursor = 1;
int val = 0;
unsigned n = ids[0];
while (0 < n) {
unsigned pivot = n >> 1;
cursor = base + pivot + 1;
val = CMP(ids[cursor], id);
if (val < 0) {
n = pivot;
} else if (val > 0) {
base = cursor;
n -= pivot + 1;
} else {
return cursor;
}
}
if (val > 0) {
++cursor;
}
return cursor;
}
int
mdb_midl_insert(MDB_IDL ids, MDB_ID id)
{
unsigned x, i;
x = mdb_midl_search(ids, id);
assert(x > 0);
if (x < 1) {
/* internal error */
return -2;
}
if (x <= ids[0] && ids[x] == id) {
/* duplicate */
assert(0);
return -1;
}
if (++ids[0] >= MDB_IDL_DB_MAX) {
/* no room */
--ids[0];
return -2;
} else {
/* insert id */
for (i = ids[0]; i > x; i--)
ids[i] = ids[i - 1];
ids[x] = id;
}
return 0;
}
inline void
mdb_midl_pop_n(MDB_IDL ids, unsigned n)
{
ids[0] = ids[0] - n;
}
void
mdb_midl_remove_at(MDB_IDL ids, unsigned idx)
{
for (int i = idx - 1; idx < ids[0] - 1;)
ids[++i] = ids[++idx];
ids[0] = ids[0] - 1;
}
void
mdb_midl_remove(MDB_IDL ids, MDB_ID id)
{
unsigned idx = mdb_midl_search(ids, id);
if (idx <= ids[0] && ids[idx] == id)
mdb_midl_remove_at(ids, idx);
}
MDB_IDL
mdb_midl_alloc(int num)
{
MDB_IDL ids = malloc((num + 2) * sizeof(MDB_ID));
if (ids) {
*ids++ = num;
*ids = 0;
}
return ids;
}
void
mdb_midl_free(MDB_IDL ids)
{
if (ids)
free(ids - 1);
}
void
mdb_midl_shrink(MDB_IDL *idp)
{
MDB_IDL ids = *idp;
if (*(--ids) > MDB_IDL_UM_MAX && (ids = realloc(ids, (MDB_IDL_UM_MAX + 2) * sizeof(MDB_ID)))) {
*ids++ = MDB_IDL_UM_MAX;
*idp = ids;
}
}
void
mdb_midl_shrink_to(MDB_IDL *idp, size_t size)
{
MDB_IDL ids = *idp;
if (*(--ids) > size && (ids = realloc(ids, (size + 2) * sizeof(MDB_ID)))) {
*ids++ = size;
*idp = ids;
*idp[0] = *idp[0] > size ? size : *idp[0];
}
}
static int
mdb_midl_grow(MDB_IDL *idp, int num)
{
MDB_IDL idn = *idp - 1;
/* grow it */
idn = realloc(idn, (*idn + num + 2) * sizeof(MDB_ID));
if (!idn)
return ENOMEM;
*idn++ += num;
*idp = idn;
return 0;
}
int
mdb_midl_need(MDB_IDL *idp, unsigned num)
{
MDB_IDL ids = *idp;
num += ids[0];
if (num > ids[-1]) {
num = (num + num / 4 + (256 + 2)) & -256;
if (!(ids = realloc(ids - 1, num * sizeof(MDB_ID))))
return ENOMEM;
*ids++ = num - 2;
*idp = ids;
}
return 0;
}
int
mdb_midl_append(MDB_IDL *idp, MDB_ID id)
{
MDB_IDL ids = *idp;
/* Too big? */
if (ids[0] >= ids[-1]) {
if (mdb_midl_grow(idp, MDB_IDL_UM_MAX))
return ENOMEM;
ids = *idp;
}
ids[0]++;
ids[ids[0]] = id;
return 0;
}
int
mdb_midl_append_list(MDB_IDL *idp, MDB_IDL app)
{
MDB_IDL ids = *idp;
/* Too big? */
if (ids[0] + app[0] >= ids[-1]) {
if (mdb_midl_grow(idp, app[0]))
return ENOMEM;
ids = *idp;
}
memcpy(&ids[ids[0] + 1], &app[1], app[0] * sizeof(MDB_ID));
ids[0] += app[0];
return 0;
}
int
mdb_midl_append_range(MDB_IDL *idp, MDB_ID id, unsigned n)
{
MDB_ID *ids = *idp, len = ids[0];
/* Too big? */
if (len + n > ids[-1]) {
if (mdb_midl_grow(idp, n | MDB_IDL_UM_MAX))
return ENOMEM;
ids = *idp;
}
ids[0] = len + n;
ids += len;
while (n)
ids[n--] = id++;
return 0;
}
void
mdb_midl_xmerge(MDB_IDL idl, MDB_IDL merge)
{
MDB_ID old_id, merge_id, i = merge[0], j = idl[0], k = i + j, total = k;
idl[0] = (MDB_ID)-1; /* delimiter for idl scan below */
old_id = idl[j];
while (i) {
merge_id = merge[i--];
for (; old_id < merge_id; old_id = idl[--j])
idl[k--] = old_id;
idl[k--] = merge_id;
}
idl[0] = total;
}
/* Quicksort + Insertion sort for small arrays */
#define SMALL 8
#define MIDL_SWAP(a, b) \
{ \
itmp = (a); \
(a) = (b); \
(b) = itmp; \
}
void
mdb_midl_sort(MDB_IDL ids)
{
/* Max possible depth of int-indexed tree * 2 items/level */
int istack[sizeof(int) * CHAR_BIT * 2];
int i, j, k, l, ir, jstack;
MDB_ID a, itmp;
ir = (int)ids[0];
l = 1;
jstack = 0;
for (;;) {
if (ir - l < SMALL) { /* Insertion sort */
for (j = l + 1; j <= ir; j++) {
a = ids[j];
for (i = j - 1; i >= 1; i--) {
if (ids[i] >= a)
break;
ids[i + 1] = ids[i];
}
ids[i + 1] = a;
}
if (jstack == 0)
break;
ir = istack[jstack--];
l = istack[jstack--];
} else {
k = (l + ir) >> 1; /* Choose median of left, center, right */
MIDL_SWAP(ids[k], ids[l + 1]);
if (ids[l] < ids[ir]) {
MIDL_SWAP(ids[l], ids[ir]);
}
if (ids[l + 1] < ids[ir]) {
MIDL_SWAP(ids[l + 1], ids[ir]);
}
if (ids[l] < ids[l + 1]) {
MIDL_SWAP(ids[l], ids[l + 1]);
}
i = l + 1;
j = ir;
a = ids[l + 1];
for (;;) {
do
i++;
while (ids[i] > a);
do
j--;
while (ids[j] < a);
if (j < i)
break;
MIDL_SWAP(ids[i], ids[j]);
}
ids[l + 1] = ids[j];
ids[j] = a;
jstack += 2;
if (ir - i + 1 >= j - l) {
istack[jstack] = ir;
istack[jstack - 1] = i;
ir = j - 1;
} else {
istack[jstack] = j - 1;
istack[jstack - 1] = l;
l = i;
}
}
}
}

File diff suppressed because it is too large Load diff