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An increasing range of applications requires robust
support for atomic, durable and concurrent transactions.
Databases provide the default solution, but force appli-
cations to interact via SQL and to forfeit control over
data layout and access mechanisms. We argue there is a
gap between DBMSs and file systems that limits design-
ers of data-oriented applications.

Stasis is a storage framework that incorporates ideas
from traditional write-ahead logging algorithms and file
systems. It provides applications with flexible control
over data structures, data layout, robustness, and per-
formance. Stasis enables the development of unforeseen
variants on transactional storage by generalizing write-
ahead logging algorithms. Our partial implementation
of these ideas already provides specialized (and cleaner)
semantics to applications.

We evaluate the performance of a traditional trans-
actional storage system based on Stasis, and show that
it performs favorably relative to existing systems. We
present examples that make use of custom access meth-
ods, modified buffer manager semantics, direct log file
manipulation, and LSN-free pages. These examples fa-
cilitate sophisticated performance optimizations such as
zero-copy I/O. These extensions are composable, easy to
implement and significantly improve performance.

1 Introduction

As our reliance on computing infrastructure increases,
a wider range of applications requires robust data man-
agement. Traditionally, data management has been the
province of database management systems (DBMSs),
which are well-suited to enterprise applications, but lead
to poor support for systems such as web services, search
engines, version systems, work-flow applications, bioin-
formatics, and scientific computing. These applications
have complex transactional storage requirements, but do
not fit well onto SQL or the monolithic approach of cur-
rent databases. In fact, when performance matters these

applications often avoid DBMSs and instead implement
ad-hoc data management solutions [15, 17].

An example of this mismatch occurs with DBMS sup-
port for persistent objects. In a typical usage, an array
of objects is made persistent by mapping each object to
a row in a table (or sometimes multiple tables) [22] and
then issuing queries to keep the objects and rows consis-
tent. Also, for efficiency, most systems must buffer two
copies of the application’s working set in memory. This
is an awkward and inefficient mechanism, and hence we
claim that DBMSs do not support this task well.

Search engines and data warehouses in theory can use
the relational model, but in practice need a very different
implementation. Object-oriented, XML, and streaming
databases all have distinct conceptual models and under-
lying implementations.

Scientific computing, bioinformatics and document
management systems tend to preserve old versions and
track provenance. Thus they each have a distinct con-
ceptual model. Bioinformatics systems perform compu-
tations over large, semi-structured databases. Relational
databases support none of these requirements well. In-
stead, office suites, ad-hoc text-based formats and Perl
scripts are used for data management [48], with mixed
success [57].

Our hypothesis is that 1) each of these areas has
a distinct top-down conceptual model (which may not
map well to the relational model); and 2) there exists a
bottom-up layered framework that can better support all
of these models and others.

To explore this hypothesis, we present Stasis, a library
that provides transactional storage at a level of abstrac-
tion as close to the hardware as possible. It can support
special-purpose transactional storage models in addition
to ACID database-style interfaces to abstract data mod-
els. Stasis incorporates techniques from both databases
(e.g. write-ahead logging) and operating systems (e.g.
zero-copy techniques).

Our goal is to combine the flexibility and layering of



low-level abstractions typical for systems work with the
complete semantics that exemplify the database field. By
flexible we mean that Stasis can support a wide range
of transactional data structures efficiently, and that it can
support a variety of policies for locking, commit, clus-
ters and buffer management. Also, it is extensible for
new core operations and data structures. This flexibility
allows it to support a wide range of systems and models.

By complete we mean full redo/undo logging that sup-
ports both no force, which provides durability with only
log writes, and steal, which allows dirty pages to be writ-
ten out prematurely to reduce memory pressure. By com-
plete, we also mean support for media recovery, which
is the ability to roll forward from an archived copy, and
support for error-handling, clusters, and multithreading.
These requirements are difficult to meet and form the rai-
son d’être for Stasis: the framework delivers these prop-
erties as reusable building blocks for systems that imple-
ment complete transactions.

Through examples and their good performance, we
show how Stasis efficiently supports a wide range of uses
that fall in the gap between database and file system tech-
nologies, including persistent objects, graph- or XML-
based applications, and recoverable virtual memory [42].

For example, on an object persistence workload, we
provide up to a 4x speedup over an in-process MySQL
implementation and a 3x speedup over Berkeley DB,
while cutting memory usage in half (Section 5.3). We
implemented this extension in 150 lines of C, including
comments and boilerplate. We did not have this type of
optimization in mind when we wrote Stasis, and in fact
the idea came from a user unfamiliar with Stasis.

This paper begins by contrasting Stasis’ approach with
that of conventional database and transactional storage
systems. It proceeds to discuss write-ahead logging, and
describe ways in which Stasis can be customized to im-
plement many existing (and some new) write-ahead log-
ging variants. We present implementations of some of
these variants and benchmark them against popular real-
world systems. We conclude with a survey of related and
future work.

An (early) open-source implementation of the ideas
presented here is available (see Section 10).

2 Stasis is not a Database

Database research has a long history, including the de-
velopment of many of the technologies we exploit. This
section explains why databases are fundamentally inap-
propriate tools for system developers, and covers some of
the previous responses of the systems community. These
problems have been the focus of database and systems
researchers for at least 25 years.

2.1 The Database View

The database community approaches the limited range of
DBMSs by either creating new top-down models, such
as object-oriented, XML or streaming databases [11, 28,
33], or by extending the relational model [14] along some
axis, such as new data types [50]. We cover these at-
tempts in more detail in Section 6.

An early survey of database implementations sought
to enumerate the components used by database system
implementors [4, 6]. This survey was performed due to
difficulties in extending database systems into new appli-
cation domains. It divided internal database routines into
two broad modules: conceptual mappings and physical
database models. It is the responsibility of a database
implementor to choose a set of conceptual mappings that
implement the desired higher-level abstraction (such as
the relational model). The physical data model is chosen
to support efficiently the set of mappings that are built on
top of it.

A conceptual mapping based on the relational model
might translate a relation into a set of keyed tuples. If the
database were going to be used for short, write-intensive
and high-concurrency transactions (e.g. banking), the
physical model would probably translate sets of tuples
into an on-disk B-tree. In contrast, if the database needed
to support long-running, read-only aggregation queries
over high-dimensional data (e.g. data warehousing), a
physical model that stores the data in a sparse array for-
mat would be more appropriate [12, 58]. Although both
kinds of databases are based upon the relational model
they make use of different physical models in order to
serve different classes of applications efficiently.

A basic claim of this paper is that no known phys-
ical data model can efficiently support the wide range
of conceptual mappings that are in use today. In addi-
tion to sets, objects, and XML, such a model would need
to cover search engines, version-control systems, work-
flow applications, and scientific computing, as examples.
Similarly, a recent database paper argues that the “one
size fits all” approach of DBMSs no longer works [51].

Instead of attempting to create such a unified model
after decades of database research has failed to produce
one, we opt to provide a bottom-up transactional toolbox
that supports many models efficiently. This makes it easy
for system designers to implement most data models that
the underlying hardware can support, or to abandon the
database approach entirely, and forgo a top-down model.

2.2 The Systems View

The systems community has also worked on this mis-
match, which has led to many interesting projects. Ex-
amples include alternative durability models such as



QuickSilver [43], RVM [42], persistent objects [29], and
persistent data structures [20, 32]. We expect that Stasis
would simplify the implementation of most if not all of
these systems. Section 6 covers these in more detail.

In some sense, our hypothesis is trivially true in that
there exists a bottom-up framework called the “operating
system” that can implement all of the models. A famous
database paper argues that it does so poorly [49]. Our
task is really to simplify the implementation of trans-
actional systems through more powerful primitives that
enable concurrent transactions with a variety of perfor-
mance/robustness tradeoffs.

The closest system to ours in spirit is Berkeley DB,
a highly successful lightweight alternative to conven-
tional databases [45]. At its core, it provides the phys-
ical database model (relational storage system [3]) of a
conventional database server. In particular, it provides
transactional (ACID) operations on B-trees, hash tables,
and other access methods. It provides flags that let its
users tweak aspects of the performance of these primi-
tives, and selectively disable the features it provides.

With the exception of the benchmark designed to com-
pare the two systems, none of the Stasis applications pre-
sented in Section 5 are efficiently supported by Berke-
ley DB. This is a result of Berkeley DB’s assumptions
regarding workloads and low-level data representations.
Thus, although Berkeley DB could be built on top of Sta-
sis, Berkeley DB’s data model and write-ahead logging
system are too specialized to support Stasis.

3 Transactional Pages

This section describes how Stasis implements transac-
tions that are similar to those provided by relational
database systems, which are based on transactional
pages. The algorithms described in this section are not
novel, and are in fact based on ARIES [35]. However,
they form the starting point for extensions and novel vari-
ants, which we cover in the next two sections.

As with other systems, Stasis’ transactions have a
multi-level structure. Multi-layered transactions were
originally proposed as a concurrency control strategy
for database servers that support high-level, application-
specific extensions [55]. In Stasis, the lower level of an
operation provides atomic updates to regions of the disk.
These updates do not have to deal with concurrency, but
must update the page file atomically, even if the system
crashes.

Higher-level operations span multiple pages by atomi-
cally applying sets of operations to the page file, record-
ing their actions in the log and coping with concurrency
issues. The loose coupling of these layers lets Stasis’
users compose and reuse existing operations.

3.1 Atomic Disk Operations

Transactional storage algorithms work by atomically up-
dating portions of durable storage. These small atomic
updates bootstrap transactions that are too large to be
applied atomically. In particular, write-ahead logging
(and therefore Stasis) relies on the ability to write en-
tries to the log file atomically. Transaction systems that
store sequence numbers on pages to track versions rely
on atomic page writes in addition to atomic log writes.

In practice, a write to a disk page is not atomic (in
modern drives). Two common failure modes exist. The
first occurs when the disk writes a partial sector during a
crash. In this case, the drive maintains an internal check-
sum, detects a mismatch, and reports it when the page is
read. The second case occurs because pages span multi-
ple sectors. Drives may reorder writes on sector bound-
aries, causing an arbitrary subset of a page’s sectors to
be updated during a crash. Torn page detection can be
used to detect this phenomenon, typically by requiring a
checksum for the whole page.

Torn and corrupted pages may be recovered by using
media recovery to restore the page from backup. Media
recovery works by reloading the page from an archive
copy, and bringing it up to date by replaying the log.

For simplicity, this section ignores mechanisms that
detect and restore torn pages, and assumes that page
writes are atomic. We relax this restriction in Section 4.

3.2 Non-concurrent Transactions

This section provides the “Atomicity” and “Durability”
properties for a single ACID transaction.1 First we de-
scribe single-page transactions, then multi-page transac-
tions. “Consistency” and “Isolation” are covered with
concurrent transactions in the next section.

The insight behind transactional pages was that atomic
page writes form a good foundation for full transactions.
However, since page writes are no longer atomic, it might
be better to think of these as transactional sectors.

The trivial way to achieve single-page transactions is
to apply all of the updates to the page and then write it
out on commit. The page must be pinned until commit to
prevent write-back of uncommitted data, but no logging
is required.

This approach performs poorly because we force the
page to disk on commit, which leads to a large number
of synchronous non-sequential writes. By writing redo
information to the log before committing (write-ahead
logging), we get no-force transactions and better perfor-
mance, since the synchronous writes to the log are se-
quential. Later, the pages are written out asynchronously,
often as part of a larger sequential write.

After a crash, we have to apply the redo entries to



those pages that were not updated on disk. To decide
which updates to reapply, we use a per-page version
number called the log-sequence number or LSN. Each
update to a page increments the LSN, writes it on the
page, and includes it in the log entry. On recovery, we
load the page, use the LSN to figure out which updates
are missing (those with higher LSNs), and reapply them.

Updates from aborted transactions should not be ap-
plied, so we also need to log commit records; a transac-
tion commits when its commit record correctly reaches
the disk. Recovery starts with an analysis phase that de-
termines all of the outstanding transactions and their fate.
The redo phase then applies the missing updates for com-
mitted transactions.

Pinning pages until commit also hurts performance,
and could even affect correctness if a single transaction
needs to update more pages than can fit in memory. A
related problem is that with concurrency a single page
may be pinned forever as long as it has at least one active
transaction in progress all the time. Systems that sup-
port steal avoid these problems by allowing pages to be
written back early. This implies we may need to undo
updates on the page if the transaction aborts, and thus
before we can write out the page we must write the undo
information to the log.

On recovery, the redo phase applies all updates (even
those from aborted transactions). Then, an undo phase
corrects stolen pages for aborted transactions. Each op-
eration that undo performs is recorded in the log, and
the per-page LSN is updated accordingly. In order to en-
sure progress even with crashes during recovery, special
log records mark which actions have been undone, so
they may be skipped during recovery in the future. We
also use these records, called Compensation Log Records
(CLRs) to avoid undoing actions that we intend to keep
even when transactions abort.

The primary difference between Stasis and ARIES for
basic transactions is that Stasis allows user-defined oper-
ations, while ARIES defines a set of operations that sup-
port relational database systems. An operation consists
of an undo and a redo function. Each time an operation
is invoked, a corresponding log entry is generated. We
describe operations in more detail in Section 3.4.

Given steal/no-force single-page transactions, it is rel-
atively easy to build full transactions. To recover a multi-
page transaction, we simply recover each of the pages
individually. This works because steal/no-force com-
pletely decouples the pages: any page can be written
back early (steal) or late (no-force).

3.3 Concurrent Transactions

Two factors make it more complicated to write opera-
tions that may be used in concurrent transactions. The

first is familiar to anyone that has written multi-threaded
code: Accesses to shared data structures must be pro-
tected by latches (mutexes). The second problem stems
from the fact that abort cannot simply roll back physi-
cal updates. Fortunately, it is straightforward to reduce
this second, transaction-specific problem to the familiar
problem of writing multi-threaded software.

To understand the problems that arise with concurrent
transactions, consider what would happen if one transac-
tion, A, rearranges the layout of a data structure. Next,
another transaction, B, modifies that structure and then A
aborts. When A rolls back, its undo entries will undo the
changes that it made to the data structure, without regard
to B’s modifications. This is likely to cause corruption.

Two common solutions to this problem are total isola-
tion and nested top actions. Total isolation prevents any
transaction from accessing a data structure that has been
modified by another in-progress transaction. An applica-
tion can achieve this using its own concurrency control
mechanisms, or by holding a lock on each data structure
until the end of the transaction (by performing strict two-
phase locking on the entire data structure). Releasing
the lock after the modification, but before the end of the
transaction, increases concurrency. However, it means
that follow-on transactions that use the data may need to
abort if this transaction aborts (cascading aborts).

Nested top actions avoid this problem. The key idea
is to distinguish between the logical operations of a data
structure, such as adding an item to a set, and internal
physical operations such as splitting tree nodes. The in-
ternal operations do not need to be undone if the contain-
ing transaction aborts; instead of removing the data item
from the page, and merging any nodes that the insertion
split, we simply remove the item from the set as appli-
cation code would—we call the data structure’s remove
method. That way, we can undo the insertion even if the
nodes that were split no longer exist, or if the data item
has been relocated to a different page. This lets other
transactions manipulate the data structure before the first
transaction commits.

In Stasis, each nested top action performs a single log-
ical operation by applying a number of physical opera-
tions to the page file. Physical redo and undo log en-
tries are stored in the log so that recovery can repair any
temporary inconsistency that the nested top action intro-
duces. Once the nested top action has completed, a log-
ical undo entry is recorded, and a CLR is used to tell
recovery and abort to skip the physical undo entries.

This leads to a mechanical approach for creating reen-
trant, concurrent operations:

1. Wrap a mutex around each operation. With care,
it is possible to use finer-grained latches in a Stasis
operation [36], but it is rarely necessary.



2. Define a logical undo for each operation (rather than
a set of page-level undos). For example, this is easy
for a hash table: the undo for insert is remove. The
logical undo function should arrange to acquire the
mutex when invoked by abort or recovery.

3. Add a “begin nested top action” right after mutex
acquisition, and an “end nested top action” right be-
fore mutex release. Stasis includes operations that
provide nested top actions.

If the transaction that encloses a nested top action
aborts, the logical undo will compensate for the effects
of the operation, taking updates from concurrent transac-
tions into account. Using this recipe, it is relatively easy
to implement thread-safe concurrent transactions. There-
fore, they are used throughout Stasis’ default data struc-
ture implementations. This approach also works with the
variable-sized atomic updates covered in Section 4.

3.4 User-Defined Operations
The first kind of extensibility enabled by Stasis is user-
defined operations. Figure 1 shows how operations in-
teract with Stasis. A number of default operations come
with Stasis. These include operations that allocate and
manipulate records, operations that implement hash ta-
bles, and a number of methods that add functionality to
recovery. Many of the customizations described below
are implemented using custom operations.

In this portion of the discussion, physical operations
are limited to a single page, as they must be applied
atomically. Section 4 removes this constraint.

Operations are invoked by registering a callback (the
“operation implementation” in Figure 1) with Stasis at
startup, and then calling Tupdate() to invoke the op-
eration at runtime. Stasis ensures that operations follow
the write-ahead logging rules required for steal/no-force
transactions by controlling the timing and ordering of log
and page writes.

The redo log entry consists of the LSN and an argu-
ment that will be passed to redo. The undo entry is anal-
ogous.2 Each operation should be deterministic, provide
an inverse, and acquire all of its arguments from the argu-
ment passed via Tupdate(), from the page it updates,
or both. The callbacks used during forward operation
are also used during recovery. Therefore operations pro-
vide a single redo function and a single undo function.
There is no “do” function, which reduces the amount of
recovery-specific code in the system.

The first step in implementing a new operation is to
decide upon an external interface, which is typically
cleaner than directly calling Tupdate() to invoke the
operation(s). The externally visible interface is imple-
mented by wrapper functions and read-only access meth-

op(data)

invoke redo

write log

undo/redo

update page

read memory

Tupdate()

Recovery 
/ Abort

Log 
Manager

log entries

Write ahead logging 
implementation

Read-only 
Access 

Methods

Operation 
Implementation

Wrapper 
Function

Page File

Figure 1: The portions of Stasis that directly interact with
new operations. Arrows point in the direction of data flow.

ods. The wrapper function modifies the state of the page
file by packaging the information that will be needed for
redo/undo into a data format of its choosing. This data
structure is passed into Tupdate(), which writes a log
entry and invokes the redo function.

The redo function modifies the page file directly (or
takes some other action). It is essentially an interpreter
for its log entries. Undo works analogously, but is in-
voked when an operation must be undone.

This pattern applies in many cases. In order to imple-
ment a “typical” operation, the operation’s implementa-
tion must obey a few more invariants:

• Pages should only be updated inside physical redo
and undo operation implementations.

• Logical operations may invoke other operations via
Tupdate(). Recovery does not support logical
redo, and physical operation implementations may
not invoke Tupdate().

• The page’s LSN should be updated to reflect the
changes (this is generally handled by passing the
LSN to the page implementation).

• Nested top actions (and logical undo) or “big locks”
(total isolation) should be used to manage concur-
rency (Section 3.3).

Although these restrictions are not trivial, they are
not a problem in practice. Most read-modify-write ac-
tions can be implemented as user-defined operations,
including common DBMS optimizations such as in-
crement operations, and many optimizations based on
ARIES [26, 36]. The power of Stasis is that by following
these local restrictions, operations meet the global invari-
ants required by correct, concurrent transactions.

Finally, for some applications, the overhead of logging
information for redo or undo may outweigh their bene-
fits. Operations that wish to avoid undo logging can call
an API that pins the page until commit, and use an empty
undo function. Similarly, forcing a page to be written out
on commit avoids redo logging.



3.5 Application-specific Locking

The transactions described above provide the “Atomic-
ity” and “Durability” properties of ACID. “Isolation” is
typically provided by locking, which is a higher level but
compatible layer. “Consistency” is less well defined but
comes in part from low-level mutexes that avoid races,
and in part from higher-level constructs such as unique
key requirements. Stasis and most databases support this
by distinguishing between latches and locks. Latches are
provided using OS mutexes, and are held for short pe-
riods of time. Stasis’ default data structures use latches
in a way that does not deadlock. This allows higher-level
code to treat Stasis as a conventional reentrant data struc-
ture library.

This section describes Stasis’ latching protocols and
describes two custom lock managers that Stasis’ alloca-
tion routines use. Applications that want conventional
transactional isolation (serializability) can make use of a
lock manager or optimistic concurrency control [1, 27].
Alternatively, applications may follow the example of
Stasis’ default data structures, and implement deadlock
prevention, or other custom lock management schemes.

Note that locking schemes may be layered as long as
no legal sequence of calls to the lower level results in
deadlock, or the higher level is prepared to handle dead-
locks reported by the lower levels.

When Stasis allocates a record, it first calls a region
allocator, which allocates contiguous sets of pages, and
then it allocates a record on one of those pages. The
record allocator and the region allocator each contain
custom lock management. The lock management pre-
vents one transaction from reusing storage freed by an-
other, active transaction. If this storage were reused and
then the transaction that freed it aborted, then the storage
would be double-allocated.

The region allocator, which allocates large chunks in-
frequently, records the id of the transaction that created
a region of freespace, and does not coalesce or reuse any
storage associated with an active transaction. In contrast,
the record allocator is called frequently and must enable
locality. It associates a set of pages with each transaction,
and keeps track of deallocation events, making sure that
space on a page is never overbooked. Providing each
transaction with a separate pool of freespace increases
concurrency and locality. This is similar to Hoard [7]
and McRT-malloc [23] (Section 6.4).

Note that both lock managers have implementations
that are tied to the code they service, both implement
deadlock avoidance, and both are transparent to higher
layers. General-purpose database lock managers provide
none of these features, supporting the idea that special-
purpose lock managers are a useful abstraction. Locking
schemes that interact well with object-oriented program-

ming schemes [44] and exception handling [24] extend
these ideas to larger systems.

Although custom locking is important for flexibility, it
is largely orthogonal to the concepts described in this pa-
per. We make no assumptions regarding lock managers
being used by higher-level code in the remainder of this
discussion.

4 LSN-free Pages

The recovery algorithm described above uses LSNs to
determine the version number of each page during recov-
ery. This is a common technique. As far as we know, it
is used by all database systems that update data in place.
Unfortunately, this makes it difficult to map large objects
onto pages, as the LSNs break up the object. It is tempt-
ing to store the LSNs elsewhere, but then they would not
be updated atomically, which defeats their purpose.

This section explains how we can avoid storing LSNs
on pages in Stasis without giving up durable transac-
tional updates. The techniques here are similar to those
used by RVM [42], a system that supports transactional
updates to virtual memory. However, Stasis generalizes
the concept, allowing it to coexist with traditional pages
and more easily support concurrent transactions.

In the process of removing LSNs from pages, we are
able to relax the atomicity assumptions that we make re-
garding writes to disk. These relaxed assumptions allow
recovery to repair torn pages without performing media
recovery, and allow arbitrary ranges of the page file to be
updated by a single physical operation.

Stasis’ implementation does not currently support the
recovery algorithm described in this section. However,
Stasis avoids hard-coding most of the relevant subsys-
tems. LSN-free pages are essentially an alternative pro-
tocol for atomically and durably applying updates to the
page file. This will require the addition of a new page
type that calls the logger to estimate LSNs; Stasis cur-
rently has three such types, and already supports the co-
existence of multiple page types within the same page
file or logical operation.

4.1 Blind Updates
Recall that LSNs were introduced to allow recovery to
guarantee that each update is applied exactly once. This
was necessary because some operations that manipulate
pages are not idempotent, or simply make use of state
stored in the page.

As described above, Stasis operations may make use
of page contents to compute the updated value, and Sta-
sis ensures that each operation is applied exactly once
in the right order. The recovery scheme described in this
section does not guarantee that operations will be applied
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Figure 2: LSN estimation. If a page was not mentioned
in the log, it must have been up-to-date on disk. RecLSN
is the LSN of the entry that caused the page to become
dirty. Subtracting one gives us a safe estimate of the page
LSN.

exactly once, or even that they will be presented with a
self-consistent version of a page during recovery.

Therefore, in this section we focus on operations that
produce deterministic, idempotent redo entries that do
not examine page state. We call such operations blind
updates. For example, a blind update’s operation could
use log entries that contain a set of byte ranges with their
new values. Note that we still allow code that invokes
operations to examine the page file, just not during the
redo phase of recovery.

Recovery works the same way as before, except that
it now estimates page LSNs rather than reading them
from pages. One safe estimate is the LSN of the most
recent archive or log truncation point. Alternatively, Sta-
sis could occasionally store its dirty page table to the log
(Figure 2). The dirty page table lists all dirty pages and
their recovery LSNs. It is used by ARIES to reduce the
amount of work that must be performed during REDO.

The recovery LSN (RecLSN) is the LSN of the log
entry that caused a clean (up-to-date on disk) page to be-
come dirty. No log entries older than the RecLSN need
to be applied to the page during redo. Therefore, redo
can safely estimate the page LSN by choosing any num-
ber less than RecLSN. If a page is not in the table, redo
can use the LSN of the log entry that contains the table,
since the page must have been clean when the log entry
was produced. Stasis writes the dirty page table to log
whether or not LSN-free pages are in use, so we expect
the runtime overhead to be negligible.

Although the mechanism used for recovery is similar,
the invariants maintained during recovery have changed.
With conventional transactions, if a page in the page file
is internally consistent immediately after a crash, then
the page will remain internally consistent throughout the
recovery process. This is not the case with our LSN-free
scheme. Internal page inconsistencies may be introduced
because recovery has no way of knowing the exact ver-
sion of a page. Therefore, it may overwrite new por-
tions of a page with older data from the log. The page

will then contain a mixture of new and old bytes, and
any data structures stored on the page may be inconsis-
tent. However, once the redo phase is complete, any old
bytes will be overwritten by their most recent values, so
the page will return to a self-consistent up-to-date state.
(Section 4.4 explains this in more detail.)

Undo is unaffected except that any redo records it pro-
duces must be blind updates just like normal operation.
We don’t expect this to be a practical problem.

The rest of this section describes how concurrent,
LSN-free pages allow standard file system and database
optimizations to be easily combined, and shows that the
removal of LSNs from pages simplifies recovery while
increasing its flexibility.

4.2 Zero-copy I/O

We originally developed LSN-free pages as an efficient
method for transactionally storing and updating multi-
page objects, called blobs. If a large object is stored in
pages that contain LSNs, then it is not contiguous on
disk, and must be gathered together by using the CPU
to do an expensive copy into a second buffer.

In contrast, modern file systems allow applications to
perform a DMA copy of the data into memory, allowing
the CPU to be used for more productive purposes. Fur-
thermore, modern operating systems allow network ser-
vices to use DMA and network-interface cards to read
data from disk, and send it over the network without
passing it through the CPU. Again, this frees the CPU,
allowing it to perform other tasks.

We believe that LSN-free pages will allow reads to
make use of such optimizations in a straightforward fash-
ion. Zero-copy writes are more challenging, but the goal
would be to use one sequential write to put the new
version on disk and then update metadata accordingly.
We need not put the blob in the log if we avoid update
in place; most blob implementations already avoid up-
date in place since the length may vary between writes.
We suspect that contributions from log-based file sys-
tems [41] can address these issues. In particular, we
imagine writing large blobs to a distinct log segment and
just entering metadata in the primary log.

4.3 Concurrent RVM

LSN-free pages are similar to the recovery scheme used
by recoverable virtual memory (RVM) and Camelot [16].
RVM used purely physical logging and LSN-free pages
so that it could use mmap to map portions of the page file
into application memory [42]. However, without support
for logical log entries and nested top actions, it is dif-
ficult to implement a concurrent, durable data structure



using RVM or Camelot. (The description of Argus in
Section 6.2.2 sketches one approach.)

In contrast, LSN-free pages allow logical undo and
therefore nested top actions and concurrent transactions;
a concurrent data structure need only provide Stasis with
an appropriate inverse each time its logical state changes.

We plan to add RVM-style transactional memory to
Stasis in a way that is compatible with fully concurrent
in-memory data structures such as hash tables and trees,
and with existing Stasis data structure implementations.

4.4 Unbounded Atomicity
Unlike transactions with per-page LSNs, transactions
based on blind updates do not require atomic page writes
and thus impose no meaningful boundaries on atomic up-
dates. We still use pages to simplify integration into the
rest of the system, but need not worry about torn pages.
In fact, the redo phase of the LSN-free recovery algo-
rithm effectively creates a torn page each time it applies
an old log entry to a new page. However, it guarantees
that all such torn pages will be repaired by the time redo
completes. In the process, it also repairs any pages that
were torn by a crash. This also implies that blind-update
transactions work with storage technologies with differ-
ent (and varying or unknown) units of atomicity.

Instead of relying upon atomic page updates, LSN-
free recovery relies on a weaker property, which is that
each bit in the page file must be either:

1. The version that was being overwritten at the crash.

2. The newest version of the bit written to storage.

3. Detectably corrupt (the storage hardware issues an
error when the bit is read).

Modern drives provide these properties at a sector
level: Each sector is updated atomically, or it fails a
checksum when read, triggering an error. If a sector is
found to be corrupt, then media recovery can be used to
restore the sector from the most recent backup.

To ensure that we correctly update all of the old bits,
we simply play the log forward from a point in time that
is known to be older than the LSN of the page (which we
must estimate). For bits that are overwritten, we end up
with the correct version, since we apply the updates in or-
der. For bits that are not overwritten, they must have been
correct before and remain correct after recovery. Since
all operations performed by redo are blind updates, they
can be applied regardless of whether the initial page was
the correct version or even logically consistent.

Figure 3 describes a page that is torn during crash, and
the actions performed by redo that repair it. Assume that
the initial version of the page, with LSN 0, is on disk, and
the OS is in the process of writing out the version with

Force Page

Page (LSN = 0) A A A A A A A A

Write (LSN = 2) A B C C C C A A

Page (LSN = ?) A B C C A C A A

Redo LSN 1 (LSN = ?) A B C B A C A A

Redo LSN 2 (LSN = 2) A B C C C C A A

Write (LSN = 1) A B A B A A A A

Sector
0 1 2 3 4 5 6 7

CRASH

Figure 3: Torn pages and LSN-free recovery. The page
is torn during the crash, but consistent once redo com-
pletes. Overwritten sectors are shaded.

LSN 2 when the system crashes. When recovery reads
the page from disk, it may encounter any combination of
sectors from these two versions.

Note that sectors zero, six and seven are not overwrit-
ten by any of the log entries that Redo will play back.
Therefore, their values are unchanged in both versions of
the page. In the example, zero and seven are overwrit-
ten during the crash, while six is left over from the old
version of the page.

Redoing LSN 1 is unnecessary, since all of its sectors
happened to make it to disk. However, recovery has no
way of knowing this and applies the entry to the page,
replacing sector three with an older version. When LSN
2 is applied, it brings this sector up to date, and also over-
writes sector four, which did not make it to disk. At this
point, the page is internally consistent.

Since LSN-free recovery only relies upon atomic up-
dates at the bit level, it decouples page boundaries from
atomicity and recovery. This allows operations to ma-
nipulate atomically (potentially non-contiguous) regions
of arbitrary size by producing a single log entry. If this
log entry includes a logical undo function (rather than a
physical undo), then it can serve the purpose of a nested
top action without incurring the extra log bandwidth of
storing physical undo information. Such optimizations
can be implemented using conventional transactions, but
they appear to be easier to implement and reason about
when applied to LSN-free pages.

4.5 Summary
In these last two sections, we explored some of the flex-
ibility of Stasis. This includes user-defined operations,
combinations of steal and force on a per-operation ba-
sis, flexible locking options, and a new class of transac-
tions based on blind updates that enables better support
for DMA, large objects, and multi-page operations. In



the next section, we show through experiments how this
flexibility enables important optimizations and a wide-
range of transactional systems.

5 Experiments

Stasis provides applications with the ability to customize
storage routines and recovery semantics. In this section,
we show that this flexibility does not come with a signif-
icant performance cost for general-purpose transactional
primitives, and show how a number of special-purpose
interfaces aid in the development of higher-level code
while significantly improving application performance.

5.1 Experimental setup
We chose Berkeley DB in the following experiments be-
cause it provides transactional storage primitives similar
to Stasis, is commercially maintained and is designed for
high performance and high concurrency. For all tests,
the two libraries provide the same transactional seman-
tics unless explicitly noted.

All benchmarks were run on an Intel Xeon 2.8 GHz
processor with 1GB of RAM and a 10K RPM SCSI drive
using ReiserFS [40].3 All results correspond to the mean
of multiple runs with a 95% confidence interval with a
half-width of 5%.

Our experiments use Berkeley DB 4.2.52 with the
flags DB TXN SYNC (force log to disk on commit),
and DB THREAD (thread safety) enabled. We increased
Berkeley DB’s buffer cache and log buffer sizes to match
Stasis’ default sizes. If Berkeley DB implements a fea-
ture that Stasis is missing we enable it if it improves per-
formance.

We disable Berkeley DB’s lock manager for the bench-
marks, though we use “Free Threaded” handles for
all tests. This significantly increases performance by
eliminating transaction deadlock, abort, and repetition.
However, disabling the lock manager caused concurrent
Berkeley DB benchmarks to become unstable, suggest-
ing either a bug or misuse of the feature. With the
lock manager enabled, Berkeley DB’s performance in
the multi-threaded benchmark (Section 5.2) strictly de-
creased with increased concurrency.

We expended a considerable effort tuning Berkeley
DB and our efforts significantly improved Berkeley DB’s
performance on these tests. Although further tuning by
Berkeley DB experts would probably improve Berkeley
DB’s numbers, we think our comparison shows that the
systems’ performance is comparable. As we add func-
tionality, optimizations, and rewrite modules, Stasis’ rel-
ative performance varies. We expect Stasis’ extensions
and custom recovery mechanisms to continue to perform
similarly to comparable monolithic implementations.
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Figure 4: Performance of Stasis and Berkeley DB hash
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Figure 5: High-concurrency hash table performance. Our
Berkeley DB test can only support 50 threads (see text).

5.2 Linear hash table

This section presents two hash table implementations
built on top of Stasis, and compares them with the hash
table provided by Berkeley DB. One of the Stasis im-
plementations is simple and modular, while the other
is monolithic and hand-tuned. Our experiments show
that Stasis’ performance is competitive, both with single-
threaded and high-concurrency transactions.

The modular hash table uses nested top actions to up-
date its internal structure atomically. It uses a linear hash
function [30], allowing it to increase capacity incremen-
tally. It is based on a number of modular subcompo-
nents. Notably, the physical location of each bucket is
stored in a growable array of fixed-length entries. This
data structure is similar to Java’s ArrayList. The bucket
lists can be provided by either of Stasis’ two linked list
implementations. The first provides fixed-length entries,
yielding a hash table with fixed-length keys and values.
Our experiments use the second implementation, which
provides variable-length entries (and therefore variable-
length keys and values).

The hand-tuned hash table is also built on Stasis and
also uses a linear hash function. However, it is mono-
lithic and uses carefully ordered writes to reduce runtime



overheads such as log bandwidth. Berkeley DB’s hash
table is a popular, commonly deployed implementation,
and serves as a baseline for our experiments.

Both of our hash tables outperform Berkeley DB on a
workload that populates the tables by repeatedly insert-
ing (key, value) pairs (Figure 4). The performance of
the modular hash table shows that data structure imple-
mentations composed from simpler structures can per-
form comparably to the implementations included in ex-
isting monolithic systems. The hand-tuned implementa-
tion shows that Stasis allows application developers to
optimize important primitives.

Figure 5 describes the performance of the two systems
under highly concurrent workloads using the ext3 file
system.4 For this test, we used the modular hash table,
since we are interested in the performance of a simple,
clean data structure implementation that a typical system
implementor might produce, not the performance of our
own highly tuned implementation.

Both Berkeley DB and Stasis can service concurrent
calls to commit with a single synchronous I/O. Sta-
sis scaled quite well, delivering over 6000 transactions
per second, and provided roughly double Berkeley DB’s
throughput (up to 50 threads). Although not shown here,
we found that the latencies of Berkeley DB and Stasis
were similar.

5.3 Object persistence

Two different styles of object persistence have been im-
plemented on top of Stasis. The first object persis-
tence mechanism, pobj, provides transactional updates
to objects in Titanium, a Java variant. It transparently
loads and persists entire graphs of objects, but will not
be discussed in further detail. The second variant was
built on top of a C++ object persistence library, Oasys.
Oasys uses plug-in storage modules that implement per-
sistent storage, and includes plugins for Berkeley DB and
MySQL. Like C++ objects, Oasys objects are explicitly
freed. However, Stasis could also support concurrent and
incremental atomic garbage collection [26].

This section describes how the Stasis plugin supports
optimizations that reduce the amount of data written to
log and halve the amount of RAM required. We present
three variants of the Stasis plugin. The basic one treats
Stasis like Berkeley DB. The “update/flush” variant cus-
tomizes the behavior of the buffer manager. Finally, the
“delta” variant uses update/flush, but only logs the dif-
ferences between versions.

The update/flush variant allows the buffer manager’s
view of live application objects to become stale. This is
safe since the system is always able to reconstruct the
appropriate page entry from the live copy of the object.
This reduces the number of times the plugin must update

serialized objects in the buffer manager, and allows us to
nearly eliminate the memory used by the buffer manager.

We implemented the Stasis buffer pool optimization
by adding two new operations, update(), which updates
the log when objects are modified, and flush(), which up-
dates the page when an object is evicted from the appli-
cation’s cache.

The reason it would be difficult to do this with Berke-
ley DB is that we still need to generate log entries as the
object is being updated. This would cause Berkeley DB
to write data to pages, increasing the working set of the
program and the amount of disk activity.

Furthermore, Stasis’ copy of the objects is updated in
the order objects are evicted from cache, not the update
order. Therefore, the version of each object on a page
cannot be determined from a single LSN.

We solve this problem by using blind updates to mod-
ify objects in place, but maintain a per-page LSN that
is updated whenever an object is allocated or deallo-
cated. At recovery, we apply allocations and dealloca-
tions based on the page LSN. To redo an update, we first
decide whether the object that is being updated exists
on the page. If so, we apply the blind update. If not,
then the object must have been freed, so we do not ap-
ply the update. Because support for blind updates is only
partially implemented, the experiments presented below
mimic this behavior at runtime, but do not support recov-
ery.

We also considered storing multiple LSNs per page
and registering a callback with recovery to process the
LSNs. However, in such a scheme, the object allocation
routine would need to track objects that were deleted but
still may be manipulated during redo. Otherwise, it could
inadvertently overwrite per-object LSNs that would be
needed during recovery. Alternatively, we could arrange
for the object pool to update atomically the buffer man-
ager’s copy of all objects that share a given page.

The third plugin variant, “delta,” incorporates the up-
date/flush optimizations, but only writes changed por-
tions of objects to the log. With Stasis’ support for cus-
tom log formats, this optimization is straightforward.

Oasys does not provide a transactional interface. In-
stead, it is designed to be used in systems that stream ob-
jects over an unreliable network connection. The objects
are independent of each other, so each update should
be applied atomically. Therefore, there is never any
reason to roll back an applied object update. Further-
more, Oasys provides a sync method, which guarantees
the durability of updates after it returns. In order to
match these semantics as closely as possible, Stasis’ up-
date/flush and delta optimizations do not write any undo
information to the log. The Oasys sync method is imple-
mented by committing the current Stasis transaction, and
beginning a new one.
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Figure 7: Locality-based request reordering. Requests
are partitioned into queues. Queue are handled inde-
pendently, improving locality and allowing requests to be
merged.

As far as we can tell, MySQL and Berkeley DB do not
support this optimization in a straightforward fashion.
“Auto-commit” comes close, but does not quite provide
the same durability semantics as Oasys’ explicit syncs.

The operations required for the update/flush and delta
optimizations required 150 lines of C code, including
whitespace, comments and boilerplate function registra-
tions.5 Although the reasoning required to ensure the
correctness of this optimization is complex, the simplic-
ity of the implementation is encouraging.

In this experiment, Berkeley DB was configured as de-
scribed above. We ran MySQL using InnoDB for the ta-
ble engine. For this benchmark, it is the fastest engine
that provides similar durability to Stasis. We linked the
benchmark’s executable to the libmysqld daemon li-
brary, bypassing the IPC layer. Experiments that used
IPC were orders of magnitude slower.

Figure 6 presents the performance of the three Stasis
variants, and the Oasys plugins implemented on top of
other systems. In this test, none of the systems were
memory bound. As we can see, Stasis performs better
than the baseline systems, which is not surprising, since
it exploits the weaker durability requirements.

In non-memory bound systems, the optimizations
nearly double Stasis’ performance by reducing the CPU
overhead of marshalling and unmarshalling objects, and

by reducing the size of log entries written to disk.
To determine the effect of the optimization in memory

bound systems, we decreased Stasis’ page cache size,
and used O DIRECT to bypass the operating system’s
disk cache. We partitioned the set of objects so that 10%
fit in a hot set. Figure 6 also presents Stasis’ performance
as we varied the percentage of object updates that manip-
ulate the hot set. In the memory bound test, we see that
update/flush indeed improves memory utilization.

5.4 Request reordering

We are interested in enabling Stasis to manipulate se-
quences of application requests. By translating these
requests into logical operations (such as those used for
logical undo), we can manipulate and optimize such re-
quests. Because logical operations generally correspond
to application-level operations, application developers
can easily determine whether logical operations may be
reordered, transformed, or even dropped from the stream
of requests that Stasis is processing. For example, re-
quests that manipulate disjoint sets of data can be split
across many nodes, providing load balancing. Requests
that update the same piece of information can be merged
into a single request; RVM’s “log merging” implements
this type of optimization [42]. Stream aggregation tech-
niques and relational algebra operators could be used to
transform data efficiently while it is laid out sequentially
in non-transactional memory.

To experiment with the potential of such optimiza-
tions, we implemented a single-node request-reordering
scheme that increases request locality during a graph
traversal. The graph traversal produces a sequence of
read requests that are partitioned according to their phys-
ical location in the page file. Partition sizes are chosen
to fit inside the buffer pool. Each partition is processed
until there are no more outstanding requests to read from
it. The process iterates until the traversal is complete.

We ran two experiments. Both stored a graph of fixed-
size objects in the growable array implementation that is
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Figure 9: Hot-set based graph traversal for random
graphs with out-degrees of 3 and 9. The multiplexer has
low overhead, and improves performance when the graph
has poor locality.

used as our linear hash table’s bucket list. The first exper-
iment (Figure 8) is loosely based on the OO7 database
benchmark [9]. We hard-code the out-degree of each
node and use a directed graph. Like OO7, we construct
graphs by first connecting nodes together into a ring. We
then randomly add edges until obtaining the desired out-
degree. This structure ensures graph connectivity. Nodes
are laid out in ring order on disk so at least one edge from
each node is local.

The second experiment measures the effect of graph
locality (Figure 9). Each node has a distinct hot set that
includes the 10% of the nodes that are closest to it in ring
order. The remaining nodes are in the cold set. We do
not use ring edges for this test, so the graphs might not
be connected. We use the same graphs for both systems.

When the graph has good locality, a normal depth-first
search traversal and the prioritized traversal both perform
well. As locality decreases, the partitioned traversal al-
gorithm outperforms the naive traversal.

6 Related Work

6.1 Database Variations

This section discusses database systems with goals sim-
ilar to ours. Although these projects were successful in
many respects, each extends the range of a fixed abstract
data model. In contrast, Stasis can support (in theory)
any of these models and their extensions.

6.1.1 Extensible databases

Genesis is an early database toolkit that was explicitly
structured in terms of the physical data models and con-
ceptual mappings described above [5]. It allows database
implementors to swap out implementations of the com-
ponents defined by its framework. Like later systems (in-
cluding Stasis), it supports custom operations.

Subsequent extensible database work builds upon
these foundations. The Exodus [8] database toolkit is the
successor to Genesis. It uses abstract data type defini-
tions, access methods and cost models to generate query
optimizers and execution engines automatically.

Object-oriented database systems [28] and relational
databases with support for user-definable abstract data
types (such as POSTGRES [52]) provide functionality
similar to extensible database toolkits. In contrast to
database toolkits, which leverage type information as the
database server is compiled, object-oriented and object-
relational databases allow types to be defined at runtime.

Both approaches extend a fixed high-level data model
with new abstract data types. This is of limited use to
applications that are not naturally structured in terms of
queries over sets.

6.1.2 Modular databases

The database community is also aware of this gap. A re-
cent survey [13] enumerates problems that plague users
of state-of-the-art database systems. Essentially, it finds
that modern databases are too complex to be imple-
mented or understood as a monolithic entity. Instead,
they have become unpredictable and unmanageable, pre-
venting them from serving large-scale applications and
small devices. Rather than concealing performance is-
sues, SQL’s declarative interface prevents developers
from diagnosing and correcting underlying problems.

The study suggests that researchers and the industry
adopt a highly modular “RISC” database architecture.
This architecture would be similar to a database toolkit,
but would standardize the interfaces of the toolkit’s com-
ponents. This would allow competition and specializa-
tion among module implementors, and distribute the ef-
fort required to build a full database [13].



Streaming applications face many of the problems that
RISC databases could address. However, it is unclear
whether a single interface or conceptual mapping would
meet their needs. Based on experiences with their sys-
tem, the authors of StreamBase argue that “one size fits
all” database engines are no longer appropriate. Instead,
they argue that the market will “fracture into a collec-
tion of independent...engines” [51]. This is in contrast to
the RISC approach, which attempts to build a database
in terms of interchangeable parts.

We agree with the motivations behind RISC databases
and StreamBase, and believe they complement each
other and Stasis well. However, our goal differs from
these systems; we want to support applications that are a
poor fit for database systems. As Stasis matures we hope
that it will enable a wide range of transactional systems,
including improved DBMSs.

6.2 Transactional Programming Models
Transactional programming environments provide se-
mantic guarantees to the programs they support. To
achieve this goal, they provide a single approach to con-
currency and transactional storage. Therefore, they are
complementary to our work; Stasis provides a substrate
that makes it easier to implement such systems.

6.2.1 Nested Transactions

Nested transactions allow transactions to spawn sub-
transactions, forming a tree. Linear nesting restricts
transactions to a single child. Closed nesting rolls chil-
dren back when the parent aborts [37]. Open nesting al-
lows children to commit even if the parent aborts.

Closed nesting uses database-style lock managers to
allow concurrency within a transaction. It increases fault
tolerance by isolating each child transaction from the
others, and retrying failed transactions. (MapReduce is
similar, but uses language constructs to statically enforce
isolation [15].)

Open nesting provides concurrency between transac-
tions. In some respect, nested top actions provide open,
linear nesting, as the actions performed inside the nested
top action are not rolled back when the parent aborts.
(We believe that recent proposals to use open, linear nest-
ing for software transactional memory will lead to a pro-
gramming style similar to Stasis’ [38].) However, logical
undo gives the programmer the option to compensate for
nested top actions. We expect that nested transactions
could be implemented with Stasis.

6.2.2 Distributed Programming Models

Nested transactions simplify distributed systems; they
isolate failures, manage concurrency, and provide dura-

bility. In fact, they were developed as part of Argus, a
language for reliable distributed applications. An Ar-
gus program consists of guardians, which are essentially
objects that encapsulate persistent and atomic data. Ac-
cesses to atomic data are serializable, while persistent
data is atomic data that is stored on disk [29].

Originally, Argus only supported limited concurrency
via total isolation, but was extended to support high con-
currency data structures. Concurrent data structures are
stored in non-atomic storage, but are augmented with in-
formation in atomic storage. This extra data tracks the
status of each item stored in the structure. Conceptu-
ally, atomic storage used by a hash table would contain
the values “Not present”, “Committed” or “Aborted; Old
Value = x” for each key in (or missing from) the hash.
Before accessing the hash, the operation implementation
would consult the appropriate piece of atomic data, and
update the non-atomic data if necessary. Because the
atomic data is protected by a lock manager, attempts to
update the hash table are serializable. Therefore, clever
use of atomic storage can be used to provide logical lock-
ing.

Efficiently tracking such state is not straightforward.
For example, their hash table implementation uses a
log structure to track the status of keys that have been
touched by active transactions. Also, the hash table is
responsible for setting policies regarding granularity and
timing of disk writes [54]. Stasis operations avoid this
complexity by providing logical undos, and by leaving
lock management to higher-level code. This separates
write-back and concurrency control policies from data
structure implementations.

Camelot made a number of important contributions,
both in system design, and in algorithms for distributed
transactions [16]. It leaves locking to application level
code, and updates data in place. (Argus uses shadow
copies to provide atomic updates.) Camelot provides
two logging modes: physical redo-only (no-steal, no-
force) and physical undo/redo (steal, no-force). Be-
cause Camelot does not support logical undo, concur-
rent operations must be implemented similarly to those
built with Argus. Camelot is similar to Stasis in that
its low-level C interface is designed to enable multi-
ple higher-level programming models, such as Avalon’s
C++ interface or an early version of RVM. However, like
other distributed programming models, Camelot focuses
on a particular class of distributed transactions. There-
fore, it hard-codes assumptions regarding the structure
of nested transactions, consensus algorithms, communi-
cation mechanisms, and so on.

More recent transactional programming schemes al-
low for multiple transaction implementations to cooper-
ate as part of the same distributed transaction. For exam-
ple, X/Open DTP provides a standard networking proto-



col that allows multiple transactional systems to be con-
trolled by a single transaction manager [53]. Enterprise
Java Beans is a standard for developing transactional
middleware on top of heterogeneous storage. Its trans-
actions may not be nested. This simplifies its semantics,
and leads to many, short transactions, improving con-
currency. However, flat transactions are somewhat rigid,
and lead to situations where committed transactions have
to be manually rolled back by other transactions [47].
The Open Multithreaded Transactions model is based on
nested transactions, incorporates exception handling, and
allows parents to execute concurrently with their chil-
dren [24].

QuickSilver is a distributed transactional operating
system. It provides a transactional IPC mechanism,
and allows varying degrees of isolation, both to support
legacy code, and to provide an appropriate environment
for custom transactional software [21]. By providing an
environment that allows multiple, independently written,
transactional systems to interoperate, QuickSilver would
complement Stasis nicely.

The QuickSilver project showed that transactions can
meet the demands of most applications, provided that
long-running transactions do not exhaust system re-
sources, and that flexible concurrency control policies
are available. Nested transactions are particularly use-
ful when a series of program invocations form a larger
logical unit [43].

Clouds is an object-oriented, distributed transactional
operating system. It uses shared abstract types [44]
and per-object atomicity specifications to provide con-
currency control among the objects in the system [2].
These formalisms could be used during the design of
high-concurrency Stasis operations.

6.3 Data Structure Frameworks

As mentioned in Sections 2.2 and 5, Berkeley DB is
a system quite similar to Stasis, and gives application
programmers raw access to transactional data structures
such as a single-node B-Tree and hash table [45].

Cluster hash tables provide a scalable, replicated hash
table implementation by partitioning the table’s buck-
ets across multiple systems [20]. Boxwood treats each
system in a cluster of machines as a “chunk store,” and
builds a transactional, fault tolerant B-Tree on top of the
chunks that these machines export [32].

Stasis is complementary to Boxwood and cluster hash
tables; those systems intelligently compose a set of sys-
tems for scalability and fault tolerance. In contrast, Sta-
sis makes it easy to push intelligence into the individual
nodes, allowing them to provide primitives that are ap-
propriate for the higher-level service.

6.4 Data layout policies
Data layout policies make decisions based upon assump-
tions about the application. Ideally, Stasis would al-
low application-specific layout policies to be used inter-
changeably, This section describes strategies for data lay-
out that we believe Stasis could eventually support.

Some large object storage systems allow arbitrary in-
sertion and deletion of bytes [10] within the object,
while typical file systems provide append-only alloca-
tion [34]. Record-oriented allocation, such as in VMS
Record Management Services [39] and GFS [18], breaks
files into addressable units. Write-optimized file systems
lay files out in the order they were written rather than in
logically sequential order [41].

Schemes to improve locality among small objects exist
as well. Relational databases allow users to specify the
order in which tuples will be laid out, and often leave
portions of pages unallocated to reduce fragmentation as
new records are allocated.

Memory allocation routines such as Hoard [7] and
McRT-malloc [23] address this problem by grouping al-
located data by thread or transaction, respectively. This
increases locality, and reduces contention created by un-
related objects stored in the same location. Stasis’ cur-
rent record allocator is based on these ideas (Section 3.5).

Allocation of records that must fit within pages and be
persisted to disk raises concerns regarding locality and
page layouts. Depending on the application, data may be
arranged based upon hints [46], pointer values and write
order [31], data type [25], or access patterns [56].

We are interested in allowing applications to store
records in the transaction log. Assuming log fragmen-
tation is kept to a minimum, this is particularly attrac-
tive on a single disk system. We plan to use ideas from
LFS [41] and POSTGRES [52] to implement this.

7 Future Work

Complexity problems may begin to arise as we attempt to
implement more extensions to Stasis. However, Stasis’
implementation is still fairly simple:

• The core of Stasis is roughly 3000 lines of C code,
and implements the buffer manager, IO, recovery,
and other systems.

• Custom operations account for another 3000 lines.

• Page layouts and logging implementations account
for 1600 lines.

The complexity of the core of Stasis is our primary
concern, as it contains the hard-coded policies and as-
sumptions. Over time, it has shrunk as functionality has



moved into extensions. We expect this trend to continue
as development progresses.

A resource manager is a common pattern in system
software design, and manages dependencies and order-
ing constraints among sets of components. Over time,
we hope to shrink Stasis’ core to the point where it is
simply a resource manager that coordinates interchange-
able implementations of the other components.

8 Conclusion

We presented Stasis, a transactional storage library that
addresses the needs of system developers. Stasis pro-
vides more opportunities for specialization than existing
systems. The effort required to extend Stasis to support a
new type of system is reasonable, especially when com-
pared to current practices, such as working around limi-
tations of existing systems, breaking guarantees regard-
ing data integrity, or reimplementing the entire storage
infrastructure from scratch.

We demonstrated that Stasis provides fully concurrent,
high-performance transactions, and explored how it can
support a number of systems that currently make use of
suboptimal or ad-hoc storage approaches. Finally, we de-
scribed how Stasis can be extended in the future to sup-
port a larger range of systems.
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Notes
1The “A” in ACID really means “atomic persistence of data,” rather

than “atomic in-memory updates,” as the term is normally used in sys-
tems work; the latter is covered by “C” and “I” [19].

2For efficiency, undo and redo operations are packed into a single
log entry. Both must take the same parameters.

3We found that the relative performance of Berkeley DB and Stasis
under single-threaded testing is sensitive to file system choice, and we
plan to investigate the reasons why the performance of Stasis under ext3
is degraded. However, the results relating to the Stasis optimizations
are consistent across file system types.

4Multi-threaded benchmarks were performed using an ext3 file sys-
tem. Concurrency caused both Berkeley DB and Stasis to behave un-
predictably under ReiserFS. Stasis’ multi-threaded throughput was sig-
nificantly better than Berkeley DB’s with both file systems.

5These figures do not include the simple LSN-free object logic re-
quired for recovery, as Stasis does not yet support LSN-free operations.


