/*--- This software is copyrighted by the Regents of the University of California, and other parties. The following terms apply to all files associated with the software unless explicitly disclaimed in individual files. The authors hereby grant permission to use, copy, modify, distribute, and license this software and its documentation for any purpose, provided that existing copyright notices are retained in all copies and that this notice is included verbatim in any distributions. No written agreement, license, or royalty fee is required for any of the authorized uses. Modifications to this software may be copyrighted by their authors and need not follow the licensing terms described here, provided that the new terms are clearly indicated on the first page of each file where they apply. IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. GOVERNMENT USE: If you are acquiring this software on behalf of the U.S. government, the Government shall have only "Restricted Rights" in the software and related documentation as defined in the Federal Acquisition Regulations (FARs) in Clause 52.227.19 (c) (2). If you are acquiring the software on behalf of the Department of Defense, the software shall be classified as "Commercial Computer Software" and the Government shall have only "Restricted Rights" as defined in Clause 252.227-7013 (c) (1) of DFARs. Notwithstanding the foregoing, the authors grant the U.S. Government and others acting in its behalf permission to use and distribute the software in accordance with the terms specified in this license. ---*/ /** @file check_logWriter Tests logWriter. @todo Get rid of include for logWriter.h (stop calling deleteLogWriter, syncLog_logWriter...) */ #include "../check_includes.h" #include #include #include #include #include #include #include #include #include #define LOG_NAME "check_logWriter.log" static stasis_log_t * setup_log() { int i; lsn_t prevLSN = -1; int xid = 42; stasis_log_safe_writes_delete(stasis_log_file_name); stasis_truncation_automatic = 0; Tinit(); lsn_t firstLSN = -1; int first = 1; stasis_log_t * stasis_log_file = stasis_log(); for(i = 0 ; i < 1000; i++) { LogEntry * e = allocCommonLogEntry(prevLSN, xid, XBEGIN); const LogEntry * f; recordid rid; byte * args = (byte*)"Test 123."; long args_size = 10; /* Including null */ rid.page = 0; rid.slot = 0; rid.size = sizeof(unsigned long); lsn_t test = stasis_log_file->next_available_lsn(stasis_log_file); stasis_log_file->write_entry(stasis_log_file,e); prevLSN = e->LSN; assert(test <= e->LSN); if(first) { first = 0; firstLSN = prevLSN; } f = stasis_log_file->read_entry(stasis_log_file, prevLSN); fail_unless(sizeofLogEntry(0, e) == sizeofLogEntry(0, f), "Log entry changed size!!"); fail_unless(0 == memcmp(e,f,sizeofLogEntry(0, e)), "Log entries did not agree!!"); freeLogEntry(e); freeLogEntry(f); e = allocUpdateLogEntry(prevLSN, xid, 1, rid.page, args, args_size); stasis_log_file->write_entry(stasis_log_file,e); prevLSN = e->prevLSN; // LogEntry * g = allocCLRLogEntry(100, 1, 200, rid, 0); //prevLSN); LogEntry * g = allocCLRLogEntry(e); // XXX will probably break g->prevLSN = firstLSN; stasis_log_file->write_entry(stasis_log_file,g); assert (g->type == CLRLOG); prevLSN = g->LSN; freeLogEntry (e); freeLogEntry (g); } return stasis_log_file; } /** @test Quick test of log writer and log handler. Not very extensive. Just writes out 3000 log entries, checks that 1000 of them make sense, and then closes, opens and iterates over the resulting log file to make sure that it contains 3000 entries, and none of its builtin assertions fail. In particular, logWriter checks to make sure that each log entry's size matches the size that it recorded before the logEntry. Also, when checking the 1000 of 3000 entries, this test uses log->read_entry, which tests the logWriter's ability to succesfully manipulate LSN's. @todo Test logHandle more thoroughly. (Still need to test the guard mechanism.) */ static void loggerTest(int logType) { stasis_log_type = logType; const LogEntry * e; LogHandle* h; int i = 0; stasis_log_t * stasis_log_file = setup_log(); h = getLogHandle(stasis_log_file); while((e = nextInLog(h))) { freeLogEntry(e); i++; assert(i < 4000); } freeLogHandle(h); assert(i == 3000); stasis_log_safe_writes_delete(stasis_log_file_name); Tdeinit(); } START_TEST(loggerFileTest) { loggerTest(LOG_TO_FILE); } END_TEST START_TEST(loggerMemTest) { loggerTest(LOG_TO_MEMORY); } END_TEST /** @test Checks for a bug ecountered during devlopment. What happens when previousInTransaction is called immediately after the handle is allocated? */ static void logHandleColdReverseIterator(int logType) { const LogEntry * e; stasis_log_type = logType; stasis_log_t * stasis_log_file = setup_log(); LogHandle* lh = getLogHandle(stasis_log_file); int i = 0; while(((e = nextInLog(lh)) && (i < 100)) ) { freeLogEntry(e); i++; } i = 0; lh = getLSNHandle(stasis_log_file, e->LSN); while((e = previousInTransaction(lh))) { i++; freeLogEntry(e); } freeLogHandle(lh); assert(i <= 4); /* We should almost immediately hit a clr that goes to the beginning of the log... */ Tdeinit(); } START_TEST(logHandleFileColdReverseIterator) { logHandleColdReverseIterator(LOG_TO_FILE); } END_TEST START_TEST(logHandleMemColdReverseIterator) { logHandleColdReverseIterator(LOG_TO_MEMORY); } END_TEST /** @test Build a simple log, truncate it, and then test the logWriter routines against it. */ static void loggerTruncate(int logType) { stasis_log_type = logType; const LogEntry * le; const LogEntry * le2; const LogEntry * le3 = NULL; const LogEntry * tmp; stasis_log_t * stasis_log_file = setup_log(); LogHandle* lh = getLogHandle(stasis_log_file); int i = 0; while(i < 234) { i++; le = nextInLog(lh); } le2 = nextInLog(lh); i = 0; while(i < 23) { i++; le3 = nextInLog(lh); } stasis_log_file->truncate(stasis_log_file, le->LSN); tmp = stasis_log_file->read_entry(stasis_log_file, le->LSN); fail_unless(NULL != tmp, NULL); fail_unless(tmp->LSN == le->LSN, NULL); freeLogEntry(tmp); tmp = stasis_log_file->read_entry(stasis_log_file, le2->LSN); fail_unless(NULL != tmp, NULL); fail_unless(tmp->LSN == le2->LSN, NULL); freeLogEntry(tmp); tmp = stasis_log_file->read_entry(stasis_log_file, le3->LSN); fail_unless(NULL != tmp, NULL); fail_unless(tmp->LSN == le3->LSN, NULL); freeLogEntry(tmp); freeLogHandle(lh); lh = getLogHandle(stasis_log_file); i = 0; freeLogEntry(le); freeLogEntry(le2); freeLogEntry(le3); while((le = nextInLog(lh))) { if(le->type != INTERNALLOG) { i++; } freeLogEntry(le); } assert(i == (3000 - 234 + 1)); freeLogHandle(lh); Tdeinit(); } START_TEST(loggerFileTruncate) { loggerTruncate(LOG_TO_FILE); } END_TEST START_TEST(loggerMemTruncate) { loggerTruncate(LOG_TO_MEMORY); } END_TEST #define ENTRIES_PER_THREAD 200 pthread_mutex_t random_mutex; lsn_t truncated_to = 4; #undef NO_CONCURRENCY #ifdef NO_CONCURRENCY pthread_mutex_t big = PTHREAD_MUTEX_INITIALIZER; #endif static void* worker_thread(void * arg) { long key = *(int*)arg; long i = 0; lsn_t lsns[ENTRIES_PER_THREAD]; for(i = 0; i < ENTRIES_PER_THREAD; i++) { lsns[i] = 0; } i = 0; stasis_log_t * stasis_log_file = stasis_log(); while(i < ENTRIES_PER_THREAD) { LogEntry * le = allocCommonLogEntry(-1, -1, XBEGIN); int threshold; long entry; int needToTruncate = 0; lsn_t myTruncVal = 0; pthread_mutex_lock(&random_mutex); threshold = (int) (2000.0*random()/(RAND_MAX+1.0)); entry = (long) (ENTRIES_PER_THREAD*random()/(RAND_MAX+1.0)); if(threshold < 3) { if(i > 10) { needToTruncate = 1; if(lsns[i - 10] > truncated_to) { truncated_to = lsns[i - 10]; myTruncVal = truncated_to; } } } pthread_mutex_unlock(&random_mutex); if(needToTruncate) { #ifdef NO_CONCURRENCY pthread_mutex_lock(&big); #endif stasis_log_file->truncate(stasis_log_file, myTruncVal); #ifdef NO_CONCURRENCY pthread_mutex_unlock(&big); #endif assert(stasis_log_file->truncation_point(stasis_log_file) >= myTruncVal); } if(threshold < 3) { } else { le->xid = i+key; #ifdef NO_CONCURRENCY pthread_mutex_lock(&big); #endif stasis_log_file->write_entry(stasis_log_file,le); #ifdef NO_CONCURRENCY pthread_mutex_unlock(&big); #endif lsns[i] = le->LSN; i++; } pthread_mutex_lock(&random_mutex); #ifdef NO_CONCURRENCY pthread_mutex_lock(&big); #endif if(lsns[entry] > truncated_to && entry < i) { lsn_t lsn = lsns[entry]; pthread_mutex_unlock(&random_mutex); const LogEntry * e = stasis_log_file->read_entry(stasis_log_file, lsn); assert(e->xid == entry+key); freeLogEntry(e); } else { pthread_mutex_unlock(&random_mutex); } #ifdef NO_CONCURRENCY pthread_mutex_unlock(&big); #endif /* Try to interleave requests as much as possible */ sched_yield(); freeLogEntry(le); } return 0; } static void loggerCheckWorker(int logType) { stasis_log_type = logType; int four = 4; pthread_mutex_init(&random_mutex, NULL); Tinit(); worker_thread(&four); Tdeinit(); } START_TEST(loggerFileCheckWorker) { loggerCheckWorker(LOG_TO_FILE); } END_TEST START_TEST(loggerMemCheckWorker) { loggerCheckWorker(LOG_TO_MEMORY); } END_TEST static void loggerCheckThreaded(int logType) { stasis_log_type = logType; #define THREAD_COUNT 100 pthread_t workers[THREAD_COUNT]; int i; pthread_mutex_init(&random_mutex, NULL); Tinit(); for(i = 0; i < THREAD_COUNT; i++) { pthread_create(&workers[i], NULL, worker_thread, &i); } for(i = 0; i < THREAD_COUNT; i++) { pthread_join(workers[i], NULL); } Tdeinit(); } START_TEST(loggerFileCheckThreaded) { loggerCheckThreaded(LOG_TO_FILE); } END_TEST START_TEST(loggerMemCheckThreaded) { loggerCheckThreaded(LOG_TO_MEMORY); } END_TEST void reopenLogWorkload(int truncating) { stasis_operation_table_init(); stasis_truncation_automatic = 0; const int ENTRY_COUNT = 1000; const int SYNC_POINT = 900; stasis_log_t * stasis_log_file = 0; stasis_transaction_table_active_transaction_count_set(0); if(LOG_TO_FILE == stasis_log_type) { stasis_log_file = stasis_log_safe_writes_open(stasis_log_file_name, stasis_log_file_mode, stasis_log_file_permissions); } else if(LOG_TO_MEMORY == stasis_log_type) { stasis_log_file = stasis_log_impl_in_memory_open(); } else { assert(stasis_log_file != NULL); } int xid = 1; TransactionLog l; pthread_mutex_init(&l.mut,0); stasis_log_begin_transaction(stasis_log_file, xid, &l); lsn_t startLSN = 0; LogEntry * entries[ENTRY_COUNT]; for(int i = 0; i < ENTRY_COUNT; i++) { entries[i] = stasis_log_write_update(stasis_log_file, &l, 0, OPERATION_NOOP, NULL, 0); if(i == SYNC_POINT) { if(truncating) { stasis_log_file->truncate(stasis_log_file,entries[i]->LSN); startLSN = entries[i]->LSN; } } } stasis_log_file->close(stasis_log_file); if(LOG_TO_FILE == stasis_log_type) { stasis_log_file = stasis_log_safe_writes_open(stasis_log_file_name, stasis_log_file_mode, stasis_log_file_permissions); } else if(LOG_TO_MEMORY == stasis_log_type) { stasis_log_file = stasis_log_impl_in_memory_open(); } else { assert(stasis_log_file != NULL); } LogHandle * h; int i; if(truncating) { h = getLogHandle(stasis_log_file); i = SYNC_POINT; } else { h = getLogHandle(stasis_log_file); i = 0; } const LogEntry * e; while((e = nextInLog(h))) { if(e->type != INTERNALLOG) { assert(sizeofLogEntry(0, e) == sizeofLogEntry(0, entries[i])); assert(!memcmp(e, entries[i], sizeofLogEntry(0, entries[i]))); assert(i < ENTRY_COUNT); i++; } } assert(i == (ENTRY_COUNT)); LogEntry * entries2[ENTRY_COUNT]; for(int i = 0; i < ENTRY_COUNT; i++) { entries2[i] = stasis_log_write_update(stasis_log_file, &l, 0, OPERATION_NOOP, NULL, 0); if(i == SYNC_POINT) { stasis_log_file->force_tail(stasis_log_file, LOG_FORCE_COMMIT); } } freeLogHandle(h); if(truncating) { h = getLSNHandle(stasis_log_file, startLSN); i = SYNC_POINT; } else { h = getLogHandle(stasis_log_file); i = 0; } while((e = nextInLog(h))) { if(e->type != INTERNALLOG) { if( i < ENTRY_COUNT) { assert(sizeofLogEntry(0, e) == sizeofLogEntry(0, entries[i])); assert(!memcmp(e, entries[i], sizeofLogEntry(0, entries[i]))); } else { assert(i < ENTRY_COUNT * 2); assert(sizeofLogEntry(0, e) == sizeofLogEntry(0, entries2[i-ENTRY_COUNT])); assert(!memcmp(e, entries2[i-ENTRY_COUNT], sizeofLogEntry(0, entries2[i-ENTRY_COUNT]))); } i++; } } freeLogHandle(h); assert(i == (ENTRY_COUNT * 2)); stasis_truncation_automatic = 1; stasis_log_file->close(stasis_log_file); } START_TEST(loggerReopenTest) { stasis_log_type = LOG_TO_FILE; stasis_log_safe_writes_delete(stasis_log_file_name); reopenLogWorkload(0); } END_TEST START_TEST(loggerTruncateReopenTest) { stasis_log_type = LOG_TO_FILE; stasis_log_safe_writes_delete(stasis_log_file_name); reopenLogWorkload(1); } END_TEST Suite * check_suite(void) { Suite *s = suite_create("logWriter"); /* Begin a new test */ TCase *tc = tcase_create("writeNew"); tcase_set_timeout(tc, 0); /* Sub tests are added, one per line, here */ tcase_add_test(tc, loggerFileTest); tcase_add_test(tc, loggerMemTest); tcase_add_test(tc, logHandleFileColdReverseIterator); tcase_add_test(tc, logHandleMemColdReverseIterator); tcase_add_test(tc, loggerFileTruncate); tcase_add_test(tc, loggerMemTruncate); tcase_add_test(tc, loggerFileCheckWorker); tcase_add_test(tc, loggerMemCheckWorker); tcase_add_test(tc, loggerFileCheckThreaded); tcase_add_test(tc, loggerMemCheckThreaded); if(stasis_log_type != LOG_TO_MEMORY) { tcase_add_test(tc, loggerReopenTest); tcase_add_test(tc, loggerTruncateReopenTest); } /* --------------------------------------------- */ tcase_add_checked_fixture(tc, setup, teardown); suite_add_tcase(s, tc); return s; } #include "../check_setup.h"