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An increasing range of applications require robust
support for atomic, durable and concurrent transactions.
Databases provide the default solution, but force appli-
cations to interact via SQL and to forfeit control over
data layout and access mechanisms. We argue there is a
gap between DBMSs and file systems that limits design-
ers of data-oriented applications.

Stasys is a storage framework that incorporates ideas
from traditional write-ahead-logging storage algorithms
and file systems. It provides applications with flexible
control over data structures, data layout, performance
and robustness properties. Stasys enables the develop-
ment of unforeseen variants on transactional storage by
generalizing write-ahead-logging algorithms. Our par-
tial implementation of these ideas already provides spe-
cialized (and cleaner) semantics to applications.

We evaluate the performance of a traditional trans-
actional storage system based on Stasys, and show that
it performs favorably relative to existing systems. We
present examples that make use of custom access meth-
ods, modified buffer manager semantics, direct log file
manipulation, and LSN-free pages. These examples fa-
cilitate sophisticated performance optimizations such as
zero-copy I/O. These extensions are composable, easy to
implement and significantly improve performance.

1 Introduction

As our reliance on computing infrastructure increases,
a wider range of applications require robust data man-
agement. Traditionally, data management has been the
province of database management systems (DBMSs),
which are well-suited to enterprise applications, but
lead to poor support for systems such as web services,
search engines, version systems, work-flow applications,
bioinformatics, grid computing and scientific computing.
These applications have complex transactional storage
requirements but do not fit well onto SQL or the mono-
lithic approach of current databases.

Simply providing access to a database system’s inter-
nal storage module is an improvement. However, many
of these applications require special transactional prop-
erties that general purpose transactional storage systems
do not provide. In fact, DBMSs are often not used for
these systems, which instead implement custom, ad-hoc
data management tools on top of file systems.

A typical example of this mismatch is in the support
for persistent objects. In a typical usage, an array of ob-
jects is made persistent by mapping each object to a row
in a table (or sometimes multiple tables) [14] and then
issuing queries to keep the objects and rows consistent.
An update must confirm it has the current version, mod-
ify the object, write out a serialized version using the
SQL update command and commit. Also, for efficiency,
most systems must buffer two copies of the application’s
working set in memory. This is an awkward and slow
mechanism.

Bioinformatics systems perform complex scientific
computations over large, semi-structured databases with
rapidly evolving schemas. Versioning and lineage track-
ing are also key concerns. Relational databases support
none of these requirements well. Instead, office suites,
ad-hoc text-based formats and Perl scripts are used for
data management [25] (with mixed success [27]).

This paper presents Stasys, a library that provides
transactional storage at a level of abstraction as close to
the hardware as possible. The library can support spe-
cial purpose, transactional storage interfaces in addition
to ACID database-style interfaces to abstract data mod-
els. Stasys incorporates techniques from databases (e.g.
write-ahead-logging) and systems (e.g. zero-copy tech-
niques). Our goal is to combine the flexibility and lay-
ering of low-level abstractions typical for systems work
with the complete semantics that exemplify the database
field.

By flexible we mean that Stasys can implement a wide
range of transactional data structures, that it can support
a variety of policies for locking, commit, clusters and
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buffer management. Also, it is extensible for new core
operations and new data structures. It is this flexibility
that allows the support of a wide range of systems.

By complete we mean full redo/undo logging that sup-
ports both no force, which provides durability with only
log writes, and steal, which allows dirty pages to be writ-
ten out prematurely to reduce memory pressure. By com-
plete, we also mean support for media recovery, which
is the ability to roll forward from an archived copy, and
support for error-handling, clusters, and multithreading.
These requirements are difficult to meet and form the rai-
son d’être for Stasys: the framework delivers these prop-
erties as reusable building blocks for systems that imple-
ment complete transactions.

Through examples and their good performance, we
show how Stasys supports a wide range of uses that fall
in the gap between database and filesystem technologies,
including persistent objects, graph or XML based appli-
cations, and recoverable virtual memory [23].

For example, on an object serialization workload, we
provide up to a 4x speedup over an in-process MySQL
implementation and a 3x speedup over Berkeley DB
while cutting memory usage in half (Section 4.4).

We implemented this extension in 150 lines of C, in-
cluding comments and boilerplate. We did not have this
type of optimization in mind when we wrote Stasys. In
fact, the idea came from a potential user that is not famil-
iar with Stasys.

This paper begins by contrasting Stasys’ approach
with that of conventional database and transactional stor-
age systems. It proceeds to discuss write-ahead-logging,
and describe ways in which Stasys can be customized to
implement many existing (and some new) write-ahead-
logging variants. Implementations of some of these vari-
ants are presented, and benchmarked against popular
real-world systems. We conclude with a survey of the
technologies the Stasys implementation is based upon.

An (early) open-source implementation of the ideas
presented here is available.

2 Stasys is not a Database

Database research has a long history, including the de-
velopment of many technologies that our system builds
upon. This section explains why databases are fun-
damentally inappropriate tools for system developers.
The problems we present here have been the focus of
database systems and research projects for at least 25
years.

2.1 The database abstraction
Database systems are often thought of in terms of
the high-level abstractions they present. For instance,

relational database systems implement the relational
model [10], object oriented databases implement ob-
ject abstractions, XML databases implement hierarchical
datasets, and so on. Before the relational model, naviga-
tional databases implemented pointer- and record-based
data models.

An early survey of database implementations sought
to enumerate the fundamental components used by
database system implementors. This survey was per-
formed due to difficulties in extending database sys-
tems into new application domains. It divided internal
database routines into two broad modules: conceptual
mappings [2] and physical database models [4].

A conceptual mapping might translate a relation into a
set of keyed tuples. A physical model would then trans-
late a set of tuples into an on-disk B-Tree, and provide
support for iterators and range-based query operations.

It is the responsibility of a database implementor to
choose a set of conceptual mappings that implement the
desired higher-level abstraction (such as the relational
model). The physical data model is chosen to efficiently
support the set of mappings that are built on top of it.

A key observation of this paper is that no known phys-
ical data model can support more than a small percentage
of today’s applications.

Instead of attempting to create such a model after
decades of database research has failed to produce one,
we opt to provide a transactional storage model that mim-
ics the primitives provided by modern hardware. This
makes it easy for system designers to implement most of
the data models that the underlying hardware can sup-
port, or to abandon the database approach entirely, and
forgo the use of a structured physical model or abstract
conceptual mappings.

2.2 Extensible transaction systems

This section contains discussion of database systems
with goals similar to ours. Although these projects were
successful in many respects, they fundamentally aimed
to implement a extensible data model, rather than build
transactions from the bottom up. In each case, this limits
the applicability of their implementations.

2.2.1 Extensible databases

Genesis [3], an early database toolkit, was built in terms
of a physical data model and the conceptual mappings
described above. It is designed to allow database imple-
mentors to easily swap out implementations of the vari-
ous components defined by its framework. Like subse-
quent systems (including Stasys), it allows its users to
implement custom operations.
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Subsequent extensible database work builds upon
these foundations. The Exodus [6] database toolkit is
the successor to Genesis. It supports the automatic gen-
eration of query optimizers and execution engines based
upon abstract data type definitions, access methods and
cost models provided by its users.

Although further discussion is beyond the scope of
this paper, object-oriented database systems and rela-
tional databases with support for user-definable abstract
data types (such as in Postgres [26]) were the primary
competitors to extensible database toolkits. Ideas from
all of these systems have been incorporated into the
mechanisms that support user-definable types in current
database systems.

One can characterize the difference between database
toolkits and extensible database servers in terms of early
and late binding. With a database toolkit, new types are
defined when the database server is compiled. In today’s
object-relational database systems, new types are defined
at runtime. Each approach has its advantages. However,
both types of systems aim to extend a high-level data
model with new abstract data types, and thus are quite
limited in the range of new applications they support. In
hindsight, it is not surprising that this kind of extensibil-
ity has had little impact on the range of applications we
listed above.

2.2.2 Berkeley DB

Berkeley DB is a highly successful alternative to con-
ventional databases. At its core, it provides the physi-
cal database (relational storage system) of a conventional
database server. In particular, it provides fully transac-
tional (ACID) operations over B-Trees, hashtables, and
other access methods. It provides flags that let its users
tweak various aspects of the performance of these primi-
tives, and selectively disable the features it provides [24].

With the exception of the benchmark designed to fairly
compare the two systems, none of the Stasys applications
presented in Section 4 are efficiently supported by Berke-
ley DB. This is a result of Berkeley DB’s assumptions
regarding workloads and decisions regarding low level
data representation. Thus, although Berkeley DB could
be built on top of Stasys, Berkeley DB’s data model, and
write-ahead-logging system are too specialized to sup-
port Stasys.

2.2.3 Better databases

The database community is also aware of this gap. A re-
cent survey [9] enumerates problems that plague users of
state-of-the-art database systems, and finds that database
implementations fail to support the needs of modern ap-
plications. Essentially, it argues that modern databases

are too complex to be implemented (or understood) as a
monolithic entity.

It supports this argument with real-world evidence that
suggests database servers are too unpredictable and un-
managable to scale up the size of today’s systems. Simi-
larly, they are a poor fit for small devices. SQL’s declar-
ative interface only complicates the situation.

The study concludes by suggesting the adoption of
RISC database architectures, both as a resource for re-
searchers and as a real-world database system.

RISC databases have many elements in common with
database toolkits. However, they take the database
toolkit idea one step further, and suggest standardizing
the interfaces of the toolkit’s internal components, allow-
ing multiple organizations to compete to improve each
module. The idea is to produce a research platform that
enables specialization and shares the effort required to
build a full database [9].

We agree with the motivations behind RISC databases,
and to build databases from interchangeable modules ex-
ists. In fact, is our hope that our system will mature to
the point where it can support a competitive relational
database. However this is not our primary goal. Instead
of building a modular database, we seek to build a system
that enables a wider range of data management options.

3 Transactional Pages

Section 2 described the ways in which a top-down data
model limits the generality and flexibility of databases.
In this section, we cover the basic bottom-up approach of
Stasys: transactional pages. Although similar to the un-
derlying write-ahead-logging approaches of databases,
particularly ARIES [20], Stasys’ bottom-up approach
yields unexpected flexibility.

Transactional pages provide the properties of trans-
actions, but only allow updates within a single page in
the simplest case. After covering the single-page case,
we explore multi-page transactions, which enable a com-
plete transaction system.

In this model, pages are the in-memory representation
of disk blocks and thus must be the same size. Pages
are a convenient abstraction because the write back of a
page (disk block) is normally atomic, giving us a founda-
tion for larger atomic actions. In practice, disk blocks are
not always atomic, but the disk can detect partial writes
via checksums. Thus, we actually depend only on detec-
tion of non-atomicity, which we treat as media failure.
One nice property of Stasys is that we can roll forward
an individual page from an archive copy to recover from
media failures.

A subtlety of transactional pages is that they techni-
cally only provide the “atomicity” and “durability” of
ACID transactions.1 This is because “isolation” comes
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typically from locking, which is a higher (but compati-
ble) layer. “Consistency” is less well defined but comes
in part from transactional pages (from mutexes to avoid
race conditions), and in part from higher layers (e.g.
unique key requirements). To support these, Stasys dis-
tinguishes between latches and locks. A latch corre-
sponds to an OS mutex, and is held for a short pe-
riod of time. All of Stasys’ default data structures use
latches in a way that avoids deadlock. This allows multi-
threaded code to treat Stasys as a conventional reentrant
data structure library. Applications that want conven-
tional isolation (serializability) can make use of a lock
manager.

3.1 Single-page Transactions

In this section we show how to implement single-page
transactions. This is not at all novel, and is in fact based
on ARIES [20], but it forms important background. We
also gloss over many important and well-known op-
timizations that Stasys exploits, such as group com-
mit.These aspects of recovery algorithms are described
in the literature, and in any good textbook that describes
database implementations. They are not particularly im-
portant to our discussion, so we do not cover them.

The trivial way to achieve single-page transactions is
simply to apply all the updates to the page and then write
it out on commit. The page must be pinned until the
transaction commits to avoid “dirty” data (uncommitted
data on disk), but no logging is required. As disk block
writes are atomic, this ensures that we provide the “A”
and “D” of ACID.

This approach scales poorly to multiple pages since we
must force pages to disk on commit and wait for a (ran-
dom access) synchronous write to complete. By using
a write-ahead log, we can support no force transactions:
we write (sequential) “redo” information to the log on
commit, and then can write the pages later. If we crash,
we can use the log to redo the lost updates during recov-
ery.

For this to work, recovery must be able to decide
which updates to re-apply. This is solved by using a
per-page sequence number called a log sequence num-
ber. Each log entry contains the sequence number, and
each page contains the sequence number of the last ap-
plied update. Thus on recovery, we load a page, look at
its sequence number, and re-apply all later updates. Sim-
ilarly, to restore a page from archive we use the same
process, but with likely many more updates to apply.

We also need to make sure that only the results of com-
mitted transactions still exist after recovery. This is best
done by writing a commit record to the log during the
commit. If the system pins uncommitted dirty pages in
memory, recovery does not need to worry about undoing

any updates. Therefore recovery simply plays back un-
applied redo records from transactions that have commit
records.

However, pinning the pages of active transactions in
memory is problematic. First, a single transaction may
need more pages than can be pinned at one time. Sec-
ond, under concurrent transactions, a given page may
be pinned forever as long as it has at least one active
transaction in progress all the time. To avoid these prob-
lems, transaction systems support steal, which means
that pages can be written back before a transaction com-
mits.

Thus, on recovery a page may contain data that never
committed and the corresponding updates must be rolled
back. To enable this, “undo” log entries for uncommitted
updates must be on disk before the page can be stolen
(written back). On recovery, the LSN on the page reveals
which UNDO entries to apply to roll back the page. We
use the absence of commit records to figure out which
transactions to roll back.

Thus, the single-page transactions of Stasys work as
follows. An operation consists of both a redo and an
undo function, both of which take one argument. An
update is always the redo function applied to the page
(there is no “do” function), and it always ensures that
the redo log entry (with its LSN and argument) reaches
the disk before commit. Similarly, an undo log entry,
with its LSN and argument, always reaches the disk be-
fore a page is stolen. ARIES works essentially the same
way, but hard-codes recommended page formats and in-
dex structures [21].

To manually abort a transaction, Stasys could either
reload the page from disk and roll it forward to reflect
committed transactions (this would imply “no steal”), or
it could roll back the page using the undo entries applied
in reverse LSN order. (It currently does the latter.)

This section very briefly described how a simplified
write-ahead-logging algorithm might work, and glossed
over many details. Like ARIES, Stasys actually im-
plements recovery in three phases: Analysis, Redo and
Undo.

3.2 Multi-page transactions
Of course, in practice, we wish to support transactions
that span more than one page. Given a no-force/steal
single-page transaction, this is relatively easy.

First, we need to ensure that all log entries have a
transaction ID (XID) so that we can tell that updates
to different pages are part of the same transaction (we
need this in the single page case as well). Given single-
page recovery, we can just apply it to all of the pages
touched by a transaction to recover a multi-page trans-
action. This works because steal and no-force already
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imply that pages can be written back early or late (re-
spectively), so there is no need to write a group of pages
back atomically. In fact, we need only ensure that redo
entries for all pages reach the disk before the commit
record (and before commit returns).

3.3 Nested top actions

So far, we have glossed over the behavior of our sys-
tem when concurrent transactions modify the same data
structure. To understand the problems that arise in this
case, consider what would happen if one transaction, A,
rearranged the layout of a data structure. Next, assume a
second transaction, B, modified that structure, and then
A aborted. When A rolls back, its UNDO entries will
undo the rearrangement that it made to the data struc-
ture, without regard to B’s modifications. This is likely
to cause corruption.

Two common solutions to this problem are total iso-
lation and nested top actions. Total isolation simply pre-
vents any transaction from accessing a data structure that
has been modified by another in-progress transaction. An
application can achieve this using its own concurrency
control mechanisms, or by holding a lock on each data
structure until the end of the transaction. Releasing the
lock after the modification, but before the end of the
transaction, increases concurrency. However, it means
that follow-on transactions that use that data may need to
abort if a current transaction aborts (cascading aborts).

Unfortunately, the long locks held by total isolation
cause bottlenecks when applied to key data structures.
Nested top actions are essentially mini-transactions that
can commit even if their containing transaction aborts;
thus follow-on transactions can use the data structure
without fear of cascading aborts.

The key idea is to distinguish between the logical op-
erations of a data structure, such as inserting a key, and
the physical operations such as splitting tree nodes or or
rebalancing a tree. The physical operations do not need
to be undone if the containing logical operation (insert)
aborts.

Because nested top actions are easy to use and do not
lead to deadlock, we wrote a simple Stasys extension that
implements nested top actions. The extension may be
used as follows:

1. Wrap a mutex around each operation. With care, it
may be possible to use finer-grained locks, but it is
rarely necessary.

2. Define a logical UNDO for each operation (rather
than just using a set of page-level UNDO’s). For
example, this is easy for a hashtable: the UNDO for
insert is remove.

3. For mutating operations, (not read-only), add a “be-
gin nested top action” right after the mutex acquisi-
tion, and a “commit nested top action” right before
the mutex is released.

If the transaction that encloses the operation aborts, the
logical undo will compensate for its effects, leaving the
structural changes intact.

We have found that it is easy to protect operations
that make structural changes to data structures with this
recipe. Therefore, we use them throughout our default
data structure implementations, although Stasys does not
preclude the use of more complex schemes that lead to
higher concurrency.

3.4 Blind Writes

As described above, and in all database implementations
of which we are aware, transactional pages use LSNs
on each page. This makes it difficult to map large ob-
jects onto multiple pages, as the LSNs break up the ob-
ject. It is tempting to try to move the LSNs elsewhere,
but then they would not be written atomically with their
page, which defeats their purpose.

LSNs were introduced to prevent recovery from ap-
plying updates more than once. However, by constrain-
ing itself to a special type of idempotent redo and undo
entries,2 Stasys can eliminate the LSN on each page.

Consider purely physical logging operations that over-
write a fixed byte range on the page regardless of the
page’s initial state. We say that such operations perform
“blind writes.” If all operations that modify a page have
this property, then we can remove the LSN field, and
have recovery conservatively assume that it is dealing
with a version of the page that is at least as old as the
one on disk.

To understand why this works, note that the log en-
tries update some subset of the bits on the page. If the
log entries do not update a bit, then its value was correct
before recovery began, so it must be correct after recov-
ery. Otherwise, we know that recovery will update the
bit. Furthermore, after all REDOs, the bit’s value will be
the last value it contained before the crash, so we know
that undo will behave properly.

We call such pages “LSN-free” pages. Although this
technique is novel for databases, it resembles the mecha-
nism used by RVM [23]; Stasys generalizes the concept
and allows it to co-exist with traditional pages. Further-
more, efficient recovery and log truncation require only
minor modifications to our recovery algorithm. In prac-
tice, this is implemented by providing a buffer manager
callback for LSN free pages. The callback computes a
conservative estimate of the page’s LSN whenever the
page is read from disk. For a less conservative estimate,
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Figure 1: The portions of Stasys that directly interact
with new operations.

it suffices to write a page’s LSN to the log shortly after
the page itself is written out; on recovery the log entry is
thus a conservative but close estimate.

Section 4.6 explains how LSN-free pages led us to new
approaches for recoverable virtual memory and for large
object storage. Section 4.4 uses blind writes to efficiently
update records on pages that are manipulated using more
general operations.

3.5 Media recovery
Like ARIES, Stasys can recover lost pages in the page
file by reinitializing the page to zero, and playing back
the entire log. In practice, a system administrator would
periodically back up the page file up, thus enabling log
truncation and shortening recovery time.

3.6 Summary of Transactional Pages
This section provided an extremely brief overview of
transactional pages and write-ahead-logging. Transac-
tional pages are a valuable building block for a wide va-
riety of data management systems, as we show in the
next section. Nested top actions and LSN-free pages en-
able important optimizations. In particular, Stasys allows
general custom operations using LSNs, or custom blind-
write operations without LSNs. This enables transac-
tional manipulation of large, contiguously stored objects.

4 Extensions

This section describes proof-of-concept extensions to
Stasys. Performance figures accompany the extensions
that we have implemented. We discuss existing ap-
proaches to the systems presented here when appropri-
ate.

4.1 Adding log operations
Stasys allows application developers to easily add new
operations to the system. Many of the customizations de-

scribed below can be implemented using custom log op-
erations. In this section, we describe how to implement
an “ARIES style” concurrent, steal/no force operation us-
ing full physiological logging and per-page LSN’s. Such
operations are typical of high-performance commercial
database engines.

As we mentioned above, Stasys operations must im-
plement a number of functions. Figure 1 describes the
environment that schedules and invokes these functions.
The first step in implementing a new set of log interfaces
is to decide upon an interface that these log interfaces
will export to callers outside of Stasys.

The externally visible interface is implemented by
wrapper functions and read-only access methods. The
wrapper function modifies the state of the page file by
packaging the information that will be needed for undo
and redo into a data format of its choosing. This data
structure is passed into Tupdate(). Tupdate() copies the
data to the log, and then passes the data into the opera-
tion’s REDO function.

REDO modifies the page file directly (or takes some
other action). It is essentially an interpreter for the log
entries it is associated with. UNDO works analogously,
but is invoked when an operation must be undone (usu-
ally due to an aborted transaction, or during recovery).

This pattern applies in many cases. In order to imple-
ment a “typical” operation, the operations implementa-
tion must obey a few more invariants:

• Pages should only be updated inside REDO and
UNDO functions.

• Page updates atomically update the page’s LSN by
pinning the page.

• If the data seen by a wrapper function must match
data seen during REDO, then the wrapper should
use a latch to protect against concurrent attempts to
update the sensitive data (and against concurrent at-
tempts to allocate log entries that update the data).

• Nested top actions (and logical undo), or “big
locks” (total isolation but lower concurrency)
should be used to implement multi-page updates.
(Section 3.3)

4.2 Experimental setup
We chose Berkeley DB in the following experiments be-
cause, among commonly used systems, it provides trans-
actional storage primitives that are most similar to Sta-
sys. Also, Berkeley DB is designed to provide high per-
formance and high concurrency. For all tests, the two li-
braries provide the same transactional semantics, unless
explicitly noted.
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All benchmarks were run on an Intel Xeon 2.8 GHz
with 1GB of RAM and a 10K RPM SCSI drive formatted
using with ReiserFS [22].3 All results correspond to the
mean of multiple runs with a 95% confidence interval
with a half-width of 5%.

We used Berkeley DB 4.2.52 as it existed in De-
bian Linux’s testing branch during March of 2005, with
the flags DB TXN SYNC, and DB THREAD enabled.
These flags were chosen to match Berkeley DB’s config-
uration to Stasys’ as closely as possible. In cases where
Berkeley DB implements a feature that is not provided by
Stasys, we only enable the feature if it improves Berkeley
DB’s performance.

Optimizations to Berkeley DB that we performed in-
cluded disabling the lock manager, though we still use
“Free Threaded” handles for all tests. This yielded a
significant increase in performance because it removed
the possibility of transaction deadlock, abort, and repeti-
tion. However, disabling the lock manager caused highly
concurrent Berkeley DB benchmarks to become unsta-
ble, suggesting either a bug or misuse of the feature.

With the lock manager enabled, Berkeley DB’s per-
formance in the multithreaded test in Section 4.3 strictly
decreased with increased concurrency. (The other tests
were single-threaded.) We also increased Berkeley DB’s
buffer cache and log buffer sizes to match Stasys’ default
sizes.

We expended a considerable effort tuning Berkeley
DB, and our efforts significantly improved Berkeley
DB’s performance on these tests. Although further tun-
ing by Berkeley DB experts would probably improve
Berkeley DB’s numbers, we think that we have produced
a reasonably fair comparison. The results presented here
have been reproduced on multiple machines and file sys-
tems.

4.3 Linear hash table

Although the beginning of this paper describes the lim-
itations of physical database models and relational stor-
age systems in great detail, these systems are the basis of
most common transactional storage routines. Therefore,
we implement a key-based access method in this section.
We argue that obtaining reasonable performance in such
a system under Stasys is straightforward. We then com-
pare our simple, straightforward implementation to our
hand-tuned version and Berkeley DB’s implementation.

The simple hash table uses nested top actions to atom-
ically update its internal structure. It uses a linear hash
function [16], allowing it to incrementally grow its buffer
list. It is based on a number of modular subcomponents.
Notably, its bucket list is a growable array of fixed length
entries (a linkset, in the terms of the physical database
model) and the user’s choice of two different linked list
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implementations.
The hand-tuned hashtable also uses a linear hash func-

tion. However, it is monolithic and uses carefully ordered
writes to reduce runtime overheads such as log band-
width. Berkeley DB’s hashtable is a popular, commonly
deployed implementation, and serves as a baseline for
our experiments.

Both of our hashtables outperform Berkeley DB on
a workload that bulk loads the tables by repeatedly in-
serting (key, value) pairs. The comparison between the
Stasys implementations is more enlightening. The per-
formance of the simple hash table shows that straight-
forward data structure implementations composed from
simpler structures can perform as well as the implemen-
tations included in existing monolithic systems. The
hand-tuned implementation shows that Stasys allows ap-
plication developers to optimize key primitives.

Figure 3 describes the performance of the two sys-
tems under highly concurrent workloads. For this test,
we used the simple (unoptimized) hash table, since we
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are interested in the performance of a clean, modular
data structure that a typical system implementor might
produce, not the performance of our own highly tuned,
monolithic implementations.

Both Berkeley DB and Stasys can service concurrent
calls to commit with a single synchronous I/O.4 Stasys
scaled quite well, delivering over 6000 transactions per
second,5 and provided roughly double Berkeley DB’s
throughput (up to 50 threads). We do not report the data
here, but we implemented a simple load generator that
makes use of a fixed pool of threads with a fixed think
time. We found that the latency of Berkeley DB and Sta-
sys were similar, showing that Stasys is not simply trad-
ing latency for throughput during the concurrency bench-
mark.

4.4 Object persistence
Numerous schemes are used for object serialization.
Support for two different styles of object serialization
have been implemented in Stasys. We could have just as
easily implemented a persistence mechanism for a stati-
cally typed functional programming language, a dynam-
ically typed scripting language, or a particular applica-
tion, such as an email server. In each case, Stasys’ lack
of a hard-coded data model would allow us to choose the
representation and transactional semantics that make the
most sense for the system at hand.

The first object persistence mechanism, pobj, provides
transactional updates to objects in Titanium, a Java vari-
ant. It transparently loads and persists entire graphs of
objects, but will not be discussed in further detail.

The second variant was built on top of a C++ object
serialization library, Oasys. Oasys makes use of plug-
gable storage modules that implement persistent storage,
and includes plugins for Berkeley DB and MySQL.

This section will describe how the Stasys Oasys plugin
reduces amount of data written to log, while using half as
much system memory as the other two systems.

We present three variants of the Stasys plugin here.
The first treats Stasys like Berkeley DB. The second,
“update/flush” customizes the behavior of the buffer
manager. Instead of maintaining an up-to-date version of
each object in the buffer manager or page file, it allows
the buffer manager’s view of live application objects to
become stale. This is safe since the system is always
able to reconstruct the appropriate page entry from the
live copy of the object.

By allowing the buffer manager to contain stale data,
we reduce the number of times the Stasys Oasys plu-
gin must update serialized objects in the buffer manager.
This allows us to drastically decrease the size of the page
file. In turn this allows us to increase the size of the ap-
plication’s cache of live objects.

We implemented the Stasys buffer-pool optimization
by adding two new operations, update(), which only up-
dates the log, and flush(), which updates the page file.

The reason it would be difficult to do this with Berke-
ley DB is that we still need to generate log entries as the
object is being updated. Otherwise, commit would not be
durable, unless we queued up log entries, and wrote them
all before committing. This would cause Berkeley DB to
write data back to the page file, increasing the working
set of the program, and increasing disk activity.

Furthermore, objects may be written to disk in an order
that differs from the order in which they were updated,
violating one of the write-ahead-logging invariants. One
way to deal with this is to maintain multiple LSN’s per
page. This means we would need to register a callback
with the recovery routine to process the LSN’s (a simi-
lar callback will be needed in Section 4.6), and extend
Stasys’ page format to contain per-record LSN’s. Also,
we must prevent Stasys’ storage allocation routine from
overwriting the per-object LSN’s of deleted objects that
may still be addressed during abort or recovery.

Alternatively, we could arrange for the object pool to
cooperate further with the buffer pool by atomically up-
dating the buffer manager’s copy of all objects that share
a given page, removing the need for multiple LSN’s per
page, and simplifying storage allocation.

However, the simplest solution, and the one we take
here, is based on the observation that updates (not al-
locations or deletions) of fixed length objects are blind
writes. This allows us to do away with per-object LSN’s
entirely. Allocation and deletion can then be handled as
updates to normal LSN containing pages. At recovery
time, object updates are executed based on the existence
of the object on the page and a conservative estimate of
its LSN. (If the page doesn’t contain the object during
REDO then it must have been written back to disk after
the object was deleted. Therefore, we do not need to ap-
ply the REDO.) This means that the system can “forget”
about objects that were freed by committed transactions,
simplifying space reuse tremendously.

The third Stasys plugin, “delta” incorporates the buffer
manager optimizations. However, it only writes the
changed portions of objects to the log. Because of Sta-
sys’ support for custom log entry formats, this optimiza-
tion is straightforward.

Oasys does not export transactions to its callers. In-
stead, it is designed to be used in systems that stream
objects over an unreliable network connection. Each ob-
ject update corresponds to an independent message, so
there is never any reason to roll back an applied object
update. On the other hand, Oasys does support a flush
method, which guarantees the durability of updates after
it returns. In order to match these semantics as closely as
possible, Stasys’ update/flush and delta optimizations do
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Figure 4: The effect of Stasys object serialization optimizations under low and high memory pressure.

not write any undo information to the log.
These “transactions” are still durable after commit, as

commit forces the log to disk. As far as we can tell,
MySQL and Berkeley DB do not support this optimiza-
tion in a straightforward fashion. (“Auto-commit” comes
close, but does not quite provide the correct durability se-
mantics.)

The operations required for these two optimizations
required 150 lines of C code, including whitespace, com-
ments and boilerplate function registrations.6 Although
the reasoning required to ensure the correctness of this
code is complex, the simplicity of the implementation is
encouraging.

In this experiment, Berkeley DB was configured as de-
scribed above. We ran MySQL using InnoDB for the ta-
ble engine. For this benchmark, it is the fastest engine
that provides similar durability to Stasys. We linked the
benchmark’s executable to the libmysqld daemon library,
bypassing the RPC layer. In experiments that used the
RPC layer, test completion times were orders of magni-
tude slower.

Figure 4 presents the performance of the three Sta-
sys optimizations, and the Oasys plugins implemented
on top of other systems. As we can see, Stasys performs
better than the baseline systems, which is not surprising,
since it is not providing the A property of ACID transac-
tions. (Although it is applying each individual operation
atomically.)

In non-memory bound systems, the optimizations
nearly double Stasys’ performance by reducing the CPU
overhead of object serialization and the number of log
entries written to disk. In the memory bound test, we see
that update/flush indeed improves memory utilization.

4.5 Manipulation of logical log entries

Database optimizers operate over relational algebra ex-
pressions that correspond to logical operations over
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Figure 5: Because pages are independent, we can
reorder requests among different pages. Using a
log demultiplexer, we partition requests into inde-
pendent queues, which can be handled in any or-
der, improving locality and merging opportunities.

streams of data. Stasys does not provide query lan-
guages, relational algebra, or other such query process-
ing primitives.

However, it does include an extensible logging infras-
tructure. Furthermore, many operations that make use of
physiological logging implicitly implement UNDO (and
often REDO) functions that interpret logical requests.

Logical operations often have some nice properties
that this section will exploit. Because they can be in-
voked at arbitrary times in the future, they tend to be in-
dependent of the database’s physical state. Often, they
correspond to operations that programmers understand.

Because of this, application developers can easily de-
termine whether logical operations may be reordered,
transformed, or even dropped from the stream of requests
that Stasys is processing.

If requests can be partitioned in a natural way, load
balancing can be implemented by splitting requests
across many nodes. Similarly, a node can easily service
streams of requests from multiple nodes by combining
them into a single log, and processing the log using op-
eration implementations. For example, this type of opti-
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mization is used by RVM’s log-merging operations [23].
Furthermore, application-specific procedures that are

analogous to standard relational algebra methods (join,
project and select) could be used to efficiently transform
the data while it is still layed out sequentially in non-
transactional memory.

Although Stasys has rudimentary support for a two-
phase commit based cluster hash table, we have not
yet implemented networking primitives for logical logs.
Therefore, we implemented a single node log-reordering
scheme that increases request locality during the traver-
sal of a random graph. The graph traversal system takes
a sequence of (read) requests, and partitions them us-
ing some function. It then processes each partition in
isolation from the others. We considered two partition-
ing functions. The first divides the page file into equally
sized contiguous regions, which increases locality. The
second takes the hash of the page’s offset in the file,
which enables load balancing.

Our benchmarks partition requests by location. We
chose the position size so that each partition can fit in
Stasys’ buffer pool.

We ran two experiments. Both stored a graph of fixed
size objects in the growable array implementation that is
used as our linear hashtable’s bucket list. The first ex-
periment (Figure 6) is loosely based on the oo7 database
benchmark. [7]. We hard-code the out-degree of each
node, and use a directed graph. OO7 constructs graphs
by first connecting nodes together into a ring. It then
randomly adds edges between the nodes until the desired
out-degree is obtained. This structure ensures graph con-
nectivity. If the nodes are laid out in ring order on disk
then it also ensures that one edge from each node has
good locality while the others generally have poor local-
ity.

The second experiment explicitly measures the effect
of graph locality on our optimization (Figure 7). It ex-
tends the idea of a hot set to graph generation. Each
node has a distinct hot set that includes the 10% of the
nodes that are closest to it in ring order. The remaining
nodes are in the cold set. We use random edges instead
of ring edges for this test. This does not ensure graph
connectivity, but we used the same random seeds for the
two systems.

When the graph has good locality, a normal depth first
search traversal and the prioritized traversal both perform
well. The prioritized traversal is slightly slower due to
the overhead of extra log manipulation. As locality de-
creases, the partitioned traversal algorithm’s outperforms
the naive traversal.

4.6 LSN-Free pages

In Section 3.4, we describe how operations can avoid
recording LSN’s on the pages they modify. Essentially,
operations that make use of purely physical logging
need not heed page boundaries, as physiological opera-
tions must. Recall that purely physical logging interacts
poorly with concurrent transactions that modify the same
data structures or pages, so LSN-Free pages are not ap-
plicable in all situations.

Consider the retrieval of a large (page spanning) object
stored on pages that contain LSN’s. The object’s data
will not be contiguous. Therefore, in order to retrieve
the object, the transaction system must load the pages
contained on disk into memory, and perform a byte-by-
byte copy of the portions of the pages that contain the
large object’s data into a second buffer.

Compare this approach to a modern filesystem, which
allows applications to perform a DMA copy of the data
into memory, avoiding the expensive byte-by-byte copy
of the data, and allowing the CPU to be used for more
productive purposes. Furthermore, modern operating
systems allow network services to use DMA and network
adaptor hardware to read data from disk, and send it over
a network socket without passing it through the CPU.
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Again, this frees the CPU, allowing it to perform other
tasks.

We believe that LSN free pages will allow reads to
make use of such optimizations in a straightforward fash-
ion. Zero copy writes are more challenging, but could be
performed by performing a DMA write to a portion of
the log file. However, doing this complicates log trunca-
tion, and does not address the problem of updating the
page file. We suspect that contributions from the log
based filesystem [11] literature can address these prob-
lems in a straightforward fashion. In particular, we imag-
ine storing portions of the log (the portion that stores the
blob) in the page file, or other addressable storage. In the
worst case, the blob would have to be relocated in order
to defragment the storage. Assuming the blob was relo-
cated once, this would amount to a total of three, mostly
sequential disk operations. (Two writes and one read.)
However, in the best case, the blob would only need to
written once. In contrast, a conventional atomic blob im-
plementation would always need to write the blob twice.

Alternatively, we could use DMA to overwrite the
blob in the page file in a non-atomic fashion, providing
filesystem style semantics. (Existing database servers of-
ten provide this mode based on the observation that many
blobs are static data that does not really need to be up-
dated transactionally. [19]) Of course, Stasys could also
support other approaches to blob storage, such as B-Tree
layouts that allow arbitrary insertions and deletions in the
middle of objects [8].

Finally, RVM, recoverable virtual memory, made use
of LSN-free pages so that it could use mmap() to map
portions of the page file into application memory[23].
However, without support for logical log entries and
nested top actions, it would be difficult to implement a
concurrent, durable data structure using RVM. We plan
to add RVM style transactional memory to Stasys in a
way that is compatible with fully concurrent collections
such as hash tables and tree structures.

5 Related Work

This paper has described a number of custom transac-
tional storage extensions, and explained why can Stasys
support them. This section will describe existing ideas in
the literature that we would like to incorporate into Sta-
sys. An overview of database systems that have goals
similar to our own is in Section 2.2.

Different large object storage systems provide differ-
ent API’s. Some allow arbitrary insertion and dele-
tion of bytes [8] or pages [19] within the object, while
typical filesystems provide append-only storage alloca-
tion [18]. Record-oriented file systems are an older, but
still-used [13] alternative. Each of these API’s addresses
different workloads.

While most filesystems attempt to lay out data in log-
ically sequential order, write-optimized filesystems lay
files out in the order they were written [11]. Schemes
to improve locality between small objects exist as well.
Relational databases allow users to specify the order in
which tuples will be layed out, and often leave portions
of pages unallocated to reduce fragmentation as new
records are allocated.

Memory allocation routines also address this problem.
For example, the Hoard memory allocator is a highly
concurrent version of malloc that makes use of thread
context to allocate memory in a way that favors cache
locality [5].

Finally, many systems take a hybrid approach to allo-
cation. Examples include databases with blob support,
and a number of filesystems [22, 18].

We are interested in allowing applications to store
records in the transaction log. Assuming log fragmen-
tation is kept to a minimum, this is particularly attrac-
tive on a single disk system. We plan to use ideas from
LFS [11] and POSTGRES [26] to implement this.

Starburst [17] provides a flexible approach to index
management, and database trigger support, as well as
hints for small object layout.

The Boxwood system provides a networked, fault-
tolerant transactional B-Tree and “Chunk Manager.” We
believe that Stasys is an interesting complement to such
a system, especially given Stasys’ focus on intelligence
and optimizations within a single node, and Boxwood’s
focus on multiple node systems. In particular, it would
be interesting to explore extensions to the Boxwood ap-
proach that make use of Stasys’ customizable seman-
tics (Section 4.1), and fully logical logging mechanism.
(Section 4.5)

6 Future Work

Complexity problems may begin to arise as we attempt to
implement more extensions to Stasys. However, Stasys’
implementation is still fairly simple:

• The core of Stasys is roughly 3000 lines of C code,
and implements the buffer manager, IO, recovery,
and other systems

• Custom operations account for another 3000 lines
of code

• Page layouts and logging implementations account
for 1600 lines of code.

The complexity of the core of Stasys is our primary
concern, as it contains the hard-coded policies and as-
sumptions. Over time, the core has shrunk as functional-
ity has been moved into extensions. We expect this trend
to continue as development progresses.
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A resource manager is a common pattern in system
software design, and manages dependencies and order-
ing constraints between sets of components. Over time,
we hope to shrink Stasys’ core to the point where it is
simply a resource manager and a set of implementations
of a few unavoidable algorithms related to write-ahead-
logging. For instance, we suspect that support for ap-
propriate callbacks will allow us to hard-code a generic
recovery algorithm into the system. Similarly, any code
that manages book-keeping information, such as LSN’s
may be general enough to be hard-coded.

Of course, we also plan to provide Stasys’ current
functionality, including the algorithms mentioned above
as modular, well-tested extensions. Highly specialized
Stasys extensions, and other systems would be built
by reusing Stasys’ default extensions and implementing
new ones.

7 Conclusion

We have presented Stasys, a transactional storage library
that addresses the needs of system developers. Stasys
provides more opportunities for specialization than ex-
isting systems. The effort required to extend Stasys to
support a new type of system is reasonable, especially
when compared to currently common practices, such as
working around limitations of existing systems, break-
ing guarantees regarding data integrity, or reimplement-
ing the entire storage infrastructure from scratch.

We have demonstrated that Stasys provides fully con-
current, high performance transactions, and explained
how it can support a number of systems that currently
make use of suboptimal or ad-hoc storage approaches.
Finally, we have explained how Stasys can be extended
in the future to support a larger range of systems.
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Notes
1The “A” in ACID really means atomic persistence of data, rather

than atomic in-memory updates, as the term is normally used in sys-
tems work; the latter is covered by “C” and “I”.

2Idempotency does not guarantee that f(g(x)) = f(g(f(g(x)))).
Therefore, idempotency does not guarantee that it is safe to assume that
a page is older than it is.

3We found that the relative performance of Berkeley DB and Stasys
under single threaded testing is sensitive to filesystem choice, and we
plan to investigate the reasons why the performance of Stasys under
ext3 is degraded. However, the results relating to the Stasys optimiza-
tions are consistent across filesystem types.

4The multi-threaded benchmarks presented here were performed
using an ext3 filesystem, as high concurrency caused both Berkeley DB
and Stasys to behave unpredictably when ReiserFS was used. However,
Stasys’ multi-threaded throughput was significantly better that Berke-
ley DB’s under both filesystems.

5The concurrency test was run without lock managers, and the
transactions obeyed the A, C, and D properties. Since each transaction
performed exactly one hashtable write and no reads, they also obeyed I
(isolation) in a trivial sense.

6These figures do not include the simple LSN free object logic re-
quired for recovery, as Stasys does not yet support LSN free operations.
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