sparsemap/test/roaring.h

2908 lines
103 KiB
C++

// !!! DO NOT EDIT - THIS IS AN AUTO-GENERATED FILE !!!
// Created by amalgamation.sh on 2024-05-03T13:59:37Z
/*
* The CRoaring project is under a dual license (Apache/MIT).
* Users of the library may choose one or the other license.
*/
/*
* Copyright 2016-2022 The CRoaring authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* SPDX-License-Identifier: Apache-2.0
*/
/*
* MIT License
*
* Copyright 2016-2022 The CRoaring authors
*
* Permission is hereby granted, free of charge, to any
* person obtaining a copy of this software and associated
* documentation files (the "Software"), to deal in the
* Software without restriction, including without
* limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software
* is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice
* shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
* ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
* TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
* SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
* IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* SPDX-License-Identifier: MIT
*/
/* begin file include/roaring/roaring_version.h */
// /include/roaring/roaring_version.h automatically generated by release.py, do
// not change by hand
#ifndef ROARING_INCLUDE_ROARING_VERSION
#define ROARING_INCLUDE_ROARING_VERSION
#define ROARING_VERSION "3.0.0"
enum {
ROARING_VERSION_MAJOR = 3,
ROARING_VERSION_MINOR = 0,
ROARING_VERSION_REVISION = 0
};
#endif // ROARING_INCLUDE_ROARING_VERSION
/* end file include/roaring/roaring_version.h */
/* begin file include/roaring/roaring_types.h */
/*
Typedefs used by various components
*/
#ifndef ROARING_TYPES_H
#define ROARING_TYPES_H
#include <stdbool.h>
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
namespace roaring {
namespace api {
#endif
/**
* When building .c files as C++, there's added compile-time checking if the
* container types are derived from a `container_t` base class. So long as
* such a base class is empty, the struct will behave compatibly with C structs
* despite the derivation. This is due to the Empty Base Class Optimization:
*
* https://en.cppreference.com/w/cpp/language/ebo
*
* But since C isn't namespaced, taking `container_t` globally might collide
* with other projects. So roaring.h uses ROARING_CONTAINER_T, while internal
* code #undefs that after declaring `typedef ROARING_CONTAINER_T container_t;`
*/
#if defined(__cplusplus)
extern "C++" {
struct container_s {};
}
#define ROARING_CONTAINER_T ::roaring::api::container_s
#else
#define ROARING_CONTAINER_T void // no compile-time checking
#endif
#define ROARING_FLAG_COW UINT8_C(0x1)
#define ROARING_FLAG_FROZEN UINT8_C(0x2)
/**
* Roaring arrays are array-based key-value pairs having containers as values
* and 16-bit integer keys. A roaring bitmap might be implemented as such.
*/
// parallel arrays. Element sizes quite different.
// Alternative is array
// of structs. Which would have better
// cache performance through binary searches?
typedef struct roaring_array_s {
int32_t size;
int32_t allocation_size;
ROARING_CONTAINER_T **containers; // Use container_t in non-API files!
uint16_t *keys;
uint8_t *typecodes;
uint8_t flags;
} roaring_array_t;
typedef bool (*roaring_iterator)(uint32_t value, void *param);
typedef bool (*roaring_iterator64)(uint64_t value, void *param);
/**
* (For advanced users.)
* The roaring_statistics_t can be used to collect detailed statistics about
* the composition of a roaring bitmap.
*/
typedef struct roaring_statistics_s {
uint32_t n_containers; /* number of containers */
uint32_t n_array_containers; /* number of array containers */
uint32_t n_run_containers; /* number of run containers */
uint32_t n_bitset_containers; /* number of bitmap containers */
uint32_t
n_values_array_containers; /* number of values in array containers */
uint32_t n_values_run_containers; /* number of values in run containers */
uint32_t
n_values_bitset_containers; /* number of values in bitmap containers */
uint32_t n_bytes_array_containers; /* number of allocated bytes in array
containers */
uint32_t n_bytes_run_containers; /* number of allocated bytes in run
containers */
uint32_t n_bytes_bitset_containers; /* number of allocated bytes in bitmap
containers */
uint32_t
max_value; /* the maximal value, undefined if cardinality is zero */
uint32_t
min_value; /* the minimal value, undefined if cardinality is zero */
uint64_t sum_value; /* the sum of all values (could be used to compute
average) */
uint64_t cardinality; /* total number of values stored in the bitmap */
// and n_values_arrays, n_values_rle, n_values_bitmap
} roaring_statistics_t;
/**
* Roaring-internal type used to iterate within a roaring container.
*/
typedef struct roaring_container_iterator_s {
// For bitset and array containers this is the index of the bit / entry.
// For run containers this points at the run.
int32_t index;
} roaring_container_iterator_t;
#ifdef __cplusplus
}
}
} // extern "C" { namespace roaring { namespace api {
#endif
#endif /* ROARING_TYPES_H */
/* end file include/roaring/roaring_types.h */
/* begin file include/roaring/portability.h */
/*
* portability.h
*
*/
/**
* All macros should be prefixed with either CROARING or ROARING.
* The library uses both ROARING_...
* as well as CROAIRING_ as prefixes. The ROARING_ prefix is for
* macros that are provided by the build system or that are closely
* related to the format. The header macros may also use ROARING_.
* The CROARING_ prefix is for internal macros that a user is unlikely
* to ever interact with.
*/
#ifndef CROARING_INCLUDE_PORTABILITY_H_
#define CROARING_INCLUDE_PORTABILITY_H_
#ifndef _GNU_SOURCE
#define _GNU_SOURCE 1
#endif // _GNU_SOURCE
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS 1
#endif // __STDC_FORMAT_MACROS
#ifdef _MSC_VER
#define CROARING_VISUAL_STUDIO 1
/**
* We want to differentiate carefully between
* clang under visual studio and regular visual
* studio.
*/
#ifdef __clang__
// clang under visual studio
#define CROARING_CLANG_VISUAL_STUDIO 1
#else
// just regular visual studio (best guess)
#define CROARING_REGULAR_VISUAL_STUDIO 1
#endif // __clang__
#endif // _MSC_VER
#ifndef CROARING_VISUAL_STUDIO
#define CROARING_VISUAL_STUDIO 0
#endif
#ifndef CROARING_CLANG_VISUAL_STUDIO
#define CROARING_CLANG_VISUAL_STUDIO 0
#endif
#ifndef CROARING_REGULAR_VISUAL_STUDIO
#define CROARING_REGULAR_VISUAL_STUDIO 0
#endif
#if defined(_POSIX_C_SOURCE) && (_POSIX_C_SOURCE < 200809L)
#undef _POSIX_C_SOURCE
#endif
#ifndef _POSIX_C_SOURCE
#define _POSIX_C_SOURCE 200809L
#endif // !(defined(_POSIX_C_SOURCE)) || (_POSIX_C_SOURCE < 200809L)
#if !(defined(_XOPEN_SOURCE)) || (_XOPEN_SOURCE < 700)
#define _XOPEN_SOURCE 700
#endif // !(defined(_XOPEN_SOURCE)) || (_XOPEN_SOURCE < 700)
#ifdef __illumos__
#define __EXTENSIONS__
#endif
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h> // will provide posix_memalign with _POSIX_C_SOURCE as defined above
#ifdef __GLIBC__
#include <malloc.h> // this should never be needed but there are some reports that it is needed.
#endif
#ifdef __cplusplus
extern "C" { // portability definitions are in global scope, not a namespace
#endif
#if defined(__SIZEOF_LONG_LONG__) && __SIZEOF_LONG_LONG__ != 8
#error This code assumes 64-bit long longs (by use of the GCC intrinsics). Your system is not currently supported.
#endif
#if CROARING_REGULAR_VISUAL_STUDIO
#ifndef __restrict__
#define __restrict__ __restrict
#endif // __restrict__
#endif // CROARING_REGULAR_VISUAL_STUDIO
#if defined(__x86_64__) || defined(_M_X64)
// we have an x64 processor
#define CROARING_IS_X64 1
#if defined(_MSC_VER) && (_MSC_VER < 1910)
// Old visual studio systems won't support AVX2 well.
#undef CROARING_IS_X64
#endif
#if defined(__clang_major__) && (__clang_major__ <= 8) && !defined(__AVX2__)
// Older versions of clang have a bug affecting us
// https://stackoverflow.com/questions/57228537/how-does-one-use-pragma-clang-attribute-push-with-c-namespaces
#undef CROARING_IS_X64
#endif
#ifdef ROARING_DISABLE_X64
#undef CROARING_IS_X64
#endif
// we include the intrinsic header
#if !CROARING_REGULAR_VISUAL_STUDIO
/* Non-Microsoft C/C++-compatible compiler */
#include <x86intrin.h> // on some recent GCC, this will declare posix_memalign
#if CROARING_CLANG_VISUAL_STUDIO
/**
* You are not supposed, normally, to include these
* headers directly. Instead you should either include intrin.h
* or x86intrin.h. However, when compiling with clang
* under Windows (i.e., when _MSC_VER is set), these headers
* only get included *if* the corresponding features are detected
* from macros:
* e.g., if __AVX2__ is set... in turn, we normally set these
* macros by compiling against the corresponding architecture
* (e.g., arch:AVX2, -mavx2, etc.) which compiles the whole
* software with these advanced instructions. These headers would
* normally guard against such usage, but we carefully included
* <x86intrin.h> (or <intrin.h>) before, so the headers
* are fooled.
*/
// To avoid reordering imports:
// clang-format off
#include <bmiintrin.h> // for _blsr_u64
#include <lzcntintrin.h> // for __lzcnt64
#include <immintrin.h> // for most things (AVX2, AVX512, _popcnt64)
#include <smmintrin.h>
#include <tmmintrin.h>
#include <avxintrin.h>
#include <avx2intrin.h>
#include <wmmintrin.h>
#if _MSC_VER >= 1920
// Important: we need the AVX-512 headers:
#include <avx512fintrin.h>
#include <avx512dqintrin.h>
#include <avx512cdintrin.h>
#include <avx512bwintrin.h>
#include <avx512vlintrin.h>
#include <avx512vbmiintrin.h>
#include <avx512vbmi2intrin.h>
#include <avx512vpopcntdqintrin.h>
// clang-format on
#endif // _MSC_VER >= 1920
// unfortunately, we may not get _blsr_u64, but, thankfully, clang
// has it as a macro.
#ifndef _blsr_u64
// we roll our own
#define _blsr_u64(n) ((n - 1) & n)
#endif // _blsr_u64
#endif // SIMDJSON_CLANG_VISUAL_STUDIO
#endif // CROARING_REGULAR_VISUAL_STUDIO
#endif // defined(__x86_64__) || defined(_M_X64)
#if !defined(CROARING_USENEON) && !defined(DISABLENEON) && defined(__ARM_NEON)
#define CROARING_USENEON
#endif
#if defined(CROARING_USENEON)
#include <arm_neon.h>
#endif
#if !CROARING_REGULAR_VISUAL_STUDIO
/* Non-Microsoft C/C++-compatible compiler, assumes that it supports inline
* assembly */
#define CROARING_INLINE_ASM 1
#endif // _MSC_VER
#if CROARING_REGULAR_VISUAL_STUDIO
/* Microsoft C/C++-compatible compiler */
#include <intrin.h>
#ifndef __clang__ // if one compiles with MSVC *with* clang, then these
// intrinsics are defined!!!
#define CROARING_INTRINSICS 1
// sadly there is no way to check whether we are missing these intrinsics
// specifically.
/* wrappers for Visual Studio built-ins that look like gcc built-ins
* __builtin_ctzll */
/** result might be undefined when input_num is zero */
inline int roaring_trailing_zeroes(unsigned long long input_num) {
unsigned long index;
#ifdef _WIN64 // highly recommended!!!
_BitScanForward64(&index, input_num);
#else // if we must support 32-bit Windows
if ((uint32_t)input_num != 0) {
_BitScanForward(&index, (uint32_t)input_num);
} else {
_BitScanForward(&index, (uint32_t)(input_num >> 32));
index += 32;
}
#endif // _WIN64
return index;
}
/* wrappers for Visual Studio built-ins that look like gcc built-ins
* __builtin_clzll */
/** result might be undefined when input_num is zero */
inline int roaring_leading_zeroes(unsigned long long input_num) {
unsigned long index;
#ifdef _WIN64 // highly recommended!!!
_BitScanReverse64(&index, input_num);
#else // if we must support 32-bit Windows
if (input_num > 0xFFFFFFFF) {
_BitScanReverse(&index, (uint32_t)(input_num >> 32));
index += 32;
} else {
_BitScanReverse(&index, (uint32_t)(input_num));
}
#endif // _WIN64
return 63 - index;
}
/* Use #define so this is effective even under /Ob0 (no inline) */
#define roaring_unreachable __assume(0)
#endif // __clang__
#endif // CROARING_REGULAR_VISUAL_STUDIO
#ifndef CROARING_INTRINSICS
#define CROARING_INTRINSICS 1
#define roaring_unreachable __builtin_unreachable()
/** result might be undefined when input_num is zero */
inline int roaring_trailing_zeroes(unsigned long long input_num) {
return __builtin_ctzll(input_num);
}
/** result might be undefined when input_num is zero */
inline int roaring_leading_zeroes(unsigned long long input_num) {
return __builtin_clzll(input_num);
}
#endif
#if CROARING_REGULAR_VISUAL_STUDIO
#define ALIGNED(x) __declspec(align(x))
#elif defined(__GNUC__) || defined(__clang__)
#define ALIGNED(x) __attribute__((aligned(x)))
#else
#warning "Warning. Unrecognized compiler."
#define ALIGNED(x)
#endif
#if defined(__GNUC__) || defined(__clang__)
#define CROARING_WARN_UNUSED __attribute__((warn_unused_result))
#else
#define CROARING_WARN_UNUSED
#endif
#define IS_BIG_ENDIAN (*(uint16_t *)"\0\xff" < 0x100)
#ifdef CROARING_USENEON
// we can always compute the popcount fast.
#elif (defined(_M_ARM) || defined(_M_ARM64)) && \
((defined(_WIN64) || defined(_WIN32)) && \
defined(CROARING_REGULAR_VISUAL_STUDIO) && \
CROARING_REGULAR_VISUAL_STUDIO)
// we will need this function:
static inline int roaring_hamming_backup(uint64_t x) {
uint64_t c1 = UINT64_C(0x5555555555555555);
uint64_t c2 = UINT64_C(0x3333333333333333);
uint64_t c4 = UINT64_C(0x0F0F0F0F0F0F0F0F);
x -= (x >> 1) & c1;
x = ((x >> 2) & c2) + (x & c2);
x = (x + (x >> 4)) & c4;
x *= UINT64_C(0x0101010101010101);
return x >> 56;
}
#endif
static inline int roaring_hamming(uint64_t x) {
#if defined(_WIN64) && defined(CROARING_REGULAR_VISUAL_STUDIO) && \
CROARING_REGULAR_VISUAL_STUDIO
#ifdef CROARING_USENEON
return vaddv_u8(vcnt_u8(vcreate_u8(input_num)));
#elif defined(_M_ARM64)
return roaring_hamming_backup(x);
// (int) _CountOneBits64(x); is unavailable
#else // _M_ARM64
return (int)__popcnt64(x);
#endif // _M_ARM64
#elif defined(_WIN32) && defined(CROARING_REGULAR_VISUAL_STUDIO) && \
CROARING_REGULAR_VISUAL_STUDIO
#ifdef _M_ARM
return roaring_hamming_backup(x);
// _CountOneBits is unavailable
#else // _M_ARM
return (int)__popcnt((unsigned int)x) +
(int)__popcnt((unsigned int)(x >> 32));
#endif // _M_ARM
#else
return __builtin_popcountll(x);
#endif
}
#ifndef UINT64_C
#define UINT64_C(c) (c##ULL)
#endif // UINT64_C
#ifndef UINT32_C
#define UINT32_C(c) (c##UL)
#endif // UINT32_C
#ifdef __cplusplus
} // extern "C" {
#endif // __cplusplus
// this is almost standard?
#undef STRINGIFY_IMPLEMENTATION_
#undef STRINGIFY
#define STRINGIFY_IMPLEMENTATION_(a) #a
#define STRINGIFY(a) STRINGIFY_IMPLEMENTATION_(a)
// Our fast kernels require 64-bit systems.
//
// On 32-bit x86, we lack 64-bit popcnt, lzcnt, blsr instructions.
// Furthermore, the number of SIMD registers is reduced.
//
// On 32-bit ARM, we would have smaller registers.
//
// The library should still have the fallback kernel. It is
// slower, but it should run everywhere.
//
// Enable valid runtime implementations, and select
// CROARING_BUILTIN_IMPLEMENTATION
//
// We are going to use runtime dispatch.
#if CROARING_IS_X64
#ifdef __clang__
// clang does not have GCC push pop
// warning: clang attribute push can't be used within a namespace in clang up
// til 8.0 so CROARING_TARGET_REGION and CROARING_UNTARGET_REGION must be
// *outside* of a namespace.
#define CROARING_TARGET_REGION(T) \
_Pragma(STRINGIFY(clang attribute push(__attribute__((target(T))), \
apply_to = function)))
#define CROARING_UNTARGET_REGION _Pragma("clang attribute pop")
#elif defined(__GNUC__)
// GCC is easier
#define CROARING_TARGET_REGION(T) \
_Pragma("GCC push_options") _Pragma(STRINGIFY(GCC target(T)))
#define CROARING_UNTARGET_REGION _Pragma("GCC pop_options")
#endif // clang then gcc
#endif // CROARING_IS_X64
// Default target region macros don't do anything.
#ifndef CROARING_TARGET_REGION
#define CROARING_TARGET_REGION(T)
#define CROARING_UNTARGET_REGION
#endif
#define CROARING_TARGET_AVX2 \
CROARING_TARGET_REGION("avx2,bmi,pclmul,lzcnt,popcnt")
#define CROARING_TARGET_AVX512 \
CROARING_TARGET_REGION( \
"avx2,bmi,bmi2,pclmul,lzcnt,popcnt,avx512f,avx512dq,avx512bw," \
"avx512vbmi2,avx512bitalg,avx512vpopcntdq")
#define CROARING_UNTARGET_AVX2 CROARING_UNTARGET_REGION
#define CROARING_UNTARGET_AVX512 CROARING_UNTARGET_REGION
#ifdef __AVX2__
// No need for runtime dispatching.
// It is unnecessary and harmful to old clang to tag regions.
#undef CROARING_TARGET_AVX2
#define CROARING_TARGET_AVX2
#undef CROARING_UNTARGET_AVX2
#define CROARING_UNTARGET_AVX2
#endif
#if defined(__AVX512F__) && defined(__AVX512DQ__) && defined(__AVX512BW__) && \
defined(__AVX512VBMI2__) && defined(__AVX512BITALG__) && \
defined(__AVX512VPOPCNTDQ__)
// No need for runtime dispatching.
// It is unnecessary and harmful to old clang to tag regions.
#undef CROARING_TARGET_AVX512
#define CROARING_TARGET_AVX512
#undef CROARING_UNTARGET_AVX512
#define CROARING_UNTARGET_AVX512
#endif
// Allow unaligned memory access
#if defined(__GNUC__) || defined(__clang__)
#define ALLOW_UNALIGNED __attribute__((no_sanitize("alignment")))
#else
#define ALLOW_UNALIGNED
#endif
#if defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__)
#define CROARING_IS_BIG_ENDIAN (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
#elif defined(_WIN32)
#define CROARING_IS_BIG_ENDIAN 0
#else
#if defined(__APPLE__) || \
defined(__FreeBSD__) // defined __BYTE_ORDER__ && defined
// __ORDER_BIG_ENDIAN__
#include <machine/endian.h>
#elif defined(sun) || \
defined(__sun) // defined(__APPLE__) || defined(__FreeBSD__)
#include <sys/byteorder.h>
#else // defined(__APPLE__) || defined(__FreeBSD__)
#ifdef __has_include
#if __has_include(<endian.h>)
#include <endian.h>
#endif //__has_include(<endian.h>)
#endif //__has_include
#endif // defined(__APPLE__) || defined(__FreeBSD__)
#ifndef !defined(__BYTE_ORDER__) || !defined(__ORDER_LITTLE_ENDIAN__)
#define CROARING_IS_BIG_ENDIAN 0
#endif
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define CROARING_IS_BIG_ENDIAN 0
#else // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define CROARING_IS_BIG_ENDIAN 1
#endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#endif
// Host <-> big endian conversion.
#if CROARING_IS_BIG_ENDIAN
#define croaring_htobe64(x) (x)
#elif defined(_WIN32) || defined(_WIN64) // CROARING_IS_BIG_ENDIAN
#include <stdlib.h>
#define croaring_htobe64(x) _byteswap_uint64(x)
#elif defined(__APPLE__) // CROARING_IS_BIG_ENDIAN
#include <libkern/OSByteOrder.h>
#define croaring_htobe64(x) OSSwapInt64(x)
#elif defined(__has_include) && \
__has_include( \
<byteswap.h>) && (defined(__linux__) || defined(__FreeBSD__)) // CROARING_IS_BIG_ENDIAN
#include <byteswap.h>
#if defined(__linux__)
#define croaring_htobe64(x) bswap_64(x)
#elif defined(__FreeBSD__)
#define croaring_htobe64(x) bswap64(x)
#else
#warning "Unknown platform, report as an error"
#endif
#else // CROARING_IS_BIG_ENDIAN
// Gets compiled to bswap or equivalent on most compilers.
#define croaring_htobe64(x) \
(((x & 0x00000000000000FFULL) << 56) | \
((x & 0x000000000000FF00ULL) << 40) | \
((x & 0x0000000000FF0000ULL) << 24) | \
((x & 0x00000000FF000000ULL) << 8) | ((x & 0x000000FF00000000ULL) >> 8) | \
((x & 0x0000FF0000000000ULL) >> 24) | \
((x & 0x00FF000000000000ULL) >> 40) | \
((x & 0xFF00000000000000ULL) >> 56))
#endif // CROARING_IS_BIG_ENDIAN
#define croaring_be64toh(x) croaring_htobe64(x)
// End of host <-> big endian conversion.
// Defines for the possible CROARING atomic implementations
#define CROARING_ATOMIC_IMPL_NONE 1
#define CROARING_ATOMIC_IMPL_CPP 2
#define CROARING_ATOMIC_IMPL_C 3
#define CROARING_ATOMIC_IMPL_C_WINDOWS 4
// If the use has forced a specific implementation, use that, otherwise,
// figure out the best implementation we can use.
#if !defined(CROARING_ATOMIC_IMPL)
#if defined(__cplusplus) && __cplusplus >= 201103L
#ifdef __has_include
#if __has_include(<atomic>)
#define CROARING_ATOMIC_IMPL CROARING_ATOMIC_IMPL_CPP
#endif //__has_include(<atomic>)
#else
// We lack __has_include to check:
#define CROARING_ATOMIC_IMPL CROARING_ATOMIC_IMPL_CPP
#endif //__has_include
#elif __STDC_VERSION__ >= 201112L && !defined(__STDC_NO_ATOMICS__)
#define CROARING_ATOMIC_IMPL CROARING_ATOMIC_IMPL_C
#elif CROARING_REGULAR_VISUAL_STUDIO
// https://www.technetworkhub.com/c11-atomics-in-visual-studio-2022-version-17/
#define CROARING_ATOMIC_IMPL CROARING_ATOMIC_IMPL_C_WINDOWS
#endif
#endif // !defined(CROARING_ATOMIC_IMPL)
#if CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_C
#include <stdatomic.h>
typedef _Atomic(uint32_t) croaring_refcount_t;
static inline void croaring_refcount_inc(croaring_refcount_t *val) {
// Increasing the reference counter can always be done with
// memory_order_relaxed: New references to an object can only be formed from
// an existing reference, and passing an existing reference from one thread
// to another must already provide any required synchronization.
atomic_fetch_add_explicit(val, 1, memory_order_relaxed);
}
static inline bool croaring_refcount_dec(croaring_refcount_t *val) {
// It is important to enforce any possible access to the object in one
// thread (through an existing reference) to happen before deleting the
// object in a different thread. This is achieved by a "release" operation
// after dropping a reference (any access to the object through this
// reference must obviously happened before), and an "acquire" operation
// before deleting the object.
bool is_zero = atomic_fetch_sub_explicit(val, 1, memory_order_release) == 1;
if (is_zero) {
atomic_thread_fence(memory_order_acquire);
}
return is_zero;
}
static inline uint32_t croaring_refcount_get(const croaring_refcount_t *val) {
return atomic_load_explicit(val, memory_order_relaxed);
}
#elif CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_CPP
#include <atomic>
typedef std::atomic<uint32_t> croaring_refcount_t;
static inline void croaring_refcount_inc(croaring_refcount_t *val) {
val->fetch_add(1, std::memory_order_relaxed);
}
static inline bool croaring_refcount_dec(croaring_refcount_t *val) {
// See above comments on the c11 atomic implementation for memory ordering
bool is_zero = val->fetch_sub(1, std::memory_order_release) == 1;
if (is_zero) {
std::atomic_thread_fence(std::memory_order_acquire);
}
return is_zero;
}
static inline uint32_t croaring_refcount_get(const croaring_refcount_t *val) {
return val->load(std::memory_order_relaxed);
}
#elif CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_C_WINDOWS
#include <intrin.h>
#pragma intrinsic(_InterlockedIncrement)
#pragma intrinsic(_InterlockedDecrement)
// _InterlockedIncrement and _InterlockedDecrement take a (signed) long, and
// overflow is defined to wrap, so we can pretend it is a uint32_t for our case
typedef volatile long croaring_refcount_t;
static inline void croaring_refcount_inc(croaring_refcount_t *val) {
_InterlockedIncrement(val);
}
static inline bool croaring_refcount_dec(croaring_refcount_t *val) {
return _InterlockedDecrement(val) == 0;
}
static inline uint32_t croaring_refcount_get(const croaring_refcount_t *val) {
// Per
// https://learn.microsoft.com/en-us/windows/win32/sync/interlocked-variable-access
// > Simple reads and writes to properly-aligned 32-bit variables are atomic
// > operations. In other words, you will not end up with only one portion
// > of the variable updated; all bits are updated in an atomic fashion.
return *val;
}
#elif CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_NONE
#include <assert.h>
typedef uint32_t croaring_refcount_t;
static inline void croaring_refcount_inc(croaring_refcount_t *val) {
*val += 1;
}
static inline bool croaring_refcount_dec(croaring_refcount_t *val) {
assert(*val > 0);
*val -= 1;
return val == 0;
}
static inline uint32_t croaring_refcount_get(const croaring_refcount_t *val) {
return *val;
}
#else
#error "Unknown atomic implementation"
#endif
#if defined(__GNUC__) || defined(__clang__)
#define CROARING_DEPRECATED __attribute__((deprecated))
#else
#define CROARING_DEPRECATED
#endif // defined(__GNUC__) || defined(__clang__)
// We need portability.h to be included first,
// but we also always want isadetection.h to be
// included (right after).
// See https://github.com/RoaringBitmap/CRoaring/issues/394
// There is no scenario where we want portability.h to
// be included, but not isadetection.h: the latter is a
// strict requirement.
#endif /* INCLUDE_PORTABILITY_H_ */
/* end file include/roaring/portability.h */
/* begin file include/roaring/bitset/bitset.h */
#ifndef CROARING_CBITSET_BITSET_H
#define CROARING_CBITSET_BITSET_H
// For compatibility with MSVC with the use of `restrict`
#if (__STDC_VERSION__ >= 199901L) || \
(defined(__GNUC__) && defined(__STDC_VERSION__))
#define CROARING_CBITSET_RESTRICT restrict
#else
#define CROARING_CBITSET_RESTRICT
#endif // (__STDC_VERSION__ >= 199901L) || (defined(__GNUC__) &&
// defined(__STDC_VERSION__ ))
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef __cplusplus
extern "C" {
namespace roaring {
namespace api {
#endif
struct bitset_s {
uint64_t *CROARING_CBITSET_RESTRICT array;
/* For simplicity and performance, we prefer to have a size and a capacity
* that is a multiple of 64 bits. Thus we only track the size and the
* capacity in terms of 64-bit words allocated */
size_t arraysize;
size_t capacity;
};
typedef struct bitset_s bitset_t;
/* Create a new bitset. Return NULL in case of failure. */
bitset_t *bitset_create(void);
/* Create a new bitset able to contain size bits. Return NULL in case of
* failure. */
bitset_t *bitset_create_with_capacity(size_t size);
/* Free memory. */
void bitset_free(bitset_t *bitset);
/* Set all bits to zero. */
void bitset_clear(bitset_t *bitset);
/* Set all bits to one. */
void bitset_fill(bitset_t *bitset);
/* Create a copy */
bitset_t *bitset_copy(const bitset_t *bitset);
/* For advanced users: Resize the bitset so that it can support newarraysize *
* 64 bits. Return true in case of success, false for failure. Pad with zeroes
* new buffer areas if requested. */
bool bitset_resize(bitset_t *bitset, size_t newarraysize, bool padwithzeroes);
/* returns how many bytes of memory the backend buffer uses */
inline size_t bitset_size_in_bytes(const bitset_t *bitset) {
return bitset->arraysize * sizeof(uint64_t);
}
/* returns how many bits can be accessed */
inline size_t bitset_size_in_bits(const bitset_t *bitset) {
return bitset->arraysize * 64;
}
/* returns how many words (64-bit) of memory the backend buffer uses */
inline size_t bitset_size_in_words(const bitset_t *bitset) {
return bitset->arraysize;
}
/* For advanced users: Grow the bitset so that it can support newarraysize * 64
* bits with padding. Return true in case of success, false for failure. */
bool bitset_grow(bitset_t *bitset, size_t newarraysize);
/* attempts to recover unused memory, return false in case of
* roaring_reallocation failure */
bool bitset_trim(bitset_t *bitset);
/* shifts all bits by 's' positions so that the bitset representing values
* 1,2,10 would represent values 1+s, 2+s, 10+s */
void bitset_shift_left(bitset_t *bitset, size_t s);
/* shifts all bits by 's' positions so that the bitset representing values
* 1,2,10 would represent values 1-s, 2-s, 10-s, negative values are deleted */
void bitset_shift_right(bitset_t *bitset, size_t s);
/* Set the ith bit. Attempts to resize the bitset if needed (may silently fail)
*/
inline void bitset_set(bitset_t *bitset, size_t i) {
size_t shiftedi = i / 64;
if (shiftedi >= bitset->arraysize) {
if (!bitset_grow(bitset, shiftedi + 1)) {
return;
}
}
bitset->array[shiftedi] |= ((uint64_t)1) << (i % 64);
}
/* Set the ith bit to the specified value. Attempts to resize the bitset if
* needed (may silently fail) */
inline void bitset_set_to_value(bitset_t *bitset, size_t i, bool flag) {
size_t shiftedi = i / 64;
uint64_t mask = ((uint64_t)1) << (i % 64);
uint64_t dynmask = ((uint64_t)flag) << (i % 64);
if (shiftedi >= bitset->arraysize) {
if (!bitset_grow(bitset, shiftedi + 1)) {
return;
}
}
uint64_t w = bitset->array[shiftedi];
w &= ~mask;
w |= dynmask;
bitset->array[shiftedi] = w;
}
/* Get the value of the ith bit. */
inline bool bitset_get(const bitset_t *bitset, size_t i) {
size_t shiftedi = i / 64;
if (shiftedi >= bitset->arraysize) {
return false;
}
return (bitset->array[shiftedi] & (((uint64_t)1) << (i % 64))) != 0;
}
/* Count number of bits set. */
size_t bitset_count(const bitset_t *bitset);
/* Find the index of the first bit set. Or zero if the bitset is empty. */
size_t bitset_minimum(const bitset_t *bitset);
/* Find the index of the last bit set. Or zero if the bitset is empty. */
size_t bitset_maximum(const bitset_t *bitset);
/* compute the union in-place (to b1), returns true if successful, to generate a
* new bitset first call bitset_copy */
bool bitset_inplace_union(bitset_t *CROARING_CBITSET_RESTRICT b1,
const bitset_t *CROARING_CBITSET_RESTRICT b2);
/* report the size of the union (without materializing it) */
size_t bitset_union_count(const bitset_t *CROARING_CBITSET_RESTRICT b1,
const bitset_t *CROARING_CBITSET_RESTRICT b2);
/* compute the intersection in-place (to b1), to generate a new bitset first
* call bitset_copy */
void bitset_inplace_intersection(bitset_t *CROARING_CBITSET_RESTRICT b1,
const bitset_t *CROARING_CBITSET_RESTRICT b2);
/* report the size of the intersection (without materializing it) */
size_t bitset_intersection_count(const bitset_t *CROARING_CBITSET_RESTRICT b1,
const bitset_t *CROARING_CBITSET_RESTRICT b2);
/* returns true if the bitsets contain no common elements */
bool bitsets_disjoint(const bitset_t *CROARING_CBITSET_RESTRICT b1,
const bitset_t *CROARING_CBITSET_RESTRICT b2);
/* returns true if the bitsets contain any common elements */
bool bitsets_intersect(const bitset_t *CROARING_CBITSET_RESTRICT b1,
const bitset_t *CROARING_CBITSET_RESTRICT b2);
/* returns true if b1 contains all of the set bits of b2 */
bool bitset_contains_all(const bitset_t *CROARING_CBITSET_RESTRICT b1,
const bitset_t *CROARING_CBITSET_RESTRICT b2);
/* compute the difference in-place (to b1), to generate a new bitset first call
* bitset_copy */
void bitset_inplace_difference(bitset_t *CROARING_CBITSET_RESTRICT b1,
const bitset_t *CROARING_CBITSET_RESTRICT b2);
/* compute the size of the difference */
size_t bitset_difference_count(const bitset_t *CROARING_CBITSET_RESTRICT b1,
const bitset_t *CROARING_CBITSET_RESTRICT b2);
/* compute the symmetric difference in-place (to b1), return true if successful,
* to generate a new bitset first call bitset_copy */
bool bitset_inplace_symmetric_difference(
bitset_t *CROARING_CBITSET_RESTRICT b1,
const bitset_t *CROARING_CBITSET_RESTRICT b2);
/* compute the size of the symmetric difference */
size_t bitset_symmetric_difference_count(
const bitset_t *CROARING_CBITSET_RESTRICT b1,
const bitset_t *CROARING_CBITSET_RESTRICT b2);
/* iterate over the set bits
like so :
for(size_t i = 0; bitset_next_set_bit(b,&i) ; i++) {
//.....
}
*/
inline bool bitset_next_set_bit(const bitset_t *bitset, size_t *i) {
size_t x = *i / 64;
if (x >= bitset->arraysize) {
return false;
}
uint64_t w = bitset->array[x];
w >>= (*i & 63);
if (w != 0) {
*i += roaring_trailing_zeroes(w);
return true;
}
x++;
while (x < bitset->arraysize) {
w = bitset->array[x];
if (w != 0) {
*i = x * 64 + roaring_trailing_zeroes(w);
return true;
}
x++;
}
return false;
}
/* iterate over the set bits
like so :
size_t buffer[256];
size_t howmany = 0;
for(size_t startfrom = 0; (howmany = bitset_next_set_bits(b,buffer,256,
&startfrom)) > 0 ; startfrom++) {
//.....
}
*/
inline size_t bitset_next_set_bits(const bitset_t *bitset, size_t *buffer,
size_t capacity, size_t *startfrom) {
if (capacity == 0) return 0; // sanity check
size_t x = *startfrom / 64;
if (x >= bitset->arraysize) {
return 0; // nothing more to iterate over
}
uint64_t w = bitset->array[x];
w >>= (*startfrom & 63);
size_t howmany = 0;
size_t base = x << 6;
while (howmany < capacity) {
while (w != 0) {
uint64_t t = w & (~w + 1);
int r = roaring_trailing_zeroes(w);
buffer[howmany++] = r + base;
if (howmany == capacity) goto end;
w ^= t;
}
x += 1;
if (x == bitset->arraysize) {
break;
}
base += 64;
w = bitset->array[x];
}
end:
if (howmany > 0) {
*startfrom = buffer[howmany - 1];
}
return howmany;
}
typedef bool (*bitset_iterator)(size_t value, void *param);
// return true if uninterrupted
inline bool bitset_for_each(const bitset_t *b, bitset_iterator iterator,
void *ptr) {
size_t base = 0;
for (size_t i = 0; i < b->arraysize; ++i) {
uint64_t w = b->array[i];
while (w != 0) {
uint64_t t = w & (~w + 1);
int r = roaring_trailing_zeroes(w);
if (!iterator(r + base, ptr)) return false;
w ^= t;
}
base += 64;
}
return true;
}
inline void bitset_print(const bitset_t *b) {
printf("{");
for (size_t i = 0; bitset_next_set_bit(b, &i); i++) {
printf("%zu, ", i);
}
printf("}");
}
#ifdef __cplusplus
}
}
} // extern "C" { namespace roaring { namespace api {
#endif
#endif
/* end file include/roaring/bitset/bitset.h */
/* begin file include/roaring/roaring.h */
/*
* An implementation of Roaring Bitmaps in C.
*/
#ifndef ROARING_H
#define ROARING_H
#include <stdbool.h>
#include <stddef.h> // for `size_t`
#include <stdint.h>
// Include other headers after roaring_types.h
#ifdef __cplusplus
extern "C" {
namespace roaring {
namespace api {
#endif
typedef struct roaring_bitmap_s {
roaring_array_t high_low_container;
} roaring_bitmap_t;
/**
* Dynamically allocates a new bitmap (initially empty).
* Returns NULL if the allocation fails.
* Capacity is a performance hint for how many "containers" the data will need.
* Client is responsible for calling `roaring_bitmap_free()`.
*/
roaring_bitmap_t *roaring_bitmap_create_with_capacity(uint32_t cap);
/**
* Dynamically allocates a new bitmap (initially empty).
* Returns NULL if the allocation fails.
* Client is responsible for calling `roaring_bitmap_free()`.
*/
inline roaring_bitmap_t *roaring_bitmap_create(void) {
return roaring_bitmap_create_with_capacity(0);
}
/**
* Initialize a roaring bitmap structure in memory controlled by client.
* Capacity is a performance hint for how many "containers" the data will need.
* Can return false if auxiliary allocations fail when capacity greater than 0.
*/
bool roaring_bitmap_init_with_capacity(roaring_bitmap_t *r, uint32_t cap);
/**
* Initialize a roaring bitmap structure in memory controlled by client.
* The bitmap will be in a "clear" state, with no auxiliary allocations.
* Since this performs no allocations, the function will not fail.
*/
inline void roaring_bitmap_init_cleared(roaring_bitmap_t *r) {
roaring_bitmap_init_with_capacity(r, 0);
}
/**
* Add all the values between min (included) and max (excluded) that are at a
* distance k*step from min.
*/
roaring_bitmap_t *roaring_bitmap_from_range(uint64_t min, uint64_t max,
uint32_t step);
/**
* Creates a new bitmap from a pointer of uint32_t integers
*/
roaring_bitmap_t *roaring_bitmap_of_ptr(size_t n_args, const uint32_t *vals);
/*
* Whether you want to use copy-on-write.
* Saves memory and avoids copies, but needs more care in a threaded context.
* Most users should ignore this flag.
*
* Note: If you do turn this flag to 'true', enabling COW, then ensure that you
* do so for all of your bitmaps, since interactions between bitmaps with and
* without COW is unsafe.
*/
inline bool roaring_bitmap_get_copy_on_write(const roaring_bitmap_t *r) {
return r->high_low_container.flags & ROARING_FLAG_COW;
}
inline void roaring_bitmap_set_copy_on_write(roaring_bitmap_t *r, bool cow) {
if (cow) {
r->high_low_container.flags |= ROARING_FLAG_COW;
} else {
r->high_low_container.flags &= ~ROARING_FLAG_COW;
}
}
roaring_bitmap_t *roaring_bitmap_add_offset(const roaring_bitmap_t *bm,
int64_t offset);
/**
* Describe the inner structure of the bitmap.
*/
void roaring_bitmap_printf_describe(const roaring_bitmap_t *r);
/**
* Creates a new bitmap from a list of uint32_t integers
*
* This function is deprecated, use `roaring_bitmap_from` instead, which
* doesn't require the number of elements to be passed in.
*
* @see roaring_bitmap_from
*/
CROARING_DEPRECATED roaring_bitmap_t *roaring_bitmap_of(size_t n, ...);
#ifdef __cplusplus
/**
* Creates a new bitmap which contains all values passed in as arguments.
*
* To create a bitmap from a variable number of arguments, use the
* `roaring_bitmap_of_ptr` function instead.
*/
// Use an immediately invoked closure, capturing by reference
// (in case __VA_ARGS__ refers to context outside the closure)
// Include a 0 at the beginning of the array to make the array length > 0
// (zero sized arrays are not valid in standard c/c++)
#define roaring_bitmap_from(...) \
[&]() { \
const uint32_t roaring_bitmap_from_array[] = {0, __VA_ARGS__}; \
return roaring_bitmap_of_ptr((sizeof(roaring_bitmap_from_array) / \
sizeof(roaring_bitmap_from_array[0])) - \
1, \
&roaring_bitmap_from_array[1]); \
}()
#else
/**
* Creates a new bitmap which contains all values passed in as arguments.
*
* To create a bitmap from a variable number of arguments, use the
* `roaring_bitmap_of_ptr` function instead.
*/
// While __VA_ARGS__ occurs twice in expansion, one of the times is in a sizeof
// expression, which is an unevaluated context, so it's even safe in the case
// where expressions passed have side effects (roaring64_bitmap_from(my_func(),
// ++i))
// Include a 0 at the beginning of the array to make the array length > 0
// (zero sized arrays are not valid in standard c/c++)
#define roaring_bitmap_from(...) \
roaring_bitmap_of_ptr( \
(sizeof((const uint32_t[]){0, __VA_ARGS__}) / sizeof(uint32_t)) - 1, \
&((const uint32_t[]){0, __VA_ARGS__})[1])
#endif
/**
* Copies a bitmap (this does memory allocation).
* The caller is responsible for memory management.
*/
roaring_bitmap_t *roaring_bitmap_copy(const roaring_bitmap_t *r);
/**
* Copies a bitmap from src to dest. It is assumed that the pointer dest
* is to an already allocated bitmap. The content of the dest bitmap is
* freed/deleted.
*
* It might be preferable and simpler to call roaring_bitmap_copy except
* that roaring_bitmap_overwrite can save on memory allocations.
*
* Returns true if successful, or false if there was an error. On failure,
* the dest bitmap is left in a valid, empty state (even if it was not empty
* before).
*/
bool roaring_bitmap_overwrite(roaring_bitmap_t *dest,
const roaring_bitmap_t *src);
/**
* Print the content of the bitmap.
*/
void roaring_bitmap_printf(const roaring_bitmap_t *r);
/**
* Computes the intersection between two bitmaps and returns new bitmap. The
* caller is responsible for memory management.
*
* Performance hint: if you are computing the intersection between several
* bitmaps, two-by-two, it is best to start with the smallest bitmap.
* You may also rely on roaring_bitmap_and_inplace to avoid creating
* many temporary bitmaps.
*/
roaring_bitmap_t *roaring_bitmap_and(const roaring_bitmap_t *r1,
const roaring_bitmap_t *r2);
/**
* Computes the size of the intersection between two bitmaps.
*/
uint64_t roaring_bitmap_and_cardinality(const roaring_bitmap_t *r1,
const roaring_bitmap_t *r2);
/**
* Check whether two bitmaps intersect.
*/
bool roaring_bitmap_intersect(const roaring_bitmap_t *r1,
const roaring_bitmap_t *r2);
/**
* Check whether a bitmap and an open range intersect.
*/
bool roaring_bitmap_intersect_with_range(const roaring_bitmap_t *bm, uint64_t x,
uint64_t y);
/**
* Computes the Jaccard index between two bitmaps. (Also known as the Tanimoto
* distance, or the Jaccard similarity coefficient)
*
* The Jaccard index is undefined if both bitmaps are empty.
*/
double roaring_bitmap_jaccard_index(const roaring_bitmap_t *r1,
const roaring_bitmap_t *r2);
/**
* Computes the size of the union between two bitmaps.
*/
uint64_t roaring_bitmap_or_cardinality(const roaring_bitmap_t *r1,
const roaring_bitmap_t *r2);
/**
* Computes the size of the difference (andnot) between two bitmaps.
*/
uint64_t roaring_bitmap_andnot_cardinality(const roaring_bitmap_t *r1,
const roaring_bitmap_t *r2);
/**
* Computes the size of the symmetric difference (xor) between two bitmaps.
*/
uint64_t roaring_bitmap_xor_cardinality(const roaring_bitmap_t *r1,
const roaring_bitmap_t *r2);
/**
* Inplace version of `roaring_bitmap_and()`, modifies r1
* r1 == r2 is allowed.
*
* Performance hint: if you are computing the intersection between several
* bitmaps, two-by-two, it is best to start with the smallest bitmap.
*/
void roaring_bitmap_and_inplace(roaring_bitmap_t *r1,
const roaring_bitmap_t *r2);
/**
* Computes the union between two bitmaps and returns new bitmap. The caller is
* responsible for memory management.
*/
roaring_bitmap_t *roaring_bitmap_or(const roaring_bitmap_t *r1,
const roaring_bitmap_t *r2);
/**
* Inplace version of `roaring_bitmap_or(), modifies r1.
* TODO: decide whether r1 == r2 ok
*/
void roaring_bitmap_or_inplace(roaring_bitmap_t *r1,
const roaring_bitmap_t *r2);
/**
* Compute the union of 'number' bitmaps.
* Caller is responsible for freeing the result.
* See also `roaring_bitmap_or_many_heap()`
*/
roaring_bitmap_t *roaring_bitmap_or_many(size_t number,
const roaring_bitmap_t **rs);
/**
* Compute the union of 'number' bitmaps using a heap. This can sometimes be
* faster than `roaring_bitmap_or_many() which uses a naive algorithm.
* Caller is responsible for freeing the result.
*/
roaring_bitmap_t *roaring_bitmap_or_many_heap(uint32_t number,
const roaring_bitmap_t **rs);
/**
* Computes the symmetric difference (xor) between two bitmaps
* and returns new bitmap. The caller is responsible for memory management.
*/
roaring_bitmap_t *roaring_bitmap_xor(const roaring_bitmap_t *r1,
const roaring_bitmap_t *r2);
/**
* Inplace version of roaring_bitmap_xor, modifies r1, r1 != r2.
*/
void roaring_bitmap_xor_inplace(roaring_bitmap_t *r1,
const roaring_bitmap_t *r2);
/**
* Compute the xor of 'number' bitmaps.
* Caller is responsible for freeing the result.
*/
roaring_bitmap_t *roaring_bitmap_xor_many(size_t number,
const roaring_bitmap_t **rs);
/**
* Computes the difference (andnot) between two bitmaps and returns new bitmap.
* Caller is responsible for freeing the result.
*/
roaring_bitmap_t *roaring_bitmap_andnot(const roaring_bitmap_t *r1,
const roaring_bitmap_t *r2);
/**
* Inplace version of roaring_bitmap_andnot, modifies r1, r1 != r2.
*/
void roaring_bitmap_andnot_inplace(roaring_bitmap_t *r1,
const roaring_bitmap_t *r2);
/**
* TODO: consider implementing:
*
* "Compute the xor of 'number' bitmaps using a heap. This can sometimes be
* faster than roaring_bitmap_xor_many which uses a naive algorithm. Caller is
* responsible for freeing the result.""
*
* roaring_bitmap_t *roaring_bitmap_xor_many_heap(uint32_t number,
* const roaring_bitmap_t **rs);
*/
/**
* Frees the memory.
*/
void roaring_bitmap_free(const roaring_bitmap_t *r);
/**
* A bit of context usable with `roaring_bitmap_*_bulk()` functions
*
* Should be initialized with `{0}` (or `memset()` to all zeros).
* Callers should treat it as an opaque type.
*
* A context may only be used with a single bitmap
* (unless re-initialized to zero), and any modification to a bitmap
* (other than modifications performed with `_bulk()` functions with the context
* passed) will invalidate any contexts associated with that bitmap.
*/
typedef struct roaring_bulk_context_s {
ROARING_CONTAINER_T *container;
int idx;
uint16_t key;
uint8_t typecode;
} roaring_bulk_context_t;
/**
* Add an item, using context from a previous insert for speed optimization.
*
* `context` will be used to store information between calls to make bulk
* operations faster. `*context` should be zero-initialized before the first
* call to this function.
*
* Modifying the bitmap in any way (other than `-bulk` suffixed functions)
* will invalidate the stored context, calling this function with a non-zero
* context after doing any modification invokes undefined behavior.
*
* In order to exploit this optimization, the caller should call this function
* with values with the same "key" (high 16 bits of the value) consecutively.
*/
void roaring_bitmap_add_bulk(roaring_bitmap_t *r,
roaring_bulk_context_t *context, uint32_t val);
/**
* Add value n_args from pointer vals, faster than repeatedly calling
* `roaring_bitmap_add()`
*
* In order to exploit this optimization, the caller should attempt to keep
* values with the same "key" (high 16 bits of the value) as consecutive
* elements in `vals`
*/
void roaring_bitmap_add_many(roaring_bitmap_t *r, size_t n_args,
const uint32_t *vals);
/**
* Add value x
*/
void roaring_bitmap_add(roaring_bitmap_t *r, uint32_t x);
/**
* Add value x
* Returns true if a new value was added, false if the value already existed.
*/
bool roaring_bitmap_add_checked(roaring_bitmap_t *r, uint32_t x);
/**
* Add all values in range [min, max]
*/
void roaring_bitmap_add_range_closed(roaring_bitmap_t *r, uint32_t min,
uint32_t max);
/**
* Add all values in range [min, max)
*/
inline void roaring_bitmap_add_range(roaring_bitmap_t *r, uint64_t min,
uint64_t max) {
if (max <= min) return;
roaring_bitmap_add_range_closed(r, (uint32_t)min, (uint32_t)(max - 1));
}
/**
* Remove value x
*/
void roaring_bitmap_remove(roaring_bitmap_t *r, uint32_t x);
/**
* Remove all values in range [min, max]
*/
void roaring_bitmap_remove_range_closed(roaring_bitmap_t *r, uint32_t min,
uint32_t max);
/**
* Remove all values in range [min, max)
*/
inline void roaring_bitmap_remove_range(roaring_bitmap_t *r, uint64_t min,
uint64_t max) {
if (max <= min) return;
roaring_bitmap_remove_range_closed(r, (uint32_t)min, (uint32_t)(max - 1));
}
/**
* Remove multiple values
*/
void roaring_bitmap_remove_many(roaring_bitmap_t *r, size_t n_args,
const uint32_t *vals);
/**
* Remove value x
* Returns true if a new value was removed, false if the value was not existing.
*/
bool roaring_bitmap_remove_checked(roaring_bitmap_t *r, uint32_t x);
/**
* Check if value is present
*/
bool roaring_bitmap_contains(const roaring_bitmap_t *r, uint32_t val);
/**
* Check whether a range of values from range_start (included)
* to range_end (excluded) is present
*/
bool roaring_bitmap_contains_range(const roaring_bitmap_t *r,
uint64_t range_start, uint64_t range_end);
/**
* Check if an items is present, using context from a previous insert or search
* for speed optimization.
*
* `context` will be used to store information between calls to make bulk
* operations faster. `*context` should be zero-initialized before the first
* call to this function.
*
* Modifying the bitmap in any way (other than `-bulk` suffixed functions)
* will invalidate the stored context, calling this function with a non-zero
* context after doing any modification invokes undefined behavior.
*
* In order to exploit this optimization, the caller should call this function
* with values with the same "key" (high 16 bits of the value) consecutively.
*/
bool roaring_bitmap_contains_bulk(const roaring_bitmap_t *r,
roaring_bulk_context_t *context,
uint32_t val);
/**
* Get the cardinality of the bitmap (number of elements).
*/
uint64_t roaring_bitmap_get_cardinality(const roaring_bitmap_t *r);
/**
* Returns the number of elements in the range [range_start, range_end).
*/
uint64_t roaring_bitmap_range_cardinality(const roaring_bitmap_t *r,
uint64_t range_start,
uint64_t range_end);
/**
* Returns true if the bitmap is empty (cardinality is zero).
*/
bool roaring_bitmap_is_empty(const roaring_bitmap_t *r);
/**
* Empties the bitmap. It will have no auxiliary allocations (so if the bitmap
* was initialized in client memory via roaring_bitmap_init(), then a call to
* roaring_bitmap_clear() would be enough to "free" it)
*/
void roaring_bitmap_clear(roaring_bitmap_t *r);
/**
* Convert the bitmap to a sorted array, output in `ans`.
*
* Caller is responsible to ensure that there is enough memory allocated, e.g.
*
* ans = malloc(roaring_bitmap_get_cardinality(bitmap) * sizeof(uint32_t));
*/
void roaring_bitmap_to_uint32_array(const roaring_bitmap_t *r, uint32_t *ans);
/**
* Store the bitmap to a bitset. This can be useful for people
* who need the performance and simplicity of a standard bitset.
* We assume that the input bitset is originally empty (does not
* have any set bit).
*
* bitset_t * out = bitset_create();
* // if the bitset has content in it, call "bitset_clear(out)"
* bool success = roaring_bitmap_to_bitset(mybitmap, out);
* // on failure, success will be false.
* // You can then query the bitset:
* bool is_present = bitset_get(out, 10011 );
* // you must free the memory:
* bitset_free(out);
*
*/
bool roaring_bitmap_to_bitset(const roaring_bitmap_t *r, bitset_t *bitset);
/**
* Convert the bitmap to a sorted array from `offset` by `limit`, output in
* `ans`.
*
* Caller is responsible to ensure that there is enough memory allocated, e.g.
*
* ans = malloc(roaring_bitmap_get_cardinality(limit) * sizeof(uint32_t));
*
* Return false in case of failure (e.g., insufficient memory)
*/
bool roaring_bitmap_range_uint32_array(const roaring_bitmap_t *r, size_t offset,
size_t limit, uint32_t *ans);
/**
* Remove run-length encoding even when it is more space efficient.
* Return whether a change was applied.
*/
bool roaring_bitmap_remove_run_compression(roaring_bitmap_t *r);
/**
* Convert array and bitmap containers to run containers when it is more
* efficient; also convert from run containers when more space efficient.
*
* Returns true if the result has at least one run container.
* Additional savings might be possible by calling `shrinkToFit()`.
*/
bool roaring_bitmap_run_optimize(roaring_bitmap_t *r);
/**
* If needed, reallocate memory to shrink the memory usage.
* Returns the number of bytes saved.
*/
size_t roaring_bitmap_shrink_to_fit(roaring_bitmap_t *r);
/**
* Write the bitmap to an output pointer, this output buffer should refer to
* at least `roaring_bitmap_size_in_bytes(r)` allocated bytes.
*
* See `roaring_bitmap_portable_serialize()` if you want a format that's
* compatible with Java and Go implementations. This format can sometimes be
* more space efficient than the portable form, e.g. when the data is sparse.
*
* Returns how many bytes written, should be `roaring_bitmap_size_in_bytes(r)`.
*
* This function is endian-sensitive. If you have a big-endian system (e.g., a
* mainframe IBM s390x), the data format is going to be big-endian and not
* compatible with little-endian systems.
*/
size_t roaring_bitmap_serialize(const roaring_bitmap_t *r, char *buf);
/**
* Use with `roaring_bitmap_serialize()`.
*
* (See `roaring_bitmap_portable_deserialize()` if you want a format that's
* compatible with Java and Go implementations).
*
* This function is endian-sensitive. If you have a big-endian system (e.g., a
* mainframe IBM s390x), the data format is going to be big-endian and not
* compatible with little-endian systems.
*/
roaring_bitmap_t *roaring_bitmap_deserialize(const void *buf);
/**
* Use with `roaring_bitmap_serialize()`.
*
* (See `roaring_bitmap_portable_deserialize_safe()` if you want a format that's
* compatible with Java and Go implementations).
*
* This function is endian-sensitive. If you have a big-endian system (e.g., a
* mainframe IBM s390x), the data format is going to be big-endian and not
* compatible with little-endian systems.
*
* The difference with `roaring_bitmap_deserialize()` is that this function
* checks that the input buffer is a valid bitmap. If the buffer is too small,
* NULL is returned.
*/
roaring_bitmap_t *roaring_bitmap_deserialize_safe(const void *buf,
size_t maxbytes);
/**
* How many bytes are required to serialize this bitmap (NOT compatible
* with Java and Go versions)
*/
size_t roaring_bitmap_size_in_bytes(const roaring_bitmap_t *r);
/**
* Read bitmap from a serialized buffer.
* In case of failure, NULL is returned.
*
* This function is unsafe in the sense that if there is no valid serialized
* bitmap at the pointer, then many bytes could be read, possibly causing a
* buffer overflow. See also roaring_bitmap_portable_deserialize_safe().
*
* This is meant to be compatible with the Java and Go versions:
* https://github.com/RoaringBitmap/RoaringFormatSpec
*
* This function is endian-sensitive. If you have a big-endian system (e.g., a
* mainframe IBM s390x), the data format is going to be big-endian and not
* compatible with little-endian systems.
*/
roaring_bitmap_t *roaring_bitmap_portable_deserialize(const char *buf);
/**
* Read bitmap from a serialized buffer safely (reading up to maxbytes).
* In case of failure, NULL is returned.
*
* This is meant to be compatible with the Java and Go versions:
* https://github.com/RoaringBitmap/RoaringFormatSpec
*
* The function itself is safe in the sense that it will not cause buffer
* overflows. However, for correct operations, it is assumed that the bitmap
* read was once serialized from a valid bitmap (i.e., it follows the format
* specification). If you provided an incorrect input (garbage), then the bitmap
* read may not be in a valid state and following operations may not lead to
* sensible results. In particular, the serialized array containers need to be
* in sorted order, and the run containers should be in sorted non-overlapping
* order. This is is guaranteed to happen when serializing an existing bitmap,
* but not for random inputs.
*
* You may use roaring_bitmap_internal_validate to check the validity of the
* bitmap prior to using it. You may also use other strategies to check for
* corrupted inputs (e.g., checksums).
*
* This function is endian-sensitive. If you have a big-endian system (e.g., a
* mainframe IBM s390x), the data format is going to be big-endian and not
* compatible with little-endian systems.
*/
roaring_bitmap_t *roaring_bitmap_portable_deserialize_safe(const char *buf,
size_t maxbytes);
/**
* Read bitmap from a serialized buffer.
* In case of failure, NULL is returned.
*
* Bitmap returned by this function can be used in all readonly contexts.
* Bitmap must be freed as usual, by calling roaring_bitmap_free().
* Underlying buffer must not be freed or modified while it backs any bitmaps.
*
* The function is unsafe in the following ways:
* 1) It may execute unaligned memory accesses.
* 2) A buffer overflow may occur if buf does not point to a valid serialized
* bitmap.
*
* This is meant to be compatible with the Java and Go versions:
* https://github.com/RoaringBitmap/RoaringFormatSpec
*
* This function is endian-sensitive. If you have a big-endian system (e.g., a
* mainframe IBM s390x), the data format is going to be big-endian and not
* compatible with little-endian systems.
*/
roaring_bitmap_t *roaring_bitmap_portable_deserialize_frozen(const char *buf);
/**
* Check how many bytes would be read (up to maxbytes) at this pointer if there
* is a bitmap, returns zero if there is no valid bitmap.
*
* This is meant to be compatible with the Java and Go versions:
* https://github.com/RoaringBitmap/RoaringFormatSpec
*/
size_t roaring_bitmap_portable_deserialize_size(const char *buf,
size_t maxbytes);
/**
* How many bytes are required to serialize this bitmap.
*
* This is meant to be compatible with the Java and Go versions:
* https://github.com/RoaringBitmap/RoaringFormatSpec
*/
size_t roaring_bitmap_portable_size_in_bytes(const roaring_bitmap_t *r);
/**
* Write a bitmap to a char buffer. The output buffer should refer to at least
* `roaring_bitmap_portable_size_in_bytes(r)` bytes of allocated memory.
*
* Returns how many bytes were written which should match
* `roaring_bitmap_portable_size_in_bytes(r)`.
*
* This is meant to be compatible with the Java and Go versions:
* https://github.com/RoaringBitmap/RoaringFormatSpec
*
* This function is endian-sensitive. If you have a big-endian system (e.g., a
* mainframe IBM s390x), the data format is going to be big-endian and not
* compatible with little-endian systems.
*/
size_t roaring_bitmap_portable_serialize(const roaring_bitmap_t *r, char *buf);
/*
* "Frozen" serialization format imitates memory layout of roaring_bitmap_t.
* Deserialized bitmap is a constant view of the underlying buffer.
* This significantly reduces amount of allocations and copying required during
* deserialization.
* It can be used with memory mapped files.
* Example can be found in benchmarks/frozen_benchmark.c
*
* [#####] const roaring_bitmap_t *
* | | |
* +----+ | +-+
* | | |
* [#####################################] underlying buffer
*
* Note that because frozen serialization format imitates C memory layout
* of roaring_bitmap_t, it is not fixed. It is different on big/little endian
* platforms and can be changed in future.
*/
/**
* Returns number of bytes required to serialize bitmap using frozen format.
*/
size_t roaring_bitmap_frozen_size_in_bytes(const roaring_bitmap_t *r);
/**
* Serializes bitmap using frozen format.
* Buffer size must be at least roaring_bitmap_frozen_size_in_bytes().
*
* This function is endian-sensitive. If you have a big-endian system (e.g., a
* mainframe IBM s390x), the data format is going to be big-endian and not
* compatible with little-endian systems.
*/
void roaring_bitmap_frozen_serialize(const roaring_bitmap_t *r, char *buf);
/**
* Creates constant bitmap that is a view of a given buffer.
* Buffer data should have been written by `roaring_bitmap_frozen_serialize()`
* Its beginning must also be aligned by 32 bytes.
* Length must be equal exactly to `roaring_bitmap_frozen_size_in_bytes()`.
* In case of failure, NULL is returned.
*
* Bitmap returned by this function can be used in all readonly contexts.
* Bitmap must be freed as usual, by calling roaring_bitmap_free().
* Underlying buffer must not be freed or modified while it backs any bitmaps.
*
* This function is endian-sensitive. If you have a big-endian system (e.g., a
* mainframe IBM s390x), the data format is going to be big-endian and not
* compatible with little-endian systems.
*/
const roaring_bitmap_t *roaring_bitmap_frozen_view(const char *buf,
size_t length);
/**
* Iterate over the bitmap elements. The function iterator is called once for
* all the values with ptr (can be NULL) as the second parameter of each call.
*
* `roaring_iterator` is simply a pointer to a function that returns bool
* (true means that the iteration should continue while false means that it
* should stop), and takes (uint32_t,void*) as inputs.
*
* Returns true if the roaring_iterator returned true throughout (so that all
* data points were necessarily visited).
*
* Iteration is ordered: from the smallest to the largest elements.
*/
bool roaring_iterate(const roaring_bitmap_t *r, roaring_iterator iterator,
void *ptr);
bool roaring_iterate64(const roaring_bitmap_t *r, roaring_iterator64 iterator,
uint64_t high_bits, void *ptr);
/**
* Return true if the two bitmaps contain the same elements.
*/
bool roaring_bitmap_equals(const roaring_bitmap_t *r1,
const roaring_bitmap_t *r2);
/**
* Return true if all the elements of r1 are also in r2.
*/
bool roaring_bitmap_is_subset(const roaring_bitmap_t *r1,
const roaring_bitmap_t *r2);
/**
* Return true if all the elements of r1 are also in r2, and r2 is strictly
* greater than r1.
*/
bool roaring_bitmap_is_strict_subset(const roaring_bitmap_t *r1,
const roaring_bitmap_t *r2);
/**
* (For expert users who seek high performance.)
*
* Computes the union between two bitmaps and returns new bitmap. The caller is
* responsible for memory management.
*
* The lazy version defers some computations such as the maintenance of the
* cardinality counts. Thus you must call `roaring_bitmap_repair_after_lazy()`
* after executing "lazy" computations.
*
* It is safe to repeatedly call roaring_bitmap_lazy_or_inplace on the result.
*
* `bitsetconversion` is a flag which determines whether container-container
* operations force a bitset conversion.
*/
roaring_bitmap_t *roaring_bitmap_lazy_or(const roaring_bitmap_t *r1,
const roaring_bitmap_t *r2,
const bool bitsetconversion);
/**
* (For expert users who seek high performance.)
*
* Inplace version of roaring_bitmap_lazy_or, modifies r1.
*
* `bitsetconversion` is a flag which determines whether container-container
* operations force a bitset conversion.
*/
void roaring_bitmap_lazy_or_inplace(roaring_bitmap_t *r1,
const roaring_bitmap_t *r2,
const bool bitsetconversion);
/**
* (For expert users who seek high performance.)
*
* Execute maintenance on a bitmap created from `roaring_bitmap_lazy_or()`
* or modified with `roaring_bitmap_lazy_or_inplace()`.
*/
void roaring_bitmap_repair_after_lazy(roaring_bitmap_t *r1);
/**
* Computes the symmetric difference between two bitmaps and returns new bitmap.
* The caller is responsible for memory management.
*
* The lazy version defers some computations such as the maintenance of the
* cardinality counts. Thus you must call `roaring_bitmap_repair_after_lazy()`
* after executing "lazy" computations.
*
* It is safe to repeatedly call `roaring_bitmap_lazy_xor_inplace()` on
* the result.
*/
roaring_bitmap_t *roaring_bitmap_lazy_xor(const roaring_bitmap_t *r1,
const roaring_bitmap_t *r2);
/**
* (For expert users who seek high performance.)
*
* Inplace version of roaring_bitmap_lazy_xor, modifies r1. r1 != r2
*/
void roaring_bitmap_lazy_xor_inplace(roaring_bitmap_t *r1,
const roaring_bitmap_t *r2);
/**
* Compute the negation of the bitmap in the interval [range_start, range_end).
* The number of negated values is range_end - range_start.
* Areas outside the range are passed through unchanged.
*/
roaring_bitmap_t *roaring_bitmap_flip(const roaring_bitmap_t *r1,
uint64_t range_start, uint64_t range_end);
/**
* compute (in place) the negation of the roaring bitmap within a specified
* interval: [range_start, range_end). The number of negated values is
* range_end - range_start.
* Areas outside the range are passed through unchanged.
*/
void roaring_bitmap_flip_inplace(roaring_bitmap_t *r1, uint64_t range_start,
uint64_t range_end);
/**
* Selects the element at index 'rank' where the smallest element is at index 0.
* If the size of the roaring bitmap is strictly greater than rank, then this
* function returns true and sets element to the element of given rank.
* Otherwise, it returns false.
*/
bool roaring_bitmap_select(const roaring_bitmap_t *r, uint32_t rank,
uint32_t *element);
/**
* roaring_bitmap_rank returns the number of integers that are smaller or equal
* to x. Thus if x is the first element, this function will return 1. If
* x is smaller than the smallest element, this function will return 0.
*
* The indexing convention differs between roaring_bitmap_select and
* roaring_bitmap_rank: roaring_bitmap_select refers to the smallest value
* as having index 0, whereas roaring_bitmap_rank returns 1 when ranking
* the smallest value.
*/
uint64_t roaring_bitmap_rank(const roaring_bitmap_t *r, uint32_t x);
/**
* roaring_bitmap_rank_many is an `Bulk` version of `roaring_bitmap_rank`
* it puts rank value of each element in `[begin .. end)` to `ans[]`
*
* the values in `[begin .. end)` must be sorted in Ascending order;
* Caller is responsible to ensure that there is enough memory allocated, e.g.
*
* ans = malloc((end-begin) * sizeof(uint64_t));
*/
void roaring_bitmap_rank_many(const roaring_bitmap_t *r, const uint32_t *begin,
const uint32_t *end, uint64_t *ans);
/**
* Returns the index of x in the given roaring bitmap.
* If the roaring bitmap doesn't contain x , this function will return -1.
* The difference with rank function is that this function will return -1 when x
* is not the element of roaring bitmap, but the rank function will return a
* non-negative number.
*/
int64_t roaring_bitmap_get_index(const roaring_bitmap_t *r, uint32_t x);
/**
* Returns the smallest value in the set, or UINT32_MAX if the set is empty.
*/
uint32_t roaring_bitmap_minimum(const roaring_bitmap_t *r);
/**
* Returns the greatest value in the set, or 0 if the set is empty.
*/
uint32_t roaring_bitmap_maximum(const roaring_bitmap_t *r);
/**
* (For advanced users.)
*
* Collect statistics about the bitmap, see roaring_types.h for
* a description of roaring_statistics_t
*/
void roaring_bitmap_statistics(const roaring_bitmap_t *r,
roaring_statistics_t *stat);
/**
* Perform internal consistency checks. Returns true if the bitmap is
* consistent. It may be useful to call this after deserializing bitmaps from
* untrusted sources. If roaring_bitmap_internal_validate returns true, then the
* bitmap should be consistent and can be trusted not to cause crashes or memory
* corruption.
*
* Note that some operations intentionally leave bitmaps in an inconsistent
* state temporarily, for example, `roaring_bitmap_lazy_*` functions, until
* `roaring_bitmap_repair_after_lazy` is called.
*
* If reason is non-null, it will be set to a string describing the first
* inconsistency found if any.
*/
bool roaring_bitmap_internal_validate(const roaring_bitmap_t *r,
const char **reason);
/*********************
* What follows is code use to iterate through values in a roaring bitmap
roaring_bitmap_t *r =...
roaring_uint32_iterator_t i;
roaring_iterator_create(r, &i);
while(i.has_value) {
printf("value = %d\n", i.current_value);
roaring_uint32_iterator_advance(&i);
}
Obviously, if you modify the underlying bitmap, the iterator
becomes invalid. So don't.
*/
/**
* A struct used to keep iterator state. Users should only access
* `current_value` and `has_value`, the rest of the type should be treated as
* opaque.
*/
typedef struct roaring_uint32_iterator_s {
const roaring_bitmap_t *parent; // Owner
const ROARING_CONTAINER_T *container; // Current container
uint8_t typecode; // Typecode of current container
int32_t container_index; // Current container index
uint32_t highbits; // High 16 bits of the current value
roaring_container_iterator_t container_it;
uint32_t current_value;
bool has_value;
} roaring_uint32_iterator_t;
/**
* Initialize an iterator object that can be used to iterate through the values.
* If there is a value, then this iterator points to the first value and
* `it->has_value` is true. The value is in `it->current_value`.
*/
void roaring_iterator_init(const roaring_bitmap_t *r,
roaring_uint32_iterator_t *newit);
/** DEPRECATED, use `roaring_iterator_init`. */
CROARING_DEPRECATED static inline void roaring_init_iterator(
const roaring_bitmap_t *r, roaring_uint32_iterator_t *newit) {
roaring_iterator_init(r, newit);
}
/**
* Initialize an iterator object that can be used to iterate through the values.
* If there is a value, then this iterator points to the last value and
* `it->has_value` is true. The value is in `it->current_value`.
*/
void roaring_iterator_init_last(const roaring_bitmap_t *r,
roaring_uint32_iterator_t *newit);
/** DEPRECATED, use `roaring_iterator_init_last`. */
CROARING_DEPRECATED static inline void roaring_init_iterator_last(
const roaring_bitmap_t *r, roaring_uint32_iterator_t *newit) {
roaring_iterator_init_last(r, newit);
}
/**
* Create an iterator object that can be used to iterate through the values.
* Caller is responsible for calling `roaring_free_iterator()`.
*
* The iterator is initialized (this function calls `roaring_iterator_init()`)
* If there is a value, then this iterator points to the first value and
* `it->has_value` is true. The value is in `it->current_value`.
*/
roaring_uint32_iterator_t *roaring_iterator_create(const roaring_bitmap_t *r);
/** DEPRECATED, use `roaring_iterator_create`. */
CROARING_DEPRECATED static inline roaring_uint32_iterator_t *
roaring_create_iterator(const roaring_bitmap_t *r) {
return roaring_iterator_create(r);
}
/**
* Advance the iterator. If there is a new value, then `it->has_value` is true.
* The new value is in `it->current_value`. Values are traversed in increasing
* orders. For convenience, returns `it->has_value`.
*
* Once `it->has_value` is false, `roaring_uint32_iterator_advance` should not
* be called on the iterator again. Calling `roaring_uint32_iterator_previous`
* is allowed.
*/
bool roaring_uint32_iterator_advance(roaring_uint32_iterator_t *it);
/** DEPRECATED, use `roaring_uint32_iterator_advance`. */
CROARING_DEPRECATED static inline bool roaring_advance_uint32_iterator(
roaring_uint32_iterator_t *it) {
return roaring_uint32_iterator_advance(it);
}
/**
* Decrement the iterator. If there's a new value, then `it->has_value` is true.
* The new value is in `it->current_value`. Values are traversed in decreasing
* order. For convenience, returns `it->has_value`.
*
* Once `it->has_value` is false, `roaring_uint32_iterator_previous` should not
* be called on the iterator again. Calling `roaring_uint32_iterator_advance` is
* allowed.
*/
bool roaring_uint32_iterator_previous(roaring_uint32_iterator_t *it);
/** DEPRECATED, use `roaring_uint32_iterator_previous`. */
CROARING_DEPRECATED static inline bool roaring_previous_uint32_iterator(
roaring_uint32_iterator_t *it) {
return roaring_uint32_iterator_previous(it);
}
/**
* Move the iterator to the first value >= `val`. If there is a such a value,
* then `it->has_value` is true. The new value is in `it->current_value`.
* For convenience, returns `it->has_value`.
*/
bool roaring_uint32_iterator_move_equalorlarger(roaring_uint32_iterator_t *it,
uint32_t val);
/** DEPRECATED, use `roaring_uint32_iterator_move_equalorlarger`. */
CROARING_DEPRECATED static inline bool
roaring_move_uint32_iterator_equalorlarger(roaring_uint32_iterator_t *it,
uint32_t val) {
return roaring_uint32_iterator_move_equalorlarger(it, val);
}
/**
* Creates a copy of an iterator.
* Caller must free it.
*/
roaring_uint32_iterator_t *roaring_uint32_iterator_copy(
const roaring_uint32_iterator_t *it);
/** DEPRECATED, use `roaring_uint32_iterator_copy`. */
CROARING_DEPRECATED static inline roaring_uint32_iterator_t *
roaring_copy_uint32_iterator(const roaring_uint32_iterator_t *it) {
return roaring_uint32_iterator_copy(it);
}
/**
* Free memory following `roaring_iterator_create()`
*/
void roaring_uint32_iterator_free(roaring_uint32_iterator_t *it);
/** DEPRECATED, use `roaring_uint32_iterator_free`. */
CROARING_DEPRECATED static inline void roaring_free_uint32_iterator(
roaring_uint32_iterator_t *it) {
roaring_uint32_iterator_free(it);
}
/*
* Reads next ${count} values from iterator into user-supplied ${buf}.
* Returns the number of read elements.
* This number can be smaller than ${count}, which means that iterator is
* drained.
*
* This function satisfies semantics of iteration and can be used together with
* other iterator functions.
* - first value is copied from ${it}->current_value
* - after function returns, iterator is positioned at the next element
*/
uint32_t roaring_uint32_iterator_read(roaring_uint32_iterator_t *it,
uint32_t *buf, uint32_t count);
/** DEPRECATED, use `roaring_uint32_iterator_read`. */
CROARING_DEPRECATED static inline uint32_t roaring_read_uint32_iterator(
roaring_uint32_iterator_t *it, uint32_t *buf, uint32_t count) {
return roaring_uint32_iterator_read(it, buf, count);
}
#ifdef __cplusplus
}
}
} // extern "C" { namespace roaring { namespace api {
#endif
#endif /* ROARING_H */
#ifdef __cplusplus
/**
* Best practices for C++ headers is to avoid polluting global scope.
* But for C compatibility when just `roaring.h` is included building as
* C++, default to global access for the C public API.
*
* BUT when `roaring.hh` is included instead, it sets this flag. That way
* explicit namespacing must be used to get the C functions.
*
* This is outside the include guard so that if you include BOTH headers,
* the order won't matter; you still get the global definitions.
*/
#if !defined(ROARING_API_NOT_IN_GLOBAL_NAMESPACE)
using namespace ::roaring::api;
#endif
#endif
/* end file include/roaring/roaring.h */
/* begin file include/roaring/memory.h */
#ifndef INCLUDE_ROARING_MEMORY_H_
#define INCLUDE_ROARING_MEMORY_H_
#ifdef __cplusplus
extern "C" {
#endif
#include <stddef.h> // for size_t
typedef void* (*roaring_malloc_p)(size_t);
typedef void* (*roaring_realloc_p)(void*, size_t);
typedef void* (*roaring_calloc_p)(size_t, size_t);
typedef void (*roaring_free_p)(void*);
typedef void* (*roaring_aligned_malloc_p)(size_t, size_t);
typedef void (*roaring_aligned_free_p)(void*);
typedef struct roaring_memory_s {
roaring_malloc_p malloc;
roaring_realloc_p realloc;
roaring_calloc_p calloc;
roaring_free_p free;
roaring_aligned_malloc_p aligned_malloc;
roaring_aligned_free_p aligned_free;
} roaring_memory_t;
void roaring_init_memory_hook(roaring_memory_t memory_hook);
void* roaring_malloc(size_t);
void* roaring_realloc(void*, size_t);
void* roaring_calloc(size_t, size_t);
void roaring_free(void*);
void* roaring_aligned_malloc(size_t, size_t);
void roaring_aligned_free(void*);
#ifdef __cplusplus
}
#endif
#endif // INCLUDE_ROARING_MEMORY_H_
/* end file include/roaring/memory.h */
/* begin file include/roaring/roaring64.h */
#ifndef ROARING64_H
#define ROARING64_H
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
namespace roaring {
namespace api {
#endif
typedef struct roaring64_bitmap_s roaring64_bitmap_t;
typedef struct roaring64_leaf_s roaring64_leaf_t;
typedef struct roaring64_iterator_s roaring64_iterator_t;
/**
* A bit of context usable with `roaring64_bitmap_*_bulk()` functions.
*
* Should be initialized with `{0}` (or `memset()` to all zeros).
* Callers should treat it as an opaque type.
*
* A context may only be used with a single bitmap (unless re-initialized to
* zero), and any modification to a bitmap (other than modifications performed
* with `_bulk()` functions with the context passed) will invalidate any
* contexts associated with that bitmap.
*/
typedef struct roaring64_bulk_context_s {
uint8_t high_bytes[6];
roaring64_leaf_t *leaf;
} roaring64_bulk_context_t;
/**
* Dynamically allocates a new bitmap (initially empty).
* Client is responsible for calling `roaring64_bitmap_free()`.
*/
roaring64_bitmap_t *roaring64_bitmap_create(void);
void roaring64_bitmap_free(roaring64_bitmap_t *r);
/**
* Returns a copy of a bitmap.
*/
roaring64_bitmap_t *roaring64_bitmap_copy(const roaring64_bitmap_t *r);
/**
* Creates a new bitmap of a pointer to N 64-bit integers.
*/
roaring64_bitmap_t *roaring64_bitmap_of_ptr(size_t n_args,
const uint64_t *vals);
#ifdef __cplusplus
/**
* Creates a new bitmap which contains all values passed in as arguments.
*
* To create a bitmap from a variable number of arguments, use the
* `roaring64_bitmap_of_ptr` function instead.
*/
// Use an immediately invoked closure, capturing by reference
// (in case __VA_ARGS__ refers to context outside the closure)
// Include a 0 at the beginning of the array to make the array length > 0
// (zero sized arrays are not valid in standard c/c++)
#define roaring64_bitmap_from(...) \
[&]() { \
const uint64_t roaring64_bitmap_from_array[] = {0, __VA_ARGS__}; \
return roaring64_bitmap_of_ptr( \
(sizeof(roaring64_bitmap_from_array) / \
sizeof(roaring64_bitmap_from_array[0])) - \
1, \
&roaring64_bitmap_from_array[1]); \
}()
#else
/**
* Creates a new bitmap which contains all values passed in as arguments.
*
* To create a bitmap from a variable number of arguments, use the
* `roaring64_bitmap_of_ptr` function instead.
*/
// While __VA_ARGS__ occurs twice in expansion, one of the times is in a sizeof
// expression, which is an unevaluated context, so it's even safe in the case
// where expressions passed have side effects (roaring64_bitmap_from(my_func(),
// ++i))
// Include a 0 at the beginning of the array to make the array length > 0
// (zero sized arrays are not valid in standard c/c++)
#define roaring64_bitmap_from(...) \
roaring64_bitmap_of_ptr( \
(sizeof((const uint64_t[]){0, __VA_ARGS__}) / sizeof(uint64_t)) - 1, \
&((const uint64_t[]){0, __VA_ARGS__})[1])
#endif
/**
* Create a new bitmap containing all the values in [min, max) that are at a
* distance k*step from min.
*/
roaring64_bitmap_t *roaring64_bitmap_from_range(uint64_t min, uint64_t max,
uint64_t step);
/**
* Adds the provided value to the bitmap.
*/
void roaring64_bitmap_add(roaring64_bitmap_t *r, uint64_t val);
/**
* Adds the provided value to the bitmap.
* Returns true if a new value was added, false if the value already existed.
*/
bool roaring64_bitmap_add_checked(roaring64_bitmap_t *r, uint64_t val);
/**
* Add an item, using context from a previous insert for faster insertion.
*
* `context` will be used to store information between calls to make bulk
* operations faster. `*context` should be zero-initialized before the first
* call to this function.
*
* Modifying the bitmap in any way (other than `-bulk` suffixed functions)
* will invalidate the stored context, calling this function with a non-zero
* context after doing any modification invokes undefined behavior.
*
* In order to exploit this optimization, the caller should call this function
* with values with the same high 48 bits of the value consecutively.
*/
void roaring64_bitmap_add_bulk(roaring64_bitmap_t *r,
roaring64_bulk_context_t *context, uint64_t val);
/**
* Add `n_args` values from `vals`, faster than repeatedly calling
* `roaring64_bitmap_add()`
*
* In order to exploit this optimization, the caller should attempt to keep
* values with the same high 48 bits of the value as consecutive elements in
* `vals`.
*/
void roaring64_bitmap_add_many(roaring64_bitmap_t *r, size_t n_args,
const uint64_t *vals);
/**
* Add all values in range [min, max).
*/
void roaring64_bitmap_add_range(roaring64_bitmap_t *r, uint64_t min,
uint64_t max);
/**
* Add all values in range [min, max].
*/
void roaring64_bitmap_add_range_closed(roaring64_bitmap_t *r, uint64_t min,
uint64_t max);
/**
* Removes a value from the bitmap if present.
*/
void roaring64_bitmap_remove(roaring64_bitmap_t *r, uint64_t val);
/**
* Removes a value from the bitmap if present, returns true if the value was
* removed and false if the value was not present.
*/
bool roaring64_bitmap_remove_checked(roaring64_bitmap_t *r, uint64_t val);
/**
* Remove an item, using context from a previous insert for faster removal.
*
* `context` will be used to store information between calls to make bulk
* operations faster. `*context` should be zero-initialized before the first
* call to this function.
*
* Modifying the bitmap in any way (other than `-bulk` suffixed functions)
* will invalidate the stored context, calling this function with a non-zero
* context after doing any modification invokes undefined behavior.
*
* In order to exploit this optimization, the caller should call this function
* with values with the same high 48 bits of the value consecutively.
*/
void roaring64_bitmap_remove_bulk(roaring64_bitmap_t *r,
roaring64_bulk_context_t *context,
uint64_t val);
/**
* Remove `n_args` values from `vals`, faster than repeatedly calling
* `roaring64_bitmap_remove()`
*
* In order to exploit this optimization, the caller should attempt to keep
* values with the same high 48 bits of the value as consecutive elements in
* `vals`.
*/
void roaring64_bitmap_remove_many(roaring64_bitmap_t *r, size_t n_args,
const uint64_t *vals);
/**
* Remove all values in range [min, max).
*/
void roaring64_bitmap_remove_range(roaring64_bitmap_t *r, uint64_t min,
uint64_t max);
/**
* Remove all values in range [min, max].
*/
void roaring64_bitmap_remove_range_closed(roaring64_bitmap_t *r, uint64_t min,
uint64_t max);
/**
* Returns true if the provided value is present.
*/
bool roaring64_bitmap_contains(const roaring64_bitmap_t *r, uint64_t val);
/**
* Returns true if all values in the range [min, max) are present.
*/
bool roaring64_bitmap_contains_range(const roaring64_bitmap_t *r, uint64_t min,
uint64_t max);
/**
* Check if an item is present using context from a previous insert or search
* for faster search.
*
* `context` will be used to store information between calls to make bulk
* operations faster. `*context` should be zero-initialized before the first
* call to this function.
*
* Modifying the bitmap in any way (other than `-bulk` suffixed functions)
* will invalidate the stored context, calling this function with a non-zero
* context after doing any modification invokes undefined behavior.
*
* In order to exploit this optimization, the caller should call this function
* with values with the same high 48 bits of the value consecutively.
*/
bool roaring64_bitmap_contains_bulk(const roaring64_bitmap_t *r,
roaring64_bulk_context_t *context,
uint64_t val);
/**
* Selects the element at index 'rank' where the smallest element is at index 0.
* If the size of the bitmap is strictly greater than rank, then this function
* returns true and sets element to the element of given rank. Otherwise, it
* returns false.
*/
bool roaring64_bitmap_select(const roaring64_bitmap_t *r, uint64_t rank,
uint64_t *element);
/**
* Returns the number of integers that are smaller or equal to x. Thus if x is
* the first element, this function will return 1. If x is smaller than the
* smallest element, this function will return 0.
*
* The indexing convention differs between roaring64_bitmap_select and
* roaring64_bitmap_rank: roaring_bitmap64_select refers to the smallest value
* as having index 0, whereas roaring64_bitmap_rank returns 1 when ranking
* the smallest value.
*/
uint64_t roaring64_bitmap_rank(const roaring64_bitmap_t *r, uint64_t val);
/**
* Returns true if the given value is in the bitmap, and sets `out_index` to the
* (0-based) index of the value in the bitmap. Returns false if the value is not
* in the bitmap.
*/
bool roaring64_bitmap_get_index(const roaring64_bitmap_t *r, uint64_t val,
uint64_t *out_index);
/**
* Returns the number of values in the bitmap.
*/
uint64_t roaring64_bitmap_get_cardinality(const roaring64_bitmap_t *r);
/**
* Returns the number of elements in the range [min, max).
*/
uint64_t roaring64_bitmap_range_cardinality(const roaring64_bitmap_t *r,
uint64_t min, uint64_t max);
/**
* Returns true if the bitmap is empty (cardinality is zero).
*/
bool roaring64_bitmap_is_empty(const roaring64_bitmap_t *r);
/**
* Returns the smallest value in the set, or UINT64_MAX if the set is empty.
*/
uint64_t roaring64_bitmap_minimum(const roaring64_bitmap_t *r);
/**
* Returns the largest value in the set, or 0 if empty.
*/
uint64_t roaring64_bitmap_maximum(const roaring64_bitmap_t *r);
/**
* Returns true if the result has at least one run container.
*/
bool roaring64_bitmap_run_optimize(roaring64_bitmap_t *r);
/**
* Perform internal consistency checks.
*
* Returns true if the bitmap is consistent. It may be useful to call this
* after deserializing bitmaps from untrusted sources. If
* roaring64_bitmap_internal_validate returns true, then the bitmap is
* consistent and can be trusted not to cause crashes or memory corruption.
*
* If reason is non-null, it will be set to a string describing the first
* inconsistency found if any.
*/
bool roaring64_bitmap_internal_validate(const roaring64_bitmap_t *r,
const char **reason);
/**
* Return true if the two bitmaps contain the same elements.
*/
bool roaring64_bitmap_equals(const roaring64_bitmap_t *r1,
const roaring64_bitmap_t *r2);
/**
* Return true if all the elements of r1 are also in r2.
*/
bool roaring64_bitmap_is_subset(const roaring64_bitmap_t *r1,
const roaring64_bitmap_t *r2);
/**
* Return true if all the elements of r1 are also in r2, and r2 is strictly
* greater than r1.
*/
bool roaring64_bitmap_is_strict_subset(const roaring64_bitmap_t *r1,
const roaring64_bitmap_t *r2);
/**
* Computes the intersection between two bitmaps and returns new bitmap. The
* caller is responsible for free-ing the result.
*
* Performance hint: if you are computing the intersection between several
* bitmaps, two-by-two, it is best to start with the smallest bitmaps. You may
* also rely on roaring64_bitmap_and_inplace to avoid creating many temporary
* bitmaps.
*/
roaring64_bitmap_t *roaring64_bitmap_and(const roaring64_bitmap_t *r1,
const roaring64_bitmap_t *r2);
/**
* Computes the size of the intersection between two bitmaps.
*/
uint64_t roaring64_bitmap_and_cardinality(const roaring64_bitmap_t *r1,
const roaring64_bitmap_t *r2);
/**
* In-place version of `roaring64_bitmap_and()`, modifies `r1`. `r1` and `r2`
* are allowed to be equal.
*
* Performance hint: if you are computing the intersection between several
* bitmaps, two-by-two, it is best to start with the smallest bitmaps.
*/
void roaring64_bitmap_and_inplace(roaring64_bitmap_t *r1,
const roaring64_bitmap_t *r2);
/**
* Check whether two bitmaps intersect.
*/
bool roaring64_bitmap_intersect(const roaring64_bitmap_t *r1,
const roaring64_bitmap_t *r2);
/**
* Check whether a bitmap intersects the range [min, max).
*/
bool roaring64_bitmap_intersect_with_range(const roaring64_bitmap_t *r,
uint64_t min, uint64_t max);
/**
* Computes the Jaccard index between two bitmaps. (Also known as the Tanimoto
* distance, or the Jaccard similarity coefficient)
*
* The Jaccard index is undefined if both bitmaps are empty.
*/
double roaring64_bitmap_jaccard_index(const roaring64_bitmap_t *r1,
const roaring64_bitmap_t *r2);
/**
* Computes the union between two bitmaps and returns new bitmap. The caller is
* responsible for free-ing the result.
*/
roaring64_bitmap_t *roaring64_bitmap_or(const roaring64_bitmap_t *r1,
const roaring64_bitmap_t *r2);
/**
* Computes the size of the union between two bitmaps.
*/
uint64_t roaring64_bitmap_or_cardinality(const roaring64_bitmap_t *r1,
const roaring64_bitmap_t *r2);
/**
* In-place version of `roaring64_bitmap_or(), modifies `r1`.
*/
void roaring64_bitmap_or_inplace(roaring64_bitmap_t *r1,
const roaring64_bitmap_t *r2);
/**
* Computes the symmetric difference (xor) between two bitmaps and returns a new
* bitmap. The caller is responsible for free-ing the result.
*/
roaring64_bitmap_t *roaring64_bitmap_xor(const roaring64_bitmap_t *r1,
const roaring64_bitmap_t *r2);
/**
* Computes the size of the symmetric difference (xor) between two bitmaps.
*/
uint64_t roaring64_bitmap_xor_cardinality(const roaring64_bitmap_t *r1,
const roaring64_bitmap_t *r2);
/**
* In-place version of `roaring64_bitmap_xor()`, modifies `r1`. `r1` and `r2`
* are not allowed to be equal (that would result in an empty bitmap).
*/
void roaring64_bitmap_xor_inplace(roaring64_bitmap_t *r1,
const roaring64_bitmap_t *r2);
/**
* Computes the difference (andnot) between two bitmaps and returns a new
* bitmap. The caller is responsible for free-ing the result.
*/
roaring64_bitmap_t *roaring64_bitmap_andnot(const roaring64_bitmap_t *r1,
const roaring64_bitmap_t *r2);
/**
* Computes the size of the difference (andnot) between two bitmaps.
*/
uint64_t roaring64_bitmap_andnot_cardinality(const roaring64_bitmap_t *r1,
const roaring64_bitmap_t *r2);
/**
* In-place version of `roaring64_bitmap_andnot()`, modifies `r1`. `r1` and `r2`
* are not allowed to be equal (that would result in an empty bitmap).
*/
void roaring64_bitmap_andnot_inplace(roaring64_bitmap_t *r1,
const roaring64_bitmap_t *r2);
/**
* Compute the negation of the bitmap in the interval [min, max).
* The number of negated values is `max - min`. Areas outside the range are
* passed through unchanged.
*/
roaring64_bitmap_t *roaring64_bitmap_flip(const roaring64_bitmap_t *r,
uint64_t min, uint64_t max);
/**
* Compute the negation of the bitmap in the interval [min, max].
* The number of negated values is `max - min + 1`. Areas outside the range are
* passed through unchanged.
*/
roaring64_bitmap_t *roaring64_bitmap_flip_closed(const roaring64_bitmap_t *r,
uint64_t min, uint64_t max);
/**
* In-place version of `roaring64_bitmap_flip`. Compute the negation of the
* bitmap in the interval [min, max). The number of negated values is `max -
* min`. Areas outside the range are passed through unchanged.
*/
void roaring64_bitmap_flip_inplace(roaring64_bitmap_t *r, uint64_t min,
uint64_t max);
/**
* In-place version of `roaring64_bitmap_flip_closed`. Compute the negation of
* the bitmap in the interval [min, max]. The number of negated values is `max -
* min + 1`. Areas outside the range are passed through unchanged.
*/
void roaring64_bitmap_flip_closed_inplace(roaring64_bitmap_t *r, uint64_t min,
uint64_t max);
/**
* How many bytes are required to serialize this bitmap.
*
* This is meant to be compatible with other languages:
* https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations
*/
size_t roaring64_bitmap_portable_size_in_bytes(const roaring64_bitmap_t *r);
/**
* Write a bitmap to a buffer. The output buffer should refer to at least
* `roaring64_bitmap_portable_size_in_bytes(r)` bytes of allocated memory.
*
* Returns how many bytes were written, which should match
* `roaring64_bitmap_portable_size_in_bytes(r)`.
*
* This is meant to be compatible with other languages:
* https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations
*
* This function is endian-sensitive. If you have a big-endian system (e.g., a
* mainframe IBM s390x), the data format is going to be big-endian and not
* compatible with little-endian systems.
*/
size_t roaring64_bitmap_portable_serialize(const roaring64_bitmap_t *r,
char *buf);
/**
* Check how many bytes would be read (up to maxbytes) at this pointer if there
* is a valid bitmap, returns zero if there is no valid bitmap.
*
* This is meant to be compatible with other languages
* https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations
*/
size_t roaring64_bitmap_portable_deserialize_size(const char *buf,
size_t maxbytes);
/**
* Read a bitmap from a serialized buffer safely (reading up to maxbytes).
* In case of failure, NULL is returned.
*
* This is meant to be compatible with other languages
* https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations
*
* The function itself is safe in the sense that it will not cause buffer
* overflows. However, for correct operations, it is assumed that the bitmap
* read was once serialized from a valid bitmap (i.e., it follows the format
* specification). If you provided an incorrect input (garbage), then the bitmap
* read may not be in a valid state and following operations may not lead to
* sensible results. In particular, the serialized array containers need to be
* in sorted order, and the run containers should be in sorted non-overlapping
* order. This is is guaranteed to happen when serializing an existing bitmap,
* but not for random inputs.
*
* This function is endian-sensitive. If you have a big-endian system (e.g., a
* mainframe IBM s390x), the data format is going to be big-endian and not
* compatible with little-endian systems.
*/
roaring64_bitmap_t *roaring64_bitmap_portable_deserialize_safe(const char *buf,
size_t maxbytes);
/**
* Iterate over the bitmap elements. The function `iterator` is called once for
* all the values with `ptr` (can be NULL) as the second parameter of each call.
*
* `roaring_iterator64` is simply a pointer to a function that returns a bool
* and takes `(uint64_t, void*)` as inputs. True means that the iteration should
* continue, while false means that it should stop.
*
* Returns true if the `roaring64_iterator` returned true throughout (so that
* all data points were necessarily visited).
*
* Iteration is ordered from the smallest to the largest elements.
*/
bool roaring64_bitmap_iterate(const roaring64_bitmap_t *r,
roaring_iterator64 iterator, void *ptr);
/**
* Convert the bitmap to a sorted array `out`.
*
* Caller is responsible to ensure that there is enough memory allocated, e.g.
* ```
* out = malloc(roaring64_bitmap_get_cardinality(bitmap) * sizeof(uint64_t));
* ```
*/
void roaring64_bitmap_to_uint64_array(const roaring64_bitmap_t *r,
uint64_t *out);
/**
* Create an iterator object that can be used to iterate through the values.
* Caller is responsible for calling `roaring64_iterator_free()`.
*
* The iterator is initialized. If there is a value, then this iterator points
* to the first value and `roaring64_iterator_has_value()` returns true. The
* value can be retrieved with `roaring64_iterator_value()`.
*/
roaring64_iterator_t *roaring64_iterator_create(const roaring64_bitmap_t *r);
/**
* Create an iterator object that can be used to iterate through the values.
* Caller is responsible for calling `roaring64_iterator_free()`.
*
* The iterator is initialized. If there is a value, then this iterator points
* to the last value and `roaring64_iterator_has_value()` returns true. The
* value can be retrieved with `roaring64_iterator_value()`.
*/
roaring64_iterator_t *roaring64_iterator_create_last(
const roaring64_bitmap_t *r);
/**
* Re-initializes an existing iterator. Functionally the same as
* `roaring64_iterator_create` without a allocation.
*/
void roaring64_iterator_reinit(const roaring64_bitmap_t *r,
roaring64_iterator_t *it);
/**
* Re-initializes an existing iterator. Functionally the same as
* `roaring64_iterator_create_last` without a allocation.
*/
void roaring64_iterator_reinit_last(const roaring64_bitmap_t *r,
roaring64_iterator_t *it);
/**
* Creates a copy of the iterator. Caller is responsible for calling
* `roaring64_iterator_free()` on the resulting iterator.
*/
roaring64_iterator_t *roaring64_iterator_copy(const roaring64_iterator_t *it);
/**
* Free the iterator.
*/
void roaring64_iterator_free(roaring64_iterator_t *it);
/**
* Returns true if the iterator currently points to a value. If so, calling
* `roaring64_iterator_value()` returns the value.
*/
bool roaring64_iterator_has_value(const roaring64_iterator_t *it);
/**
* Returns the value the iterator currently points to. Should only be called if
* `roaring64_iterator_has_value()` returns true.
*/
uint64_t roaring64_iterator_value(const roaring64_iterator_t *it);
/**
* Advance the iterator. If there is a new value, then
* `roaring64_iterator_has_value()` returns true. Values are traversed in
* increasing order. For convenience, returns the result of
* `roaring64_iterator_has_value()`.
*
* Once this returns false, `roaring64_iterator_advance` should not be called on
* the iterator again. Calling `roaring64_iterator_previous` is allowed.
*/
bool roaring64_iterator_advance(roaring64_iterator_t *it);
/**
* Decrement the iterator. If there is a new value, then
* `roaring64_iterator_has_value()` returns true. Values are traversed in
* decreasing order. For convenience, returns the result of
* `roaring64_iterator_has_value()`.
*
* Once this returns false, `roaring64_iterator_previous` should not be called
* on the iterator again. Calling `roaring64_iterator_advance` is allowed.
*/
bool roaring64_iterator_previous(roaring64_iterator_t *it);
/**
* Move the iterator to the first value greater than or equal to `val`, if it
* exists at or after the current position of the iterator. If there is a new
* value, then `roaring64_iterator_has_value()` returns true. Values are
* traversed in increasing order. For convenience, returns the result of
* `roaring64_iterator_has_value()`.
*/
bool roaring64_iterator_move_equalorlarger(roaring64_iterator_t *it,
uint64_t val);
/**
* Reads up to `count` values from the iterator into the given `buf`. Returns
* the number of elements read. The number of elements read can be smaller than
* `count`, which means that there are no more elements in the bitmap.
*
* This function can be used together with other iterator functions.
*/
uint64_t roaring64_iterator_read(roaring64_iterator_t *it, uint64_t *buf,
uint64_t count);
#ifdef __cplusplus
} // extern "C"
} // namespace roaring
} // namespace api
#endif
#endif /* ROARING64_H */
/* end file include/roaring/roaring64.h */