Implemented range scans; lsmTree now supports keys that are stored as fixed length byte arrays.

This commit is contained in:
Sears Russell 2007-08-20 16:53:16 +00:00
parent 519bd515f4
commit 9c1c284406
6 changed files with 538 additions and 294 deletions

View file

@ -1,3 +1,5 @@
#include <string.h>
#include <stasis/operations/lsmTree.h>
#include <stasis/constants.h>
// XXX including fixed.h breaks page api encapsulation; we need a "last slot"
@ -5,96 +7,26 @@
#include "../page/fixed.h"
#include <pthread.h>
const int MAX_LSM_COMPARATORS = 256;
static lsm_comparator_t comparators[MAX_LSM_COMPARATORS];
typedef struct nodeRecord {
pageid_t ptr;
int key;
// char funk[1000];
} nodeRecord;
#define HEADER_SIZE (2 * sizeof(nodeRecord))
typedef struct lsmTreeState {
// pthread_mutex_t mut;
// pageid_t * dirtyPages;
pageid_t lastLeaf;
} lsmTreeState;
/** Initialize a page for use as an internal node of the tree.
* lsmTree nodes are based on fixed.h. This function allocates a page
* that can hold fixed length records, and then sets up a tree node
* header in the first two nodeRecords on the page.
*/
static void initializeNodePage(int xid, Page * p) {
fixedPageInitialize(p, sizeof(nodeRecord), 0);
recordid reserved1 = recordPreAlloc(xid, p, sizeof(nodeRecord));
recordPostAlloc(xid, p, reserved1);
recordid reserved2 = recordPreAlloc(xid, p, sizeof(nodeRecord));
recordPostAlloc(xid, p, reserved2);
void lsmTreeRegisterComparator(int id, lsm_comparator_t i) {
// XXX need to de-init this somewhere... assert(!comparators[id]);
comparators[id] = i;
}
/**
* A macro that hardcodes the page implementation to use fixed.h's page implementation.
*/
#define readNodeRecord(xid,p,slot) readNodeRecordFixed(xid,p,slot)
/**
* @see readNodeRecord
*/
#define writeNodeRecord(xid,p,slot,key,ptr) writeNodeRecordFixed(xid,p,slot,key,ptr)
//#define readNodeRecord(xid,p,slot) readNodeRecordVirtualMethods(xid,p,slot)
//#define writeNodeRecord(xid,p,slot,key,ptr) writeNodeRecordVirtualMethods(xid,p,slot,key,ptr)
#define HEADER_SIZE (2 * sizeof(lsmTreeNodeRecord))
/**
* Read a record from the page node, assuming the nodes are fixed pages.
*/
static inline nodeRecord readNodeRecordFixed(int xid, Page * const p, int slot) {
return *(nodeRecord*)fixed_record_ptr(p, slot);
}
/**
* Read a record from the page node, using stasis' general-purpose page access API.
*/
static inline nodeRecord readNodeRecordVirtualMethods(int xid, Page * const p, int slot) {
nodeRecord ret;
// These two constants only apply to the root page.
#define DEPTH 0
#define COMPARATOR 1
recordid rid = {p->id, slot, sizeof(nodeRecord)};
const nodeRecord * nr = (const nodeRecord*)recordReadNew(xid,p,rid);
ret = *nr;
assert(ret.ptr > 1 || slot < 2);
recordReadDone(xid,p,rid,(const byte*)nr);
// These two apply to all other pages.
#define PREV_LEAF 0
#define NEXT_LEAF 1
DEBUG("reading {%lld, %d, %d} = %d, %lld\n", p->id, slot, sizeof(nodeRecord), ret.key, ret.ptr);
return ret;
}
/**
@see readNodeFixed
*/
static inline void writeNodeRecordFixed(int xid, Page * const p, int slot, int key, pageid_t ptr) {
nodeRecord * nr = (nodeRecord*)fixed_record_ptr(p,slot);
nr->key = key;
nr->ptr = ptr;
pageWriteLSN(xid, p, 0); // XXX need real LSN?
}
/**
@see readNodeVirtualMethods
*/
static inline void writeNodeRecordVirtualMethods(int xid, Page * const p, int slot, int key, pageid_t ptr) {
nodeRecord src;
src.key = key;
src.ptr = ptr;
assert(src.ptr > 1 || slot < 2);
recordid rid = {p->id, slot, sizeof(nodeRecord)};
nodeRecord * target = (nodeRecord*)recordWriteNew(xid,p,rid);
*target = src;
DEBUG("Writing to record {%d %d %lld}\n", rid.page, rid.slot, rid.size);
recordWriteDone(xid,p,rid,(byte*)target);
pageWriteLSN(xid, p, 0); // XXX need real LSN?
}
// This one applies to all pages.
#define FIRST_SLOT 2
/**
@ -105,7 +37,7 @@ static inline void writeNodeRecordVirtualMethods(int xid, Page * const p, int sl
pageLoaded and pageFlushed callbacks. Those callbacks maintain an
impl pointer, which tracks dirty pages, a mutex, and other
information on behalf of the tree. (Note that the dirtyPage list
must be stored in a global hash tree if the root is evicted with
must be stored somewhere in memory if the root is evicted with
outstanding dirty tree pages...)
Note that this has a particularly nice, general purpose property
@ -124,116 +56,244 @@ static inline void writeNodeRecordVirtualMethods(int xid, Page * const p, int sl
uses fixedPage (for now)
slot 0: depth of tree.
slot 1: slot id of first key in leaf records. [unimplemented]
slot 0: the integer id of the comparator used by this tree.
slot 1: depth of tree.
the remainder of the slots contain nodeRecords
the remainder of the slots contain lsmTreeNodeRecords
internal node page layout
-------------------------
uses fixedPage (for now)
slot 0: prev page [unimplemented]
slot 1: next page [unimplemented]
the remainder of the slots contain nodeRecords
slot 0: prev page
slot 1: next page
the remainder of the slots contain lsmTreeNodeRecords
leaf page layout
----------------
Defined by client, but calling readRecord() on the slot id must
return the first key stored on the page.
Defined by client.
*/
recordid TlsmCreate(int xid, int leafFirstSlot, int keySize) {
// XXX generalize later
assert(keySize == sizeof(int));
// XXX hardcoded to fixed.h's current page layout, and node records
// that contain the key...
// can the pages hold at least two keys?
assert(HEADER_SIZE + 2 * (sizeof(nodeRecord) /*XXX +keySize*/) <
typedef struct lsmTreeState {
pageid_t lastLeaf;
} lsmTreeState;
/** Initialize a page for use as an internal node of the tree.
* lsmTree nodes are based on fixed.h. This function allocates a page
* that can hold fixed length records, and then sets up a tree node
* header in the first two lsmTreeNodeRecords on the page.
*/
static void initializeNodePage(int xid, Page *p, size_t keylen) {
fixedPageInitialize(p, sizeof(lsmTreeNodeRecord)+keylen, 0);
recordid reserved1 = recordPreAlloc(xid, p, sizeof(lsmTreeNodeRecord)+keylen);
recordPostAlloc(xid, p, reserved1);
recordid reserved2 = recordPreAlloc(xid, p, sizeof(lsmTreeNodeRecord)+keylen);
recordPostAlloc(xid, p, reserved2);
}
/**
* A macro that hardcodes the page implementation to use fixed.h's
* page implementation.
*/
#define readNodeRecord(xid,p,slot,keylen) readNodeRecordFixed(xid,p,slot,keylen)
/**
* @see readNodeRecord
*/
#define writeNodeRecord(xid,p,slot,key,keylen,ptr) \
writeNodeRecordFixed(xid,p,slot,key,keylen,ptr)
/**
* @see readNodeRecord
*/
#define getKeySize(xid,p) getKeySizeFixed(xid,p)
/*
#define getKeySize(xid,p) getKeySizeVirtualMethods(xid,p)
#define readNodeRecord(xid,p,slot,keylen) \
readNodeRecordVirtualMethods(xid,p,slot,keylen)
#define writeNodeRecord(xid,p,slot,key,keylen,ptr) \
writeNodeRecordVirtualMethods(xid,p,slot,key,keylen,ptr)
*/
static inline size_t getKeySizeFixed(int xid, Page const *p) {
return *recordsize_ptr(p) - sizeof(lsmTreeNodeRecord);
}
static inline size_t getKeySizeVirtualMethods(int xid, Page *p) {
recordid rid = { p->id, 0, 0 };
return recordGetLength(xid, p, rid) - sizeof(lsmTreeNodeRecord);
}
/**
* Read a record from the page node, assuming the nodes are fixed pages.
*/
static inline
const lsmTreeNodeRecord* readNodeRecordFixed(int xid, Page *const p, int slot,
int keylen) {
return (const lsmTreeNodeRecord*)fixed_record_ptr(p, slot);
}
/**
* Read a record from the page node, using stasis' general-purpose
* page access API.
*/
static inline
lsmTreeNodeRecord* readNodeRecordVirtualMethods(int xid, Page * p,
int slot, int keylen) {
lsmTreeNodeRecord *ret;
recordid rid = {p->id, slot, sizeof(lsmTreeNodeRecord)};
const lsmTreeNodeRecord *nr
= (const lsmTreeNodeRecord*)recordReadNew(xid,p,rid);
memcpy(ret, nr, sizeof(lsmTreeNodeRecord) + keylen);
recordReadDone(xid,p,rid,(const byte*)nr);
DEBUG("reading {%lld, %d, %d} = %d, %lld\n",
p->id, slot, sizeof(lsmTreeNodeRecord), ret.key, ret.ptr);
return ret;
}
/**
@see readNodeFixed
*/
static inline
void writeNodeRecordFixed(int xid, Page *p, int slot,
const byte *key, size_t keylen, pageid_t ptr) {
lsmTreeNodeRecord *nr = (lsmTreeNodeRecord*)fixed_record_ptr(p,slot);
nr->ptr = ptr;
memcpy(nr+1, key, keylen);
pageWriteLSN(xid, p, 0); // XXX need real LSN?
}
/**
@see readNodeVirtualMethods
*/
static inline
void writeNodeRecordVirtualMethods(int xid, Page *p, int slot,
const byte *key, size_t keylen,
pageid_t ptr) {
recordid rid = {p->id, slot, sizeof(lsmTreeNodeRecord)};
lsmTreeNodeRecord *target = (lsmTreeNodeRecord*)recordWriteNew(xid,p,rid);
target->ptr = ptr;
memcpy(target+1,key,keylen);
DEBUG("Writing to record {%d %d %lld}\n", rid.page, rid.slot, rid.size);
recordWriteDone(xid,p,rid,(byte*)target);
pageWriteLSN(xid, p, 0); // XXX need real LSN?
}
recordid TlsmCreate(int xid, int comparator, int keySize) {
// can the pages hold at least two keys?
assert(HEADER_SIZE + 2 * (sizeof(lsmTreeNodeRecord) +keySize) <
USABLE_SIZE_OF_PAGE - 2 * sizeof(short));
pageid_t root = TpageAlloc(xid);
DEBUG("Root = %lld\n", root);
recordid ret = { root, 0, 0 };
Page * const p = loadPage(xid, ret.page);
Page *p = loadPage(xid, ret.page);
writelock(p->rwlatch,0);
fixedPageInitialize(p, sizeof(nodeRecord), 0);
fixedPageInitialize(p, sizeof(lsmTreeNodeRecord) + keySize, 0);
*page_type_ptr(p) = LSM_ROOT_PAGE;
lsmTreeState * state = malloc(sizeof(lsmTreeState));
state->lastLeaf = -1; /// constants.h
// pthread_mutex_init(&(state->mut),0);
// state->dirtyPages = malloc(sizeof(Page*)*2);
// state->dirtyPages[0] = ret.page;
// state->dirtyPages[1] = -1; // XXX this should be defined in constants.h
lsmTreeState *state = malloc(sizeof(lsmTreeState));
state->lastLeaf = -1; /// XXX define something in constants.h?
p->impl = state;
recordid treeDepth = recordPreAlloc(xid, p, sizeof(nodeRecord));
recordPostAlloc(xid,p,treeDepth);
recordid tmp
= recordPreAlloc(xid, p, sizeof(lsmTreeNodeRecord) + keySize);
recordPostAlloc(xid,p,tmp);
assert(treeDepth.page == ret.page
&& treeDepth.slot == 0
&& treeDepth.size == sizeof(nodeRecord));
assert(tmp.page == ret.page
&& tmp.slot == DEPTH
&& tmp.size == sizeof(lsmTreeNodeRecord) + keySize);
recordid slotOff = recordPreAlloc(xid, p, sizeof(nodeRecord));
recordPostAlloc(xid,p,slotOff);
tmp = recordPreAlloc(xid, p, sizeof(lsmTreeNodeRecord) + keySize);
recordPostAlloc(xid,p,tmp);
assert(slotOff.page == ret.page
&& slotOff.slot == 1
&& slotOff.size == sizeof(nodeRecord));
assert(tmp.page == ret.page
&& tmp.slot == COMPARATOR
&& tmp.size == sizeof(lsmTreeNodeRecord) + keySize);
// ptr is zero because tree depth starts out as zero.
writeNodeRecord(xid, p, 0, 0, 0);
// ptr = slotOff (which isn't used, for now...)
writeNodeRecord(xid, p, 1, 0, leafFirstSlot);
byte *dummy = calloc(1,keySize);
writeNodeRecord(xid, p, DEPTH, dummy, keySize, 0);
writeNodeRecord(xid, p, COMPARATOR, dummy, keySize, comparator);
unlock(p->rwlatch);
releasePage(p);
return ret;
}
static recordid buildPathToLeaf(int xid, recordid root, Page * const root_p,
int depth, const byte * key, size_t key_len,
pageid_t val_page) {
static recordid buildPathToLeaf(int xid, recordid root, Page *root_p,
int depth, const byte *key, size_t key_len,
pageid_t val_page, pageid_t lastLeaf) {
// root is the recordid on the root page that should point to the
// new subtree.
assert(depth);
DEBUG("buildPathToLeaf(depth=%d) called\n",depth);
DEBUG("buildPathToLeaf(depth=%d) (lastleaf=%lld) called\n",depth, lastLeaf);
pageid_t child = TpageAlloc(xid); // XXX Use some other function...
DEBUG("new child = %lld internal? %d\n", child, depth-1);
Page * const child_p = loadPage(xid, child);
Page *child_p = loadPage(xid, child);
writelock(child_p->rwlatch,0);
initializeNodePage(xid, child_p);
initializeNodePage(xid, child_p, key_len);
recordid ret;
if(depth-1) {
// recurse: the page we just allocated is not a leaf.
recordid child_rec = recordPreAlloc(xid, child_p, sizeof(nodeRecord));
recordid child_rec = recordPreAlloc(xid, child_p, sizeof(lsmTreeNodeRecord)+key_len);
assert(child_rec.size != INVALID_SLOT);
recordPostAlloc(xid, child_p, child_rec);
ret = buildPathToLeaf(xid, child_rec, child_p, depth-1, key, key_len,
val_page);
val_page,lastLeaf);
unlock(child_p->rwlatch);
releasePage(child_p);
} else {
// set leaf
recordid leaf_rec = recordPreAlloc(xid, child_p, sizeof(nodeRecord));
assert(leaf_rec.slot == 2); // XXX
byte *dummy = calloc(1, key_len);
// backward link.
writeNodeRecord(xid,child_p,PREV_LEAF,dummy,key_len,lastLeaf);
// forward link (initialize to -1)
writeNodeRecord(xid,child_p,NEXT_LEAF,dummy,key_len,-1);
recordid leaf_rec = recordPreAlloc(xid, child_p,
sizeof(lsmTreeNodeRecord)+key_len);
assert(leaf_rec.slot == FIRST_SLOT);
recordPostAlloc(xid, child_p, leaf_rec);
writeNodeRecord(xid,child_p,leaf_rec.slot,*(int*)key,val_page);
writeNodeRecord(xid,child_p,leaf_rec.slot,key,key_len,val_page);
ret = leaf_rec;
}
unlock(child_p->rwlatch);
releasePage(child_p);
writeNodeRecord(xid, root_p, root.slot, *(int*)key, child);
unlock(child_p->rwlatch);
releasePage(child_p);
if(lastLeaf != -1) {
// install forward link in previous page
Page *lastLeafP = loadPage(xid, lastLeaf);
writelock(lastLeafP->rwlatch,0);
writeNodeRecord(xid,lastLeafP,NEXT_LEAF,dummy,key_len,child);
unlock(lastLeafP->rwlatch);
releasePage(lastLeafP);
}
DEBUG("%lld <-> %lld\n", lastLeaf, child);
free(dummy);
}
writeNodeRecord(xid, root_p, root.slot, key, key_len, child);
return ret;
}
@ -252,47 +312,46 @@ static recordid buildPathToLeaf(int xid, recordid root, Page * const root_p,
*/
static recordid appendInternalNode(int xid, Page * const p,
static recordid appendInternalNode(int xid, Page *p,
int depth,
const byte *key, size_t key_len,
pageid_t val_page) {
pageid_t val_page, pageid_t lastLeaf) {
if(!depth) {
// leaf node.
recordid ret = recordPreAlloc(xid, p, sizeof(nodeRecord));
recordid ret = recordPreAlloc(xid, p, sizeof(lsmTreeNodeRecord)+key_len);
if(ret.size != INVALID_SLOT) {
recordPostAlloc(xid, p, ret);
writeNodeRecord(xid,p,ret.slot,*(int*)key,val_page);
assert(val_page); // XXX
writeNodeRecord(xid,p,ret.slot,key,key_len,val_page);
}
return ret;
} else {
// recurse
int slot = *recordcount_ptr(p)-1;
assert(slot >= 2); // XXX
nodeRecord nr = readNodeRecord(xid, p, slot);
pageid_t child_id = nr.ptr;
assert(slot >= FIRST_SLOT); // there should be no empty nodes
const lsmTreeNodeRecord *nr = readNodeRecord(xid, p, slot, key_len);
pageid_t child_id = nr->ptr;
recordid ret;
{
Page * const child_page = loadPage(xid, child_id);
Page *child_page = loadPage(xid, child_id);
writelock(child_page->rwlatch,0);
ret = appendInternalNode(xid, child_page, depth-1,
key, key_len, val_page);
ret = appendInternalNode(xid, child_page, depth-1, key, key_len,
val_page, lastLeaf);
unlock(child_page->rwlatch);
releasePage(child_page);
}
if(ret.size == INVALID_SLOT) { // subtree is full; split
if(depth > 1) {
DEBUG("subtree is full at depth %d\n", depth);
}
ret = recordPreAlloc(xid, p, sizeof(nodeRecord));
ret = recordPreAlloc(xid, p, sizeof(lsmTreeNodeRecord)+key_len);
if(ret.size != INVALID_SLOT) {
recordPostAlloc(xid, p, ret);
ret = buildPathToLeaf(xid, ret, p, depth, key, key_len, val_page);
ret = buildPathToLeaf(xid, ret, p, depth, key, key_len, val_page,
lastLeaf);
DEBUG("split tree rooted at %lld, wrote value to {%d %d %lld}\n", p->id, ret.page, ret.slot, ret.size);
DEBUG("split tree rooted at %lld, wrote value to {%d %d %lld}\n",
p->id, ret.page, ret.slot, ret.size);
} else {
// ret is NULLRID; this is the root of a full tree. Return NULLRID to the caller.
// ret is NULLRID; this is the root of a full tree. Return
// NULLRID to the caller.
}
} else {
// we inserted the value in to a subtree rooted here.
@ -305,53 +364,74 @@ static recordid appendInternalNode(int xid, Page * const p,
* Traverse from the root of the page to the right most leaf (the one
* with the higest base key value).
*/
static pageid_t findLastLeaf(int xid, Page * const root, int depth) {
static pageid_t findLastLeaf(int xid, Page *root, int depth) {
if(!depth) {
DEBUG("Found last leaf = %lld\n", root->id);
return root->id;
} else {
nodeRecord nr = readNodeRecord(xid, root, (*recordcount_ptr(root))-1);
// passing zero as length is OK, as long as we don't try to access the key.
const lsmTreeNodeRecord *nr = readNodeRecord(xid, root,
(*recordcount_ptr(root))-1,0);
pageid_t ret;
{
Page * const p = loadPage(xid, nr.ptr);
writelock(p->rwlatch,0);
ret = findLastLeaf(xid,p,depth-1);
unlock(p->rwlatch);
releasePage(p);
}
Page *p = loadPage(xid, nr->ptr);
readlock(p->rwlatch,0);
ret = findLastLeaf(xid,p,depth-1);
unlock(p->rwlatch);
releasePage(p);
return ret;
}
}
/**
* Traverse from the root of the tree to the left most (lowest valued
* key) leaf.
*/
static pageid_t findFirstLeaf(int xid, Page *root, int depth) {
if(!depth) {
return root->id;
} else {
const lsmTreeNodeRecord *nr = readNodeRecord(xid,root,FIRST_SLOT,0);
Page *p = loadPage(xid, nr->ptr);
readlock(p->rwlatch,0);
pageid_t ret = findFirstLeaf(xid,p,depth-1);
unlock(p->rwlatch);
releasePage(p);
return ret;
}
}
recordid TlsmAppendPage(int xid, recordid tree,
const byte *key, size_t keySize,
const byte *key,
long val_page) {
Page * const p = loadPage(xid, tree.page);
Page *p = loadPage(xid, tree.page);
writelock(p->rwlatch, 0);
lsmTreeState * s = p->impl;
// pthread_mutex_lock(&(s->mut));
lsmTreeState *s = p->impl;
size_t keySize = getKeySize(xid,p);
tree.slot = 0;
tree.size = sizeof(nodeRecord);
tree.size = sizeof(lsmTreeNodeRecord)+keySize;
nodeRecord nr = readNodeRecord(xid,p,0);
int depth = nr.ptr;
// const nodeRecord * nr = (const nodeRecord*)recordReadNew(xid,p,tree);
// int depth = nr->ptr;
// recordReadDone(xid,p,tree,(const byte*)nr);
const lsmTreeNodeRecord *nr = readNodeRecord(xid, p, DEPTH, keySize);
int depth = nr->ptr;
if(s->lastLeaf == -1) {
s->lastLeaf = findLastLeaf(xid, p, depth);
}
Page * lastLeaf;
Page *lastLeaf;
if(s->lastLeaf != tree.page) {
lastLeaf= loadPage(xid, s->lastLeaf);
writelock(lastLeaf->rwlatch, 0); // tree depth is in slot zero of root
writelock(lastLeaf->rwlatch, 0);
} else {
lastLeaf = p;
}
recordid ret = recordPreAlloc(xid, lastLeaf, sizeof(nodeRecord));
recordid ret = recordPreAlloc(xid, lastLeaf,
sizeof(lsmTreeNodeRecord)+keySize);
if(ret.size == INVALID_SLOT) {
if(lastLeaf->id != p->id) {
@ -363,58 +443,72 @@ recordid TlsmAppendPage(int xid, recordid tree,
tree.slot = 0;
assert(tree.page == p->id);
ret = appendInternalNode(xid, p, depth, key, keySize,
val_page);
ret = appendInternalNode(xid, p, depth, key, keySize, val_page,
s->lastLeaf == tree.page ? -1 : s->lastLeaf);
if(ret.size == INVALID_SLOT) {
DEBUG("Need to split root; depth = %d\n", depth);
pageid_t child = TpageAlloc(xid);
Page * lc = loadPage(xid, child);
Page *lc = loadPage(xid, child);
writelock(lc->rwlatch,0);
initializeNodePage(xid, lc);
initializeNodePage(xid, lc,keySize);
for(int i = 2; i < *recordcount_ptr(p); i++) {
for(int i = FIRST_SLOT; i < *recordcount_ptr(p); i++) {
recordid cnext = recordPreAlloc(xid, lc, sizeof(nodeRecord));
recordid cnext = recordPreAlloc(xid, lc,
sizeof(lsmTreeNodeRecord)+keySize);
assert(i == cnext.slot); // XXX hardcoded to current node format...
assert(i == cnext.slot);
assert(cnext.size != INVALID_SLOT);
recordPostAlloc(xid, lc, cnext);
nodeRecord nr = readNodeRecord(xid,p,i);
writeNodeRecord(xid,lc,i,nr.key,nr.ptr);
const lsmTreeNodeRecord *nr = readNodeRecord(xid,p,i,keySize);
writeNodeRecord(xid,lc,i,(byte*)(nr+1),keySize,nr->ptr);
}
// deallocate old entries, and update pointer on parent node.
// XXX this is a terrible way to do this.
recordid pFirstSlot = {p->id, 2, sizeof(nodeRecord)};
*recordcount_ptr(p) = 3;
nodeRecord * nr = (nodeRecord*)recordWriteNew(xid, p, pFirstSlot);
recordid pFirstSlot = { p->id, FIRST_SLOT,
sizeof(lsmTreeNodeRecord)+keySize };
// @todo should fixed.h support bulk deallocation directly?
*recordcount_ptr(p) = FIRST_SLOT+1;
lsmTreeNodeRecord *nr
= (lsmTreeNodeRecord*)recordWriteNew(xid, p, pFirstSlot);
// don't overwrite key...
nr->ptr = child;
assert(nr->ptr > 1);///XXX
recordWriteDone(xid,p,pFirstSlot,(byte*)nr);
pageWriteLSN(xid, p, 0); // XXX need real LSN?
byte *dummy = calloc(1,keySize);
if(!depth) {
s->lastLeaf = lc->id;
writeNodeRecord(xid,lc,PREV_LEAF,dummy,keySize,-1);
writeNodeRecord(xid,lc,NEXT_LEAF,dummy,keySize,-1);
}
unlock(lc->rwlatch);
releasePage(lc);
depth ++;
writeNodeRecord(xid,p,0,0,depth);
writeNodeRecord(xid,p,DEPTH,dummy,keySize,depth);
free(dummy);
assert(tree.page == p->id);
ret = appendInternalNode(xid, p, depth, key, keySize,
val_page);
ret = appendInternalNode(xid, p, depth, key, keySize, val_page,
s->lastLeaf == tree.page ? -1 : s->lastLeaf);
assert(ret.size != INVALID_SLOT);
} else {
DEBUG("Appended new internal node tree depth = %d key = %d\n", depth, *(int*)key);
DEBUG("Appended new internal node tree depth = %d key = %d\n",
depth, *(int*)key);
}
s->lastLeaf = ret.page;
DEBUG("lastleaf is %lld\n", s->lastLeaf);
@ -425,7 +519,7 @@ recordid TlsmAppendPage(int xid, recordid tree,
recordPostAlloc(xid, lastLeaf, ret);
writeNodeRecord(xid, lastLeaf, ret.slot, *(int*)key, val_page);
writeNodeRecord(xid, lastLeaf, ret.slot, key, keySize, val_page);
if(lastLeaf->id != p->id) {
unlock(lastLeaf->rwlatch);
@ -433,32 +527,34 @@ recordid TlsmAppendPage(int xid, recordid tree,
}
}
// XXX do something to make this transactional...
// pthread_mutex_unlock(&(s->mut));
unlock(p->rwlatch);
releasePage(p);
return ret;
}
static pageid_t lsmLookup(int xid, Page * const node, int depth,
const byte *key, size_t keySize) {
// Start at slot 2 to skip reserved slots on page...
if(*recordcount_ptr(node) == 2) { return -1; }
assert(*recordcount_ptr(node) > 2);
nodeRecord prev = readNodeRecord(xid,node,2);
static pageid_t lsmLookup(int xid, Page *node, int depth,
const byte *key, size_t keySize, lsm_comparator_t cmp) {
// should do binary search instead.
for(int i = 3; i < *recordcount_ptr(node); i++) {
nodeRecord rec = readNodeRecord(xid,node,i);
if(*recordcount_ptr(node) == FIRST_SLOT) { return -1; }
assert(*recordcount_ptr(node) > FIRST_SLOT);
const lsmTreeNodeRecord *prev = readNodeRecord(xid,node,FIRST_SLOT,keySize);
int prev_cmp_key = cmp(prev+1,key);
// @todo binary search within each page
for(int i = FIRST_SLOT+1; i < *recordcount_ptr(node); i++) {
const lsmTreeNodeRecord *rec = readNodeRecord(xid,node,i,keySize);
int rec_cmp_key = cmp(rec+1,key);
if(depth) {
if(prev.key <= *(int*)key && rec.key > *(int*)key) {
pageid_t child_id = prev.ptr;
Page * const child_page = loadPage(xid, child_id);
if(prev_cmp_key <= 0 && rec_cmp_key > 0) {
pageid_t child_id = prev->ptr;
Page *child_page = loadPage(xid, child_id);
readlock(child_page->rwlatch,0);
long ret = lsmLookup(xid,child_page,depth-1,key,keySize);
long ret = lsmLookup(xid,child_page,depth-1,key,keySize,cmp);
unlock(child_page->rwlatch);
releasePage(child_page);
return ret;
@ -466,22 +562,22 @@ static pageid_t lsmLookup(int xid, Page * const node, int depth,
} else {
if(prev.key == *(int*)key) {
return prev.ptr;
if(prev_cmp_key == 0) {
return prev->ptr;
}
}
prev = rec;
if(prev.key > *(int*)key) { break; }
prev_cmp_key = rec_cmp_key;
if(rec_cmp_key > 0) { break; }
}
if(depth) {
if(prev.key <= *(int*)key) {
pageid_t child_id = prev.ptr;
Page * const child_page = loadPage(xid, child_id);
if(prev_cmp_key <= 0) {
pageid_t child_id = prev->ptr;
Page *child_page = loadPage(xid, child_id);
readlock(child_page->rwlatch,0);
long ret = lsmLookup(xid,child_page,depth-1,key,keySize);
long ret = lsmLookup(xid,child_page,depth-1,key,keySize,cmp);
unlock(child_page->rwlatch);
releasePage(child_page);
return ret;
@ -489,32 +585,37 @@ static pageid_t lsmLookup(int xid, Page * const node, int depth,
} else {
if(prev.key == *(int*)key) {
return prev.ptr;
if(prev_cmp_key == 0) {
return prev->ptr;
}
}
return -1;
}
pageid_t TlsmFindPage(int xid, recordid tree, const byte * key, size_t keySize) {
Page * const p = loadPage(xid, tree.page);
/**
Look up the value associated with key.
@return -1 if key isn't in the tree.
*/
pageid_t TlsmFindPage(int xid, recordid tree, const byte *key) {
Page *p = loadPage(xid, tree.page);
readlock(p->rwlatch,0);
//lsmTreeState * s = p->impl;
// pthread_mutex_lock(&(s->mut));
tree.slot = 0;
tree.size = *recordsize_ptr(p);
nodeRecord nr = readNodeRecord(xid, p , 0);
// const nodeRecord * nr = (const nodeRecord*)recordReadNew(xid, p, tree);
size_t keySize = getKeySize(xid,p);
int depth = nr.ptr;
const lsmTreeNodeRecord *depth_nr = readNodeRecord(xid, p , 0, keySize);
const lsmTreeNodeRecord *cmp_nr = readNodeRecord(xid, p , 1, keySize);
pageid_t ret = lsmLookup(xid, p, depth, key, keySize);
int depth = depth_nr->ptr;
lsm_comparator_t cmp = comparators[cmp_nr->ptr];
pageid_t ret = lsmLookup(xid, p, depth, key, keySize, cmp);
// recordReadDone(xid, p, tree, (const byte*)nr);
//pthread_mutex_unlock(&(s->mut));
unlock(p->rwlatch);
releasePage(p);
@ -528,9 +629,8 @@ pageid_t TlsmFindPage(int xid, recordid tree, const byte * key, size_t keySize)
associated with the tree.
*/
static void lsmPageLoaded(Page *p) {
lsmTreeState * state = malloc(sizeof(lsmTreeState));
lsmTreeState *state = malloc(sizeof(lsmTreeState));
state->lastLeaf = -1;
//pthread_mutex_init(&(state->mut),0);
p->impl = state;
}
/**
@ -538,8 +638,7 @@ static void lsmPageLoaded(Page *p) {
This is called by the buffer manager.
*/
static void lsmPageFlushed(Page *p) {
lsmTreeState * state = p->impl;
//pthread_mutex_destroy(&(state->mut));
lsmTreeState *state = p->impl;
free(state);
}
/**
@ -552,3 +651,83 @@ page_impl lsmRootImpl() {
pi.page_type = LSM_ROOT_PAGE;
return pi;
}
///--------------------- Iterator implementation
lladdIterator_t *lsmTreeIterator_open(int xid, recordid root) {
Page *p = loadPage(xid,root.page);
readlock(p->rwlatch,0);
size_t keySize = getKeySize(xid,p);
const lsmTreeNodeRecord *nr = readNodeRecord(xid,p,DEPTH,keySize);
int depth = nr->ptr;
pageid_t leafid = findFirstLeaf(xid, p, depth);
if(leafid != root.page) {
unlock(p->rwlatch);
releasePage(p);
p = loadPage(xid,leafid);
readlock(p->rwlatch,0);
}
lsmIteratorImpl *impl = malloc(sizeof(lsmIteratorImpl));
impl->p = p;
{
recordid rid = { p->id, 1, keySize };
impl->current = rid;
}
DEBUG("keysize = %d, slot = %d\n", keySize, impl->current.slot);
impl->t = 0;
impl->justOnePage = (depth == 0);
lladdIterator_t *it = malloc(sizeof(lladdIterator_t));
it->type = -1; // XXX LSM_TREE_ITERATOR;
it->impl = impl;
/* itdef = { <-- @todo register lsmTree iterators with stasis someday...
lsmTreeIterator_close;
lsmTreeIterator_next;
lsmTreeIterator_next;
lsmTreeIterator_key;
lsmTreeIterator_value;
lsmTreeIterator_tupleDone;
lsmTreeIterator_releaseLock;
} */
return it;
}
void lsmTreeIterator_close(int xid, lladdIterator_t *it) {
lsmIteratorImpl *impl = it->impl;
if(impl->p) {
unlock(impl->p->rwlatch);
releasePage(impl->p);
}
free(impl);
free(it);
}
int lsmTreeIterator_next(int xid, lladdIterator_t *it) {
lsmIteratorImpl *impl = it->impl;
size_t keySize = impl->current.size;
impl->current = fixedNext(xid, impl->p, impl->current);
if(impl->current.size == INVALID_SLOT) {
const lsmTreeNodeRecord *next_rec = readNodeRecord(xid,impl->p,NEXT_LEAF,
impl->current.size);
unlock(impl->p->rwlatch);
releasePage(impl->p);
DEBUG("done with page %lld next = %lld\n", impl->p->id, next_rec->ptr);
if(next_rec->ptr != -1 && ! impl->justOnePage) {
impl->p = loadPage(xid, next_rec->ptr);
readlock(impl->p->rwlatch,0);
impl->current.page = next_rec->ptr;
impl->current.slot = 2;
impl->current.size = keySize;
} else {
impl->p = 0;
impl->current.size = -1;
}
}
if(impl->current.size != INVALID_SLOT) {
impl->t = readNodeRecord(xid,impl->p,impl->current.slot,impl->current.size);
return 1;
} else {
impl->t = 0;
return 0;
}
}

View file

@ -79,22 +79,6 @@ static int fixedGetLength(int xid, Page *p, recordid rid) {
return rid.slot > *recordcount_ptr(p) ?
INVALID_SLOT : physical_slot_length(*recordsize_ptr(p));
}
static recordid fixedNext(int xid, Page *p, recordid rid) {
short n = *recordcount_ptr(p);
rid.slot++;
rid.size = *recordsize_ptr(p);
if(rid.slot >= n) {
return NULLRID;
} else {
return rid;
}
}
static recordid fixedFirst(int xid, Page *p) {
recordid rid = { p->id, -1, 0 };
rid.size = *recordsize_ptr(p);
return fixedNext(xid, p, rid);
}
static int notSupported(int xid, Page * p) { return 0; }
static int fixedFreespace(int xid, Page * p) {

View file

@ -7,6 +7,22 @@
#define recordcount_ptr(page) shorts_from_end((page), 2)
#define fixed_record_ptr(page, n) bytes_from_start((page), *recordsize_ptr((page)) * (n))
static inline recordid fixedNext(int xid, Page *p, recordid rid) {
short n = *recordcount_ptr(p);
rid.slot++;
rid.size = *recordsize_ptr(p);
if(rid.slot >= n) {
return NULLRID;
} else {
return rid;
}
}
static inline recordid fixedFirst(int xid, Page *p) {
recordid rid = { p->id, -1, 0 };
rid.size = *recordsize_ptr(p);
return fixedNext(xid, p, rid);
}
void fixedPageInit();
void fixedPageDeinit();
page_impl fixedImpl();

View file

@ -241,4 +241,7 @@ extern const short SLOT_TYPE_LENGTHS[];
#define FILE_PERM (S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH)
#define LOG_MODE (O_CREAT | O_RDWR | O_SYNC)
#define MAX_LSM_COMPARATORS 256
#endif

View file

@ -22,13 +22,9 @@ typedef struct {
recordid pos;
} lladd_lsm_iterator;
typedef struct {
int id;
// fcn pointer...
} comparator_impl;
typedef int(*lsm_comparator_t)(const void* a, const void* b);
void lsmTreeRegisterComparator(comparator_impl i);
extern const int MAX_LSM_COMPARATORS;
void lsmTreeRegisterComparator(int id, lsm_comparator_t i);
/**
Initialize a new LSM tree.
@ -47,7 +43,7 @@ recordid TlsmDealloc(int xid, recordid tree);
ascending order; LSM trees do not support update in place.
*/
recordid TlsmAppendPage(int xid, recordid tree,
const byte *key, size_t keySize,
const byte *key,
long pageid);
/**
Lookup a leaf page.
@ -60,25 +56,51 @@ recordid TlsmAppendPage(int xid, recordid tree,
Currently unused.
*/
pageid_t TlsmFindPage(int xid, recordid tree,
const byte *key, size_t keySize);
const byte *key);
/// --------------- Iterator implementation
typedef struct lsmTreeNodeRecord {
pageid_t ptr;
} lsmTreeNodeRecord;
typedef struct lsmIteratorImpl {
Page * p;
recordid current;
const lsmTreeNodeRecord *t;
int justOnePage;
} lsmIteratorImpl;
/**
Return a forward iterator over the tree's leaf pages (*not* their
contents).
*/
lladdIterator_t * TlsmIterator(int xid, recordid hash);
contents). The iterator starts before the first leaf page.
/**
@see iterator.h for documentation of lsmTree's iterator interface.
*/
lladdIterator_t * lsmTreeIterator_open(int xid, recordid tree);
/*
These are the functions that implement lsmTree's iterator.
They're public so that performance critical code can call them
without paying for a virtual method invocation.
XXX should they be public?
*/
void lsmTreeIterator_close(int xid, void * it);
int lsmTreeIterator_next (int xid, void * it);
int lsmTreeIterator_key (int xid, void * it, byte **key);
int lsmTreeIterator_value(int xid, void * it, byte **value);
void lsmTreeIterator_close(int xid, lladdIterator_t * it);
int lsmTreeIterator_next (int xid, lladdIterator_t * it);
static inline int lsmTreeIterator_key (int xid, lladdIterator_t *it,
byte **key) {
lsmIteratorImpl * impl = (lsmIteratorImpl*)it->impl;
*key = (byte*)(impl->t+1);
return sizeof(impl->current.size);
}
static inline int lsmTreeIterator_value(int xid, lladdIterator_t *it,
byte **value) {
lsmIteratorImpl * impl = (lsmIteratorImpl*)it->impl;
*value = (byte*)&(impl->t->ptr);
return sizeof(impl->t->ptr);
}
static inline void lsmTreeIterator_tupleDone(int xid, void *it) { }
static inline void lsmTreeIterator_releaseLock(int xid, void *it) { }
#endif // _LSMTREE_H__

View file

@ -13,34 +13,74 @@
#include <time.h>
#define LOG_NAME "check_lsmTree.log"
#define NUM_ENTRIES 100000
#define NUM_ENTRIES_A 100000
#define NUM_ENTRIES_B 10
#define NUM_ENTRIES_C 0
#define OFFSET (NUM_ENTRIES * 10)
#define DEBUG(...)
typedef int64_t lsmkey_t;
int cmp(const void *ap, const void *bp) {
lsmkey_t a = *(lsmkey_t*)ap;
lsmkey_t b = *(lsmkey_t*)bp;
if(a < b) { return -1; }
if(a == b) { return 0; }
return 1;
}
void insertProbeIter(lsmkey_t NUM_ENTRIES) {
int intcmp = 0;
lsmTreeRegisterComparator(intcmp,cmp);
Tinit();
int xid = Tbegin();
recordid tree = TlsmCreate(xid, intcmp, sizeof(lsmkey_t));
for(lsmkey_t i = 0; i < NUM_ENTRIES; i++) {
long pagenum = TlsmFindPage(xid, tree, (byte*)&i);
assert(pagenum == -1);
DEBUG("TlsmAppendPage %d\n",i);
TlsmAppendPage(xid, tree, (const byte*)&i, i + OFFSET);
pagenum = TlsmFindPage(xid, tree, (byte*)&i);
assert(pagenum == i + OFFSET);
}
for(lsmkey_t i = 0; i < NUM_ENTRIES; i++) {
long pagenum = TlsmFindPage(xid, tree, (byte*)&i);
assert(pagenum == i + OFFSET);
}
int64_t count = 0;
lladdIterator_t * it = lsmTreeIterator_open(xid, tree);
while(lsmTreeIterator_next(xid, it)) {
lsmkey_t * key;
lsmkey_t **key_ptr = &key;
int size = lsmTreeIterator_key(xid, it, (byte**)key_ptr);
assert(size == sizeof(lsmkey_t));
long *value;
long **value_ptr = &value;
size = lsmTreeIterator_value(xid, it, (byte**)value_ptr);
assert(size == sizeof(pageid_t));
assert(*key + OFFSET == *value);
assert(*key == count);
count++;
}
assert(count == NUM_ENTRIES);
lsmTreeIterator_close(xid, it);
Tcommit(xid);
Tdeinit();
}
/** @test
*/
START_TEST(lsmTreeTest)
{
Tinit();
int xid = Tbegin();
recordid tree = TlsmCreate(xid, 0, sizeof(int)); // xxx comparator not set.
for(int i = 0; i < NUM_ENTRIES; i++) {
long pagenum = TlsmFindPage(xid, tree, (byte*)&i, sizeof(int));
assert(pagenum == -1);
DEBUG("TlsmAppendPage %d\n",i);
TlsmAppendPage(xid, tree, (const byte*)&i, sizeof(int), i + OFFSET);
// fflush(NULL);
pagenum = TlsmFindPage(xid, tree, (byte*)&i, sizeof(int));
assert(pagenum == i + OFFSET);
}
for(int i = 0; i < NUM_ENTRIES; i++) {
long pagenum = TlsmFindPage(xid, tree, (byte*)&i, sizeof(int));
assert(pagenum == i + OFFSET);
}
Tcommit(xid);
Tdeinit();
insertProbeIter(NUM_ENTRIES_A);
insertProbeIter(NUM_ENTRIES_B);
insertProbeIter(NUM_ENTRIES_C);
} END_TEST
Suite * check_suite(void) {