
LLADD: An Extensible Transactional Storage Layer
(yaahd)

Russell Sears and Eric Brewer
UC Berkeley

{sears,brewer}@cs.berkeley.edu, http://lladd.sourceforge.net

Abstract

Although many systems provide transactionally con-
sistent data management, existing implementations
are generally monolithic and tied to a higher-level
DBMS, limiting the scope of their usefulness to a
single application, or a specific type of problem. As
a result, many systems are forced to “work around”
the data models provided by a transactional storage
layer. Manifestation of this problem include “im-
pedence mismatch” in the database world and the
limited number of data models provided by exist-
ing libraries such as Berkeley DB. In this paper,
we describe a light-weight, easily extensible library,
LLADD, that allows application developers to de-
velop scalable and transactional application-specific
data structures. We demonstrate that LLADD is
simpler than prior systems and is very flexible,
while performing favorably in a number of micro-
benchmarks. We also describe, in simple and con-
crete terms, the issues inherent in the design and im-
plementation of robust, scalable transactional data
structures. In addition to the source code, we have
also made a comprehensive suite of unit-tests, API
documentation, and debugging mechanisms publicly
available.1

1 Introduction

Changes in data models, consistency requirements,
system scalibility, communication models and fault
models require changes to the storage and recovery
subsystems of modern applications.

For applications that are willing to store all of
their data in a DBMS, and access it only via SQL,
existing databases are just fine and LLADD has lit-
tle to offer. However, for those applications that

1http://lladd.sourceforge.net/

need more direct management of data, LLADD of-
fers a layered architecture that enables simple but
robust data management.2 We also believe that
LLADD is applicable in the context of new, special-
purpose database systems such as XML databases,
streaming databases, and extensible/semantic file
systems [Reiser, Gifford]. These form a fruitful area
of current research, but existing monolithic database
systems tend to be a poor fit for these new areas.

The basic approach of LLADD, taken from
ARIES [Mohan], is to build transactional pages,
which enables recovery on a page-by-page basis, de-
spite support for high concurrency and the min-
imization of disk seeks during commit (by using
a log). We show how to build a variety of use-
ful data managers on top of this layer, including
persistent hash tables, lightweight recoverable vir-
tual memory (LRVM) [Satyanarayanan], and simple
databases. We also cover the details of crash recov-
ery, application-level support for transaction abort
and commit, and latching for multithreaded appli-
cations. Finally, we discuss the shortcomings of com-
mon applications, and explain why LLADD provides
an appropriate solution to these problems.

Many implementations of transactional pages ex-
ist in industry and in the literature. Unfortunately,
these algorithms tend either to be straightforward
and unsuitable for real-world deployment, or are ro-
bust and scalable, but achieve these properties by
relying upon intricate sets of internal and often im-
plicit interactions. The ARIES algorithm falls into
the second category, and has been extremely sucess-
ful as part of the IBM DB2 database system. It
provides performance and reliability that is compa-
rable to that of current commercial and open-source
products. Unfortunately, while the algorithm is con-

2A large class of such applications are deemed “naviga-
tional” in the database vocabulary, as they directly navigate
data structures rather than perform set operations.

1

ceptually simple, many subtleties arise in its imple-
mentation. We chose ARIES as the basis of LLADD,
and have made a significant effort to document these
interactions. Although a complete discussion of the
ARIES algorithm is beyond the scope of this paper,
we will provide a brief overview, and explain the
details that are relevant to developers that wish to
extend LLADD.

By documenting the interface between ARIES and
higher-level primitives such as data structures, and
by structuring LLADD to make this interface ex-
plicit in both the library and its extensions, we
hope to make it easy to produce correct and effi-
cient durable data structures. In existing systems
(and indeed, in earlier versions of LLADD), the im-
plementation of such structures is extremely compli-
cated, and subject to the introduction of incredibly
subtle errors that would only be evident during crash
recovery or at other inconvenient times. Thus there
is great value is reusing these lower layers once de-
veloped.

Finally, by approaching this problem by imple-
menting a number of simple modules that “do one
thing and do it well”, we believe that LLADD can
provide competitive performance while making fu-
ture improvements to its core implementation signif-
icantly easier. In order to achieve this goal, LLADD
has been split into a number of modules forming a
core library, and a number of extensions called oper-
ations that build upon the core library. Since each
of these modules exports a stable interface, they can
be independently improved.

1.1 Prior Work

An extensive amount of prior work covers the al-
gorithms presented in this paper. Most fundamen-
tally, systems that provide transactional consistency
to their users generally include a number of common
modules. Figure 1 presents a high-level overview of
a typical system.

Many applications make use of transactional stor-
age, and each is designed for a specific application, or
set of applications. LLADD provides a flexible sub-
strate that allows such applications to be developed.
The complexity of existing systems varies widely, as
do the applications for which these systems are de-
signed.

On the database side of things, relational
databases excel in areas where performance is im-
portant, but where the consistency and durability of
the data are crucial. Often, databases significantly
outlive the software that uses them, and must be
able to cope with changes in business practices, sys-

Application code

Abstraction Layer
Replication

Indexes Locking

LogRecoveryRollbackBuffers

Transactional Interface

Distribution

Figure 1: Conceptual view of a modern transac-
tional application. Current systems include high-
level functionality, such as indices and locking, but
are not designed to allow developers to replace this
functionality with application-specific modules.

tem architectures, etc. [Codd]
Object-oriented databases are more focused on fa-

cilitating the development of complex applications
that require reliable storage, and may take advan-
tage of less-flexible, more efficient data models, as
they often only interact with a single application, or
a handful of variants of that application. [Lamb]

Databases are designed for circumstances where
development time may dominate cost, many users
must share access to the same data, and where secu-
rity, scalability, and a host of other concerns are im-
portant. In many, if not most, circumstances these
issues are less important, or even irrelevant. There-
fore, applying a database in these situations is likely
overkill, which may partially explain the popularity
of MySQL [MySQL], which allows some of these con-
straints to be relaxed at the discretion of a developer
or end user.

Still, there are many applications where MySQL
is still too inflexible. In order to serve these ap-
plications, a host of software solutions have been
devised. Some are extremely complex, such as se-
mantic file systems, where the file system under-
stands the contents of the files that it contains,
and is able to provide services such as rapid search,
or file-type specific operations such as thumbnail-
ing, automatic content updates, and so on. Oth-
ers are simpler, such as Berkeley DB, [Seltzer, BDB]
which provides transactional storage of data in unin-
dexed form, in indexed form using a hash table, or
a tree. LRVM is a version of malloc() that provides

2

transacational memory, and is similar to an object-
oriented database, but is much lighter weight, and
more flexible [Satyanarayanan].

Finally, some applications require incredibly sim-
ple, but extremely scalable storage mechanisms.
Cluster Hash Tables are a good example of the type
of system that serves these applications well, due to
their relative simplicity, and extremely good scala-
bility characteristics. Depending on the fault model
on which a cluster hash table is implemented, it is
quite plausible that key portions of the transactional
mechanism, such as forcing log entries to disk, will
be replaced with other durability schemes, such as
in-memory replication across many nodes, or mul-
tiplexing log entries across multiple systems. This
level of flexibility would be difficult to retrofit into
existing transactional applications, but is appropri-
ate in many environments.

We have only provided a small sampling of the
many applications that make use of transactional
storage. Unfortunately, it is extremely difficult to
implement a correct, efficient and scalable transac-
tional data store, and we know of no library that
provides low-level access to the primitives of such a
durability algorithm. These algorithms have a repu-
tation of being complex, with many intricate interac-
tions, which prevent them from being implemented
in a modular, easily understandable, and extensible
way.

Because of this, many applications that would
benefit from transactional storage, such as CVS and
many implementations of IMAP, either ignore the
problem, leaving the burden of recovery to system
administrators or users, or implement ad-hoc solu-
tions that employ complex, application-specific con-
sistency protocols in order to ensure the consistency
of their data. This increases the complexity of such
applications, and often provides only a partial solu-
tion to the transactional storage problem, resulting
in erratic and unpredictable application behavior.

In addition to describing such an implementation
of ARIES, a well-tested “industrial strength” algo-
rithm for transactional storage, this paper outlines
the most important interactions that we discovered
(that is, the ones that could not be encapsulated
within our implementation), and gives the reader a
sense of how to use the primitives the library pro-
vides.

2 ARIES from an Operation’s Per-
spective

Instead of providing a comprehensive discussion of
ARIES, we will focus upon those features of the algo-

rithm that are most relevant to a developer attempt-
ing to add a new set of operations. Correctly imple-
menting such extensions is complicated by concerns
regarding concurrency, recovery, and the possibility
that any operation may be rolled back at runtime.

We first sketch the constraints placed upon opera-
tion implementations, and then describe the proper-
ties of our implementation of ARIES that make these
constraints necessary. Because comprehensive dis-
cussions of write ahead logging protocols and ARIES
are available elsewhere, [Haerder, Mohan] we only
discuss those details relevant to the implementation
of new operations in LLADD.

2.1 Properties of an Operation

A LLADD operation consists of some code that per-
forms some action on the developer’s behalf. These
operations implement the high-level actions that are
composed into transactions. They are implemented
at a relatively low level, and have full access to the
ARIES algorithm. We expect the majority of an
application to reason in terms of the interface pro-
vided by custom operations, allowing the the appli-
cation, the operation, and LLADD itself to be inde-
pendently improved.

Since transactions may be aborted, the effects
of an operation must be reversible. Furthermore,
aborting and comitting transactions may be in-
terleaved, and LLADD does not allow cascading
aborts,3 so in order to implement an operation, we
must implement some sort of locking, or other con-
currency mechanism that isolates transactions from
each other. LLADD only provides physical consis-
tency; due to the variety of locking systems avail-
able, and their interaction with application work-
load, [Agrawal] we leave it to the application to de-
cide what sort of transaction isolation is appropri-
ate. For example, it is relatively easy to build a
strict two-phase locking lock manager [Gray75] on
top of LLADD, as needed by a DBMS, or a sim-
pler lock-per-folder approach that would suffice for
an IMAP server. Thus, data dependencies among
transactions are allowed, but we still must ensure
the physical consistency of our data structures, such
as operations on pages or locks.

Also, all actions performed by a transaction that
committed must be restored in the case of a crash,
and all actions performed by aborting transactions

3That is, by aborting, one transaction may not cause other
transactions to abort. To understand why operation imple-
mentors must worry about this, imagine that transaction A
split a node in a tree, transaction B added some data to the
node that A just created, and then A aborted. When A was
undone, what would become of the data that B inserted?

3

must be undone. In order for LLADD to arrange for
this to happen at recovery, operations must produce
log entries that contain all information necessary for
undo and redo.

An important concept in ARIES is the “log se-
quence number” or LSN. An LSN is essentially a
virtual timestamp that goes on every page; it marks
the last log entry that is reflected on the page, which
implies that all previous log entries are also reflected.
Given the LSN, you can tell where to start playing
back the log to bring a page up to date. The LSN
goes on the page so that it is always written to disk
atomically with the data of the page.

ARIES (and thus LLADD) allows pages to be
stolen, i.e. written back to disk while they still con-
tain uncommitted data. It is tempting to disallow
this, but to do so has serious consequences such as a
increased need for buffer memory (to hold all dirty
pages). Worse, as we allow multiple transactions to
run concurrently on the same page (but not typi-
cally the same item), it may be that a given page
always contains some uncommitted data and thus
could never be written back to disk. To handle stolen
pages, we log UNDO records that we can use to undo
the uncommitted changes in case we crash. LLADD
ensures that the UNDO record is durable in the log
before the page is written back to disk, and that the
page LSN reflects this log entry.

Similarly, we do not force pages out to disk every
time a transaction commits, as this limits perfor-
mance. Instead, we log REDO records that we can
use to redo the change in case the committed ver-
sion never makes it to disk. LLADD ensures that the
REDO entry is durable in the log before the transac-
tion commits. REDO entries are physical changes to
a single page (“page-oriented redo”), and thus must
be redone in the exact order.

One unique aspect of LLADD, which is not true
for ARIES, is that normal operations use the REDO
function; i.e. there is no way to modify the page
except via the REDO operation. This has the great
property that the REDO code is known to work,
since even the original update is a“redo”. In general,
the LLADD philosophy is that you define operations
in terms of their REDO/UNDO behavior, and then
build the actual update methods around those.

Eventually, the page makes it to disk, but the
REDO entry is still useful: we can use it to roll for-
ward a single page from an archived copy. Thus one
of the nice properties of LLADD, which has been
tested, is that we can handle media failures very
gracefully: lost disk blocks or even whole files can
be recovered given an old version and the log.

2.2 Normal Processing

Operation implementors follow the pattern in Fig-
ure 2, and need only implement a wrapper function
(“Tset()” in the figure, and a pair of redo and undo
functions will be registered with LLADD. The Tup-
date function, which is built into LLADD, handles
most of the runtime complexity. LLADD also uses
the undo and redo functions during recovery, in the
same way that they are used during normal process-
ing.

2.2.1 The buffer manager

LLADD manages memory on behalf of the applica-
tion and prevents pages from being stolen prema-
turely. Although LLADD uses the STEAL policy
and may write buffer pages to disk before transac-
tion commit, it still must make sure that the UNDO
log entries have been forced to disk before the page is
written to disk. Therefore, operations must inform
the buffer manager when they write to a page, and
update the LSN of the page. This is handled auto-
matically by the write methods that LLADD pro-
vides to operation implementors (such as writeRe-
cord()). However, it is also possible to create your
own low-level page manipulation routines, in which
case these routines must follow the protocol.

2.2.2 Log entries and forward operation
(the Tupdate() function)

In order to handle crashes correctly, and in order to
the undo the effects of aborted transactions, LLADD
provides operation implementors with a mechanism
to log undo and redo information for their actions.
This takes the form of the log entry interface, which
works as follows. Operations consist of a wrapper
function that performs some pre-calculations and
perhaps acquires latches. The wrapper function then
passes a log entry to LLADD. LLADD passes this
entry to the logger, and then processes it as though
it were redoing the action during recovery, calling a
function that the operation implementor registered
with LLADD. When the function returns, control
is passed back to the wrapper function, which per-
forms any post processing (such as generating return
values), and releases any latches that it acquired.

This way, the operation’s behavior during recov-
ery’s redo phase (an uncommon case) will be identi-
cal to the behavior during normal processing, mak-
ing it easier to spot bugs. Similarly, undo and redo
operations take an identical set of parameters, and
undo during recovery is the same as undo during
normal processing. This makes recovery bugs more

4

Read pre−image
Allocate log entry

Load page (pin in memory)

Write log entry

Serialize arguments for log

Release page

Update lsn
Write data to page
Parse arguments

Tupdate(Record, Args)

Tset(Record, Value)

Invoke redo operation

redoSet(LogEntry)

Figure 2: Runtime behavior of a simple operation.
Tset() and redoSet() are extensions that implement
a new operation, while Tupdate() is built in. New
operations need not be aware of the complexities of
LLADD.

obvious and allows redo functions to be reused to
implement undo.

Although any latches acquired by the wrapper
function will not be reacquired during recovery, the
redo phase of the recovery process is single threaded.
Since latches acquired by the wrapper function are
held while the log entry and page are updated, the
ordering of the log entries and page updates associ-
ated with a particular latch will be consistent. Be-
cause undo occurs during normal operation, some
care must be taken to ensure that undo operations
obtain the proper latches.

2.3 Recovery

In this section, we present the details of crach recov-
ery, user-defined logging, and atomic actions that
commit even if their enclosing transaction aborts.

2.3.1 ANALYSIS / REDO / UNDO

Recovery in ARIES consists of three stages, analysis,
redo and undo. The first, analysis, is implemented
by LLADD, but will not be discussed in this paper.
The second, redo, ensures that each redo entry in
the log will have been applied each page in the page
file exactly once. The third phase, undo, rolls back
any transactions that were active when the crash

occured, as though the application manually aborted
them with the “abort” function call.

After the analysis phase, the on-disk version of
the page file is in the same state it was in when
LLADD crashed. This means that some subset of
the page updates performed during normal opera-
tion have made it to disk, and that the log contains
full redo and undo information for the version of
each page present in the page file.4 However, we
make no further assumptions regarding the order in
which pages were propogated to disk. Therefore,
redo must assume that any data structures, lookup
tables, etc. that span more than a single page are in
an inconsistent state. Therefore, as the redo phase
re-applies the information in the log to the page file,
it must address all pages directly.

Therefore, the redo information for each operation
in the log must contain the physical address (page
number) of the information that it modifies, and the
portion of the operation executed by a single redo log
entry must only rely upon the contents of the page
that the log entry refers to. Since we assume that
pages are propagated to disk atomically, the REDO
phase may rely upon information contained within
a single page.

Once redo completes, we have applied some prefix
of the run-time log that contains complete entries
for all committed transactions. Therefore, we know
that the page file is in a physically consistent state,
although it contains portions of the results of un-
comitted transactions. The final stage of recovery is
the undo phase, which simply aborts all uncomitted
transactions. Since the page file is physically con-
sistent, the transactions may be aborted exactly as
they would be during normal operation.

2.3.2 Physical, Logical and Phisiological
Logging.

The above discussion avoided the use of some termi-
nology that is common in the database literature and
which should be presented here. “Physical loggging”
is the practice of logging physical (byte-level) up-
dates and the physical (page number) addresses to
which they are applied.

It is subtly different than “physiological logging,”
which is what LLADD recommends for its redo
records. In physiological logging, the physical ad-
dress (page number) is stored, but the byte offset
and the actual difference are stored implicitly in the

4Although this discussion assumes that the entire log is
present, the ARIES algorithm supports log truncation, which
allows us to discard old portions of the log, bounding its size
on disk.

5

parameters of some function. When the parameters
are applied to the function, it will update the page
in a way that preserves application semantics. The
common use for this is slotted pages, which use a
level of indirection to allow records to be rearranged
on the page; redo operations use the index as the
parameter rather than the page offset. For exam-
ple, data within a single page can be re-arranged at
runtime to produce contiguous regions of free space.
LLADD generalizes this model; for example, the
parameters passed to the function may be signifi-
cantly smaller than the physical change made to the
page. [Gray]

“Logical logging”can only be used for undo entries
in LLADD, and is identical to physiological logging,
except that it stores a logical address (the key of a
hash table, for instance) instead of a physical ad-
dress. This allows the location of data in the page
file to change, even if outstanding transactions may
have to roll back changes made to that data. Clearly,
for LLADD to be able to apply logical log entries,
the page file must be physically consistent, ruling
out use of logical logging for redo operations.

LLADD supports all three types of logging, and
allows developers to register new operations, which
is the key to its extensibility. After discussing
LLADD’s architecture, we will revisit this topic with
a concrete example.

2.4 Concurrency and Aborted Trans-
actions

Section 2.1 states that LLADD does not allow cas-
cading aborts, implying that operation implemen-
tors must protect transactions from any structural
changes made to data structures by uncomitted
transactions, but LLADD does not provide any
mechanisms designed for long-term locking. How-
ever, one of LLADD’s goals is to make it easy to im-
plement custom data structures for use within safe,
multi-threaded transactions. Clearly, an additional
mechanism is needed.

The solution is to allow portions of an operation
to “commit” before the operation returns.5 An op-
eration’s wrapper is just a normal function, and
therefore may generate multiple log entries. First,
it writes an undo-only entry to the log. This entry
will cause the logical inverse of the current opera-
tion to be performed at recovery or abort, must be

5We considered the use of nested top actions, which
LLADD could easily support. However, we currently use
the slightly simpler (and lighter-weight) mechanism described
here. If the need arises, we will add support for nested top
actions.

idempotent, and must fail gracefully if applied to a
version of the database that does not contain the re-
sults of the current operation. Also, it must behave
correctly even if an arbitrary number of intervening
operations are performed on the data structure.

Next, the operation writes one or more redo-only
log entries that may perform structural modifica-
tions to the data structure. These redo entries have
the constraint that any prefix of them must leave
the database in a consistent state, since only a pre-
fix might execute before a crash. This is not as hard
as it sounds, and in fact the BLINK tree [Lehman] is
an example of a B-Tree implementation that behaves
in this way, while the linear hash table implementa-
tion discussed in Section 4.1 is a scalable hash table
that meets these constraints.

[EAB: I still think there must be a way to log all
of the redoes before any of the actions take place,
thus ensuring that you can redo the whole thing if
needed. Alternatively, we could pin a page until the
set completes, in which case we know that that all of
the records are in the log before any page is stolen.]

2.5 Summary

This section presented a relatively simple set of rules
and patterns that a developer must follow in order
to implement a durable, transactional and highly-
concurrent data structure using LLADD:

• Pages should only be updated inside of a redo
or undo function.

• An update to a page should update the LSN.

• If the data read by the wrapper function must
match the state of the page that the redo func-
tion sees, then the wrapper should latch the rel-
evant data.

• Redo operations should address pages by their
physical offset, while Undo operations should
use a more permanent address (such as index
key) if the data may move between pages over
time.

• An undo operation must correctly update a data
structure if any prefix of its corresponding redo
operations are applied to the structure, and if
any number of intervening operations are ap-
plied to the structure.

Because undo and redo operations during normal op-
eration and recovery are similar, most bugs will be
found with conventional testing strategies. It is dif-
ficult to verify the final property, although a number

6

Hash Table Record based access Page based access

Page I/O

Operation Implementations (Extensions)

LLADD

Page Manipulation Routines Tcommit(), Tabort(), etc...

Operations API (Tupdate())

Recovery Buffer Manager

Logger Page replacement policy

Figure 3: Simplified LLADD Architecture: The core
of the library places as few restrictions on the ap-
plication’s data layout as possible. Custom “oper-
ations” implement the client’s desired data layout.
The separation of these two sets of modules makes
it easy to improve and customize LLADD.

of tools could be written to simulate various crash
scenarios, and check the behavior of operations un-
der these scenarios. Of course, such a tool could
easily be applied to existing LLADD operations.

Note that the ARIES algorithm is extremely com-
plex, and we have left out most of the details needed
to understand how ARIES works, or to implement
it correctly.6 Yet, we believe we have covered every-
thing that a programmer needs to know in order to
implement new data structures using the function-
ality that ARIES provides. This was possible due to
the encapsulation of the ARIES algorithm inside of
LLADD, which is the feature that most strongly dif-
ferentiates LLADD from other, similar libraries. We
hope that this will increase the availability of trans-
actional data primitives to application developers.

3 LLADD Architecture

LLADD is a toolkit for building transaction man-
agers. It provides user-defined redo and undo be-
havior, and has an extendible logging system with 19
types of log entries so far (not counting those inter-
nal to LLADD, such as “begin”, “abort”, and “clr”).
Most of these extensions deal with data layout or
modification, but some deal with other aspects of
LLADD, such as extensions to recovery semantics
(Section 4.2). LLADD comes with some default page
layout schemes, but allows its users to redefine this
layout as is appropriate. Currently LLADD imposes
two requirements on page layouts. The first 32 bits
must contain an LSN for recovery purposes, and the

6The original ARIES paper is around 70 pages, and the
ARIES/IM paper [Mohan92], which covers index implemen-
tation is roughly the same length.

second 32 bits must contain the page type (since we
allow multple page formats).

Although it ships with basic operations that sup-
port variable-length records, hash tables and other
common data types, our goal is to decouple all de-
cisions regarding data format from the implementa-
tion of the logging and recovery systems. Therefore,
the preceeding section is essentially documentation
for users of the library, while the purpose of the per-
formance numbers in our evaluation section are not
to validate our hash table, but to show that the un-
derlying architecture is able to efficiently support in-
teresting data structures.

Despite the complexity of the interactions among
its modules, the basic ARIES algorithm itself is quite
simple. Therefore, in order to keep LLADD simple,
we started with a set of modules, and iteratively
refined the boundaries among these modules. Fig-
ure 3 presents the resulting architecture. The core
of the LLADD library is quite small at 2218 lines
of code, 2155 lines of implementations of operations
and other extensions, and 408 lines of installable
header files.7 The code has been documented ex-
tensively, and we hope that we have exposed most
of the subtle interactions among internal modules in
the online documentation.

As LLADD has evolved, many of its sub-systems
have been incrementally improved, and we believe
that the current set of modules is amenable to the
addition of new functionality. For instance, the log-
ging module interface encapsulates all of the details
regarding its on disk format, which would make it
straightforward to implement more exotic logging
techniques such as using log shipping to maintain a
“warm replica” for failover purposes, or the use of log
replication to avoid physical disk access at commit
time. Similarly, the interface encodes the dependen-
cies between the logger and other subsystems, so, for
instance, the requirements that the buffer manager
places on the logger would be obvious to someone
that attempted to alter the logging functionality.8

The buffer manager itself is another potential area
for extension. Because the interface between the
buffer manager and LLADD is simple, we would like
to support transactional access to resources beyond
simple page files. Some examples include transac-
tional updates of multiple files on disk, transactional
groups of program executions or network requests, or
even leveraging some of the advances being made in

7These counts were generated using David A. Wheeler’s
SLOCCount.

8The buffer manager must ensure that the logger has
forced the appropriate log entries to disk before writing a
dirty page to disk. Otherwise, it would be impossible to undo
the changes that had been made to the page.

7

the Linux and other modern OS kernels. For exam-
ple, ReiserFS recently added support for atomic file-
system operations. This could be used to provide
variable-sized pages to LLADD. Combining these
ideas should make it easy to implement some inter-
esting applications, and to improve existing systems
such as CVS, IMAP, and a host of “simple” desktop
applications.

From the testing point of view, the advantage of
LLADD’s division into subsystems with simple in-
terfaces is obvious. We are able to use standard
unit-testing techniques to test each of LLADD’s sub-
systems independently, and have documented both
external and internal interfaces, making it easy to
add new tests and debug old ones. Furthermore,
by adding a “simulate crash” operation to a few of
the key components, we can simulate application
level crashes by clearing LLADD’s internal state, re-
initializing the library and verifying that recovery
was successful. These tests currently cover approxi-
mately 90%9 of the code. We have not yet developed
a mechanism that will allow us to accurately model
hardware failures, which is an area where futher
work is needed. However, the basis for this work
will be the development of test harnesses that verify
operation behavior in exceptional circumstances.

LLADD’s performance requirements vary wildly
depending on the workload with which it is pre-
sented. Its performance on a large number of small,
sequential transactions will always be limited by the
amount time required to flush a page to disk. To
some extent, compact logical and physiological log
entries improve this situation. On the other hand,
long running transactions only rarely force-write to
disk and become CPU bound. Standard profiling
techniques of the overall library’s performance and
microbenchmarks of crucial modules handle such sit-
uations nicely.

A more interesting set of performance require-
ments are imposed by multithreaded workloads.
Each module of LLADD is reentrant, and a C pre-
processor directive allows the entire library to be
instrumented in order to profile latching behavior,
which is useful both for perfomance tuning and for
debugging. A thread that is not involved in an I/O
request never needs to wait for a latch held by a
thread that is waiting for I/O.10

There are a number of performance optimizations

9generated using “gcov”, which is part of gcc, and “lcov,”
which interprets gcov’s output.

10Strictly speaking, this statement is only true for LLADD’s
core. However, there are variants of most popular data struc-
tures that allow us to preserve these invariants. LLADD can
correctly support operations whether or not they have these
properties.

that are specific to multithreaded operations that
we do not perform. The most glaring omission is log
bundling; if multiple transactions commit at once,
LLADD must force the log to disk one time per
transaction. This problem is not fundamental, but
simply has not made it into the current code base.
Similarly, since page eviction requires a force-write if
the full ARIES recovery algorithm is in use, we could
implement a thread that asynchronously maintained
a set of free buffer pages. We plan to implement such
optimizations, but they are not reflected in this pa-
per’s performance figures.

4 Sample Operations

In order to validate LLADD’s architecture, and to
show that it simplifies the creation of efficient data
structures, we have have implemented a number of
simple extensions. In this section, we describe their
design, and provide some concrete examples of our
experiences extending LLADD.

4.1 Linear Hash Table

Linear hash tables are hash tables that are able to
extend their bucket list incrementally at runtime.
They work as follows. Imagine that we want to
double the size of a hash table of size 2n, and that
the hash table has been constructed with some hash
function hn(x) = h(x)mod 2n Choose hn+1(x) =
h(x) mod 2n+1 as the hash function for the new ta-
ble. Conceptually we are simply prepending a ran-
dom bit to the old value of the hash function, so
all lower order bits remain the same. At this point,
we could simply block all concurrent access and it-
erate over the entire hash table, reinserting values
according to the new hash function.

However, because of the way we chose hn+1(x),
we know that the contents of each bucket, m, will be
split betwen bucket m and bucket m+2n. Therefore,
if we keep track of the last bucket that was split,
we can split a few buckets at a time, resizing the
hash table without introducing long pauses while we
reorganize the hash table. [Litwin] We can handle
overflow using standard techniques. LLADD’s linear
hash table uses linked lists of overflow buckets.

For this scheme to work, we must be able to ad-
dress a portion of the page file as though it were an
expandable array. We have implemented this func-
tionality as a separate module, but will not discuss
it here.

For the purposes of comparison, we provide two
linear hash implementations. The first is straight-
forward, and is layered on top of LLADD’s stan-

8

Delete Bucket Entry

(1) Lock Bucket

(3) Free old Block

(2)

Old

(1) Lock Bucket

(1) Allocate New Block

(2) Lock Bucket

(3)
(4)

New

Insert Bucket Entry

(4)

(3)

(2) Lock Bucket

(5) Delete pointer

Move Entry to New Bucket

Figure 4: Linear Hash Table Bucket operations.

dard record setting operation, Tset(), and therefore
performs physical undo. This implementation pro-
vided a stepping stone to the more sophisticated ver-
sion which employs logical undo, and uses an iden-
tical on-disk layout. As we discussed earlier, logical
undo provides more opportunities for concurrency,
while decreasing the size of log entries. In fact, the
physical-undo implementation of the linear hash ta-
ble cannot support concurrent transactions, while
threads utilizing the physical-undo implementation
never hold locks on more than two buckets.11

Because another module provides the resizable ar-
rays needed for the bucket list, the complexity of
the linear hash algorithm is in two areas. The first,
linked list management, is straightforward in the
physical case, but must be performed in a specific or-
der in the logical case. See Figure 4 for a sequence of
steps that safely implement the necessary linked list
operations. Note that in the first two cases, the por-
tion of the linked list that is visible from LLADD’s
point of view is always consistent. This is important

11However, only one thread may expand the hashtable at
once. In order to amortize the overhead of initiating an ex-
pansion, and to allow concurrent insertions, the hash table is
expanded in increments of a few thousand buckets.

for crash recovery; it is possible that LLADD will
crash before the entire sequence of operations has
been completed. The logging protocol guarantees
that some prefix of the log will be available. There-
fore, as long as the run-time version of the hash table
is always consistent, we may be certain that the log-
ical consistency of the linked list is maintained at
all steps. Here, the challenge comes from the fact
that the buffer manager only provides atomic up-
dates of single pages; in practice, a linked list may
span pages.

The last case, where buckets are split as the bucket
list is expanded, is a bit more complicated. We must
maintain consistency between two linked lists, and a
page at the begining of the hash table that contains
the last bucket that we successfully split. Here, we
misuse the undo entry to ensure proper crash recov-
ery. Our bucket split algorithm is idempotent, so it
may be applied an arbitrary number of times to a
given bucket with no ill-effects. Also note that (for
our purposes), there is never a good reason to undo a
bucket split, so we can safely apply the split whether
or not the current transaction commits.

First, we write an “undo” record that checks the
hash table’s metadata and redoes the split if neces-
sary (this record has no effect unless we crash during
this bucket split). Second, we write (and execute) a
series of redo-only records to the log. These encode
the bucket split, and follow the linked list protocols
listed above. Finally, we write a redo-only entry that
updates the hash table’s metadata.12

We allow pointer aliasing at this step so that a
given key can be present for a short period of time
in both buckets. If we crash before the undo entry
is written, no harm is done. If we crash after the
entire update makes it to log, the redo stage will set
the hash’s metadata appropriately, and the ’undo’
record becomes a no-op. If we crash in the middle of
the bucket split, we know that the current transac-
tion did not commit, and that recovery will execute
the ’undo’ record. It will see that the bucket split is
still pending and finish splitting the bucket appro-
priately. Since the bucket split is idempotent, and
we’ve arranged for it to behave correctly regardless
of the point at which it was interrupted, the hastable
is correctly restored.

Note that there is a point during the undo phase

12Had we been using nested top actions, we would not need
the special undo entry, but we would need to store physical
undo information for each of the modifications made to the
bucket, since any subset of the pages may have been stolen.
This method does have the disadvantage of producing a few
redo-only entries during recovery, but the number of such en-
tries is bounded by the number of entries that would be pro-
duced during normal operation.

9

where the bucket is in an inconsistent physical state,
although normally the redo phase is able to bring
the database to a fully consistent physical state.
We handle this by obtaining a runtime lock on the
bucket during normal operation. This runtime lock
blocks any attempt to write log entries that alter a
bucket that is being split, so we know that no other
logical operations will attempt to access an inconsis-
tent bucket.

Since the second implementation of the linear hash
table uses logical undo, we are able to allow concur-
rent updates to different portions of the table. This
is not true in the case of the implementation that
uses pure physical logging, as physical undo can-
not generally tolerate concurrent structural modi-
fications to data structures.

4.2 Two-Phase Commit

The two-phase commit protocol is used in cluster-
ing applications where multiple, well maintained,
well connected computers must agree upon a set of
successful transactions. Some of the systems could
crash, or the network could fail during operation, but
we assume that such failures are temporary. Two-
phase commit designates a single computer as the co-
ordinator of a given transaction. This computer con-
tacts the other systems participating in the transac-
tion, and asks them to prepare to commit the trans-
action. If a subordinate system sees that an error
has occurred, or the transaction should be aborted
for some other reason, then it informs the coordi-
nator. Otherwise, it enters the prepared state, and
tells the coordinator that it is ready to commit. At
some point in the future the coordinator will reply,
telling the subordinate to commit or abort. From
LLADD’s point of view, the interesting portion of
this algorithm is the prepared state, since it must be
able to commit a prepared transaction if it crashes
before the coordinator responds, but cannot commit
before hearing the response, since it may be asked
to abort the transaction.

Implementing the prepare state on top of the
ARIES algorithm constists of writing a special log
entry that informs the undo portion of the recovery
phase that it should stop rolling back the current
transaction and instead add it to the list of active
transactions.13 Due to LLADD’s extendible logging
system, and the simplicity of its recovery code, it
took an afternoon to add a prepare operation to

13Also, any locks that the transaction obtained should be
restored, which is outside of the scope of LLADD, although
this functionality could be added relatively easily if a lock
manager were implemented on top of LLADD.

LLADD, allowing it to support applications that re-
quire two-phase commit. A preliminary implemen-
tation of a cluster hash table that employs two-phase
commit is included in LLADD’s CVS repository, but
is not ready for real-world deployment.

4.3 Other Applications

Previously, we mentioned a few programs that
we think would benefit from LLADD. Here we
sketch the process of implementing such applictions.
LRVM implements a transactional version of mal-
loc(). It employs the operating system’s virtual
memory system to generate page faults if the ap-
plication accesses a portion of memory that have
not been swapped in. These page faults are inter-
cepted and processed by a transactional storage layer
which loads the corresponding pages from disk. A
few simple functions such as abort() and commit()
are provided to the application, and allow it to con-
trol the duration of its transactions. LLADD pro-
vides such a layer and the necessary calls, reducing
the LRVM implementation to an implementation of
the page fault handling code. The performance of
the transactional storage system is crucial for this
sort of application, and the variable length, keyed
access, and higher levels of abstractions provided by
existing libraries would be overkill. LLADD could
easily be extended so that it employs an appropriate
on-disk structure that provides efficient, offset based
access to aligned, fixed length blocks of data. Fur-
thermore, LRVM requires a set range() operation
that efficiently updates a range of a record, saving
logging overhead. All of these features could easily
added to LLADD, providing a simple, fast version
of LRVM that would benefit from the infrastructure
surrounding LLADD.

CVS provides version control over large sets of
files. Multiple users may concurrently update the
repository of files, and CVS attempts to merge
conflicts, and maintain the consistency of the file
tree. By adding the ability to perform file system
manipulations to LLADD, we could easily support
applications with requirements similar to those of
CVS. Furthermore, we could combine the file-system
manipulation with record-oriented storage to store
application-level logs, and other important meta-
data. This would allow a single mechanism to sup-
port applications such as CVS, simplifying fault tol-
erance, and improving the scalibility of such appli-
cations.

IMAP is similar to CVS, but benefits further
since it uses a simple, folder-based locking protocol,
which would be extremely easy to implement using

10

LLADD.
These last two examples highlight some of the po-

tential advantages of extending LLADD to manip-
ulate the file system, although it is possible that
LLADD’s page file would provide improved per-
formance over the file system, at the expense of
some complexity, and the transparency of file-system
based storage mechanisms.

Another area of interest is in transactional serial-
ization mechanisms for programming languages. Ex-
isting solutions are often complex, or are layered on
top of a relational database, or other system that
uses a data format that is different than the repre-
sentation the programming language uses. The wide
variety of persistance mechanisms available for Java
provide a nice survey of the potential design choices
and tradeoffs. Since LLADD can easily be adapted
to an application’s desired data format, we believe
that it is a good match for such persistance mecha-
nisms.

5 Performance

We hope that the preceeding sections have given the
reader an idea of the usefulness and extensibility of
the LLADD library. In this section we focus on per-
formance evaluation.

In order to evaluate the physical and logical
hashtable implementations, we first ran a test that
inserts some tuples into the database. For this test,
we chose fixed-length (key, value) pairs of integers.
For simplicity, our hashtable implementations cur-
rently only support fixed-length keys and values, so
this this test puts us at a significant advantage. It
also provides an example of the type of workload
that LLADD handles well, since LLADD is specifi-
cally designed to support application specific trans-
actional data structures. For comparison, we ran
“Record Number” trials, named after the Berkeley
DB access method. In this case, the two programs
essentially stored the data in a large array on disk.
This test provides a measurement of the speed of
the lowest level primitive supported by Berkeley DB,
and the corresponding LLADD extension.

The times included in Figure 5 include page file
and log creation, insertion of the tuples as a sin-
gle transaction, and a clean program shutdown. We
used the “transapp.cs” program from the Berkeley
DB 4.2 tutorial to run the Berkeley DB tests, and
hardcoded it to use integers instead of strings. We
used the Berkeley DB “DB HASH” index type for
the hashtable implementation, and“DB RECNO”in
order to run the “Record Number” test.

Since LLADD addresses records as {Page, Slot,

Size} triples, which is a lower level interface than
Berkeley DB exports, we used the expandable array
that supports the hashtable implementation to run
the “LLADD Record Number” test.

One should not look at Figure 5, and conclude
“LLADD is almost five times faster than Berke-
ley DB,” since we chose a hash table implementa-
tion that is tuned for fixed-length data. Instead,
the conclusions we draw from this test are that,
first, LLADD’s primitive operations are on par, per-
forance wise, with Berkeley DB’s, which we find very
encouraging. Second, even a highly tuned implemen-
tation of a “simple,” general purpose data structure
is not without overhead, and for applications where
performance is important a special purpose structure
may be appropriate.

The logical logging version of LLADD’s hashtable
outperformed the physical logging version for two
reasons. First, since it writes fewer undo records,
it generates a smaller log file. Second, in order to
emphasize the performance benefits of our extension
mechanism, we use lower level primitives for the log-
ical logging version. The logical logging version im-
plements locking at the bucket level, so many mu-
texes that are acquired by LLADD’s default mecha-
nisms are redundant. The physical logging version of
the hashtable serves as a rough proxy for an imple-
mentation on top of a non-extendible system. There-
fore, it uses LLADD’s default mechanisms, which
include the redundant acquisition of locks.

As a final note on our first performance graph,
we would like to address the fact that LLADD’s
hashtable curve is non-linear. LLADD currently
uses a fixed-size in-memory hashtable implementa-
tion in many areas, and it is possible that we ex-
ceeded the fixed-size of this hashtable on the larger
test sets. Also, LLADD’s buffer manager is cur-
rently fixed size. Regardless of the cause of this non-
linearity, we do not believe that it is fundamental to
our implementation.

The multithreaded test run in the first figure
shows that the library is capable of handling a large
number of threads. The performance degradation
associated with running 200 concurrent threads was
negligible. Figure 6 expands upon this point by plot-
ting the time taken for various numbers of threads
to perform a total of 500,000 read operations. The
performance of LLADD in this figure is essentially
flat, showing only a negligable slowdown up to 250
threads. (Our test system prevented us from spawn-
ing more than 250 simultaneous threads, and we sus-
pect that the “true” limit of LLADD’s scalability is
must higher than 250 threads. This test was per-
formed on a uni-processor machine, so we did not

11

0e+00 2e+05 4e+05 6e+05 8e+05

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

Insertion of Fixed Length Tuples

of tuples

S
e
c
o
n
d
s

Berkeley DB 4.2 Hash
Berkeley DB 4.2 Record Number
LLADD Hash (Logical Log − 200 Threads)
LLADD Hash (Logical Log)
LLADD Hash (Physical Log)
LLADD Record Number

Figure 5: The final data points for LLADD’s and Berkeley DB’s record number based storage are 7.4 and 9.5
seconds, respectively. LLADD’s hash table is significantly faster than Berkeley DB in this test, but provides
less functionality than the Berkeley DB hash. Finally, the logical logging version of LLADD’s hash table is
faster than the physical version, and handles the multi-threaded test well. The threaded test spawned 200
threads and split its workload into 200 separate transactions.

0 50 100 150 200 250

0
1
0

2
0

3
0

4
0

5
0

6
0

Hashtable Concurency (1 CPU)

of threads

S
e
c
o
n
d
s

LLADD 20,000 Inserts and 500,000 Random Lookups

Figure 6: The time required to perform a fixed amount of processing, split across various numbers of
threads. This test was run agains the highly concurrent Logical Logging version of the linear hash table. No
significant performance degradation was seen within the range measured. The inserts were done in serial,
and the lookups were performed in parallel.

12

expect to see a significant speedup when we moved
from a single thread to multiple threads.

Unfortuantely, when ran this test on a multi-
processor machine, we saw a further degradation
in performance instead of the expected speed up.
The problem seems to be the additional overhead
incurred by multi-threaded applications running on
SMP machines under Linux 2.6, as the single thread
test spent a small amount of time in the Linux ker-
nel, while even the two thread version of the test
spent a significant time in kernel code. We suspect
that the large number of briefly-held latches that
LLADD acquires caused this problem. We plan to
investigate this problem further, adopting LLADD
to a more advanced threading package [Behren], or
providing a ’SMP Mode’ compile time option that
decreases the number of latches that LLADD ac-
quires at the expense of opportunities for concur-
rency.

6 Future Work

LLADD is an extendible implementation of the
ARIES algorithm. This allows application devel-
opers to incorporate transactional recovery into a
wide range of systems. We have a few ideas along
these lines, and also have some ideas for extensions
to LLADD itself.

LLADD currently relies upon its buffer manager
for page-oriented storage. Although we did not have
space to discuss it in this paper, we have a blob im-
plementation that stores large data outside of the
page file. This concept could be extended to arbi-
trary primitives, such as transactional updates to file
system directory trees, or integration of networking
or other operations directly into LLADD transac-
tions. Doing this would allow LLADD to act as a
sort of “glue code” among various systems, ensuring
data integrity and adding database-style functional-
ity, such as continuous backup to systems that cur-
rently do not provide such mechanisms. We believe
that there is quite a bit of room for the develope-
ment of new software systems in the space between
the high-level, but sometimes inappropriate inter-
faces exported by existing transactiona storage sys-
tems, and the unsafe, low-level primitives provided
supported by current file systems.

Currently, although we have implemented a two-
phase commit algorithm, LLADD really is not very
network aware. If we provided a clean abstraction
that allowed LLADD extensions and operations to
cross network boundaries, then we could provide a
wider range of network consistency algorithms, and
cleanly support the implementation of operations

that perform well in networked and in local envi-
ronments.

Although LLADD is re-entrant, its latching mech-
anisms only provide physical consistency. Tradition-
ally, lock managers, which provide higher levels of
consistency, have been tightly coupled with trans-
actional page implementations. Generally, the se-
mantics of undo and redo operations provided by
the transactional page layer and its associated data
structures determine the level of concurrency that
is possible. Since prior systems provide a mono-
lithic set of primitives to their users, these systems
typically had complex interactions among the lock
manager, on-disk formats and the transactional page
layer. Finally, at recovery time it is often desir-
able to reacquire locks on behalf of a transaction.
Without extensible logging and without modifying
the recovery code, it is impossible to ensure that
such locks are correctly restored. By providing ex-
tensible logging, data-structures, and undo/redo se-
mantics, LLADD removes these reasons for coupling
the lock manager and the rest of the storage mech-
anisms. The flexiblity offered by splitting the lock
manager and the ARIES algorithm into independent
sub-systems, and allowing users to independently ex-
tend either module seems to outweigh the extra com-
plexity that will be added to LLADD’s interface. In
particular, most difficulties related to locking seem
to be data-structure dependent, suggesting that, like
page layout or the semantics of various types of log
entires, they are largely orthogonal to the atomicity
and durability algorithms implemented by LLADD.

7 Conclusion

We have outlined the design and implementation of
a library for the development of transactional stor-
age systems. By decoupling the on-disk format from
the transactional storage system, we provide appli-
cations with customizable, high-performance, trans-
actional storage. By summarizing and documenting
the interactions between these customizations and
the storage system, we make it easy to implement
such customizations.

Current applications generally must choose be-
tween high-level, general purpose libraries which
impose severe performance penalties, and ad-hoc
“from-scratch”atomicity and durability mechanisms.
By bridging this gap, we hope to make it easier
to implement a class of applications and algorithms
whose implementations are generally complex, or fail
to provide reliable storage to their users.

By releasing LLADD to the community, we hope
that we will be able to provide a toolkit that aids

13

in the development of real-world applications, and
is flexible enough for use as a research platform.

Because of the interface between operation ex-
tensions and the underlying implementation of the
ARIES algorithm, we allow operation extensions and
the implementation of the library to evolve indepen-
dently, allowing applications to adopt to advanced
replication techniques as the circumstances in which
they are deployed changes.

8 Acknowledgements

We would like to thank Jason Bayer, Jim Blomo
and Jimmy Kittiyachavalit for their implementa-
tion work and contributions to earlier versions of
LLADD. Joe Hellerstein and Mike Franlin provided
us with invaluable advice. Rob von Behren pro-
vided us with some last minute assistance during
the benchmarking process.

9 Availability

LLADD is free software, available at:

http://www.sourceforge.net/projects/lladd

References

[Agrawal] Agrawal, et al. Concurrency Control Per-
formance Modeling: Alternatives and Implica-
tions. TODS 12(4): (1987) 609-654

[BDB] Berkeley DB 4.2.52,
http://www.sleepycat.com/

[Behren] R. von Behren, J Condit, F. Zhou, G. Nec-
ula, and E. Brewer. Capriccio: Scalable Threads
for Internet Services SOSP 19 (2003).

[Codd] E. F. Codd, A Relational Model of Data for
Large Shared Data Banks. CACM 13(6) p. 377-
387 (1970)

[Evangelos] Envangelos P. Markatos. On Caching
Search Engine Results. Institute of Computer
Science, Foundation for Research & Technology
- Hellas (FORTH) Technical Report 241 (1999)

[Gifford] David K. Gifford, P. Jouvelot, Mark A.
Sheldon, and Jr. James W. O’Toole. Seman-
tic file systems. Proceedings of the Thirteenth
ACM Symposium on Operating Systems Prin-
ciples, (1991) p. 16-25.

[Gray] Gray, J. and Reuter, A. Transaction Process-
ing: Concepts and Techniques. Morgan Kauf-
mann (1993) San Mateo, CA

[Gray75] Jim Gray, Raymond A. Lorie, and Gian-
franco R. Putzulo. Granularity of locks and de-
grees of consistency in a shared database. In 1st
International Conference on VLDB, pages 428–
431, September 1975. Reprinted in Readings in
Database Systems, 3rd edition.

[Haerder] Haerder & Reuter ”Principles of
Transaction-Oriented Database Recovery.”
Computing Surveys 15(4) p 287-317 (1983)

[Lamb] Lamb, et al., The ObjectStore System.
CACM 34(10) (1991) p. 50-63

[Lehman] Lehman & Yao, Efficient Locking for
Concurrent Operations in B-trees. TODS 6(4)
(1981) p. 650-670

[Litwin] Litwin, W., Linear Hashing: A New Tool
for File and Table Addressing. Proc. 6th VLDB,
Montreal, Canada, (Oct. 1980) p. 212-223

[Mohan] Mohan, et al., ARIES: A Transaction
Recovery Method Supporting Fine-Granularity
Locking and Partial Rollbacks Using Write-
Ahead Logging. TODS 17(1) (1992) p. 94-162

[Mohan86] Mohan, Lindsay & Obermarck, Trans-
action Management in the R* Distributed
Database Management System TODS 11(4)
(1986) p. 378-396

[Mohan92] Mohan, Levine. ARIES/IM: an effi-
cient and high concurrency index management
method using write-ahead logging International
Converence on Management of Data, SIGMOD
(1992) p. 371-380

[MySQL] MySQL Documentation,
http://dev.mysql.com/doc

[Reiser] Reiser, Hans T. ReiserFS 4
http://www.namesys.com/v4/v4.html
(2004)

[Seltzer] M. Seltzer, M. Olsen. LIBTP: Portable,
Modular Transactions for UNIX. Proceedings
of the 1992 Winter Usenix (1992)

[Satyanarayanan] Satyanarayanan, M., Mashburn,
H. H., Kumar, P., Steere, D. C., AND Kistler,
J. J. Lightweight Recoverable Virtual Memory.
ACM Transactions on Computer Systems 12, 1
(Februrary 1994) p. 33-57. Corrigendum: May
1994, Vol. 12, No. 2, pp. 165-172.

14

[Stonebraker] Stonebraker. Inclusion of New Types
in Relational Data Base ICDE (1986) p. 262-
269

15

