
Rows: Compressed, log-structured replication

ABSTRACT
This paper describes Rows1, a database storage engine de-
signed for high-throughput replication. It targets applica-
tions with write-intensive (seek limited) transaction process-
ing workloads and near-realtime decision support and ana-
lytical processing queries. Rows uses log structured merge
(LSM) trees to create full database replicas using purely se-
quential I/O. It provides access to inconsistent data in real-
time and consistent data with a few seconds delay. Rows
was written to support micropayment transactions.

A Rows replica serves two purposes. First, by avoiding
seeks, Rows reduces the load on the replicas’ disks. This
leaves surplus I/O capacity for read-only queries and allows
inexpensive hardware to replicate workloads produced by
expensive machines that are equipped with many disks. Af-
fordable, read-only replication allows decision support and
OLAP queries to scale linearly with the number of machines,
regardless of lock contention and other bottlenecks asso-
ciated with distributed transactional updates. Second, a
group of Rows replicas provides a highly available copy of
the database. In many Internet-scale environments, decision
support queries are more important than update availability.

Rows’ throughput is limited by sequential I/O bandwidth.
We use column compression to reduce this bottleneck. Rather
than reassemble rows from a column-oriented disk layout,
we adapt existing column compression algorithms to a novel
row-oriented data layout. This approach to database com-
pression introduces negligible space overhead and can be
applied to most single-pass, randomly accessible compres-
sion formats. Our prototype uses lightweight (superscalar)
column compression algorithms.

Existing analytical models and our experiments reveal
that, for disk and CPU-bound workloads, Rows provides
orders of magnitude greater throughput than conventional
replication techniques.

1. INTRODUCTION
1[Clever acronym here]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGMOD ’08 Vancouver, BC, Canada
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Rows is a database replication engine for workloads with
high volumes of in-place updates. It is designed to pro-
vide high-throughput, general purpose replication of trans-
actional updates regardless of database size, query contention
or access patterns. In particular, it is designed to run real-
time decision support and analytical processing queries against
some of today’s largest TPC-C style online transaction pro-
cessing applications.

When faced with random access patterns, traditional database
scalability is limited by the size of memory. If the system’s
working set does not fit in RAM, any attempt to update
data in place is limited by the latency of hard disk seeks.
This bottleneck can be alleviated by adding more drives,
which increases cost and decreases reliability. Alternatively,
the database can run on a cluster of machines, increasing the
amount of available memory, CPUs and disk heads, but in-
troducing the overhead and complexity of distributed trans-
actions and partial failure.

These problems lead to large-scale database installations
that partition their workloads across multiple servers, al-
lowing linear scalability, but sacrificing consistency between
data stored in different partitions. Fortunately, updates of-
ten deal with well-defined subsets of the data; with an appro-
priate partitioning scheme, one can achieve linear scalability
for localized updates.

The cost of partitioning is that no globally coherent ver-
sion of the data exists. In the best case, queries that rely on
a global view of the data run against each master database
instance, then attempt to reconcile inconsistencies in their
results. If the queries are too expensive to run on master
database instances they are delegated to data warehousing
systems and produce stale results.

In order to address the needs of such queries, Rows gives
up the ability to directly process SQL updates. In exchange,
it is able to replicate conventional database instances at
a small fraction of the cost of a general-purpose database
server.

Like a data warehousing solution, this decreases the cost of
large, read-only analytical processing and decision support
queries, and scales to extremely large database instances
with high-throughput updates. Unlike data warehousing so-
lutions, Rows does this without introducing significant repli-
cation latency.

Conventional database replicas provide low-latency repli-
cation at a cost comparable to that of the master database.
The expense associated with such systems prevents con-
ventional database replicas from scaling. The additional

1

read throughput they provide is nearly as expensive as read
throughput on the master. Because their performance is
comparable to that of the master database, they are unable
to consolidate multiple database instances for centralized
processing.

Unlike existing systems, Rows provides inexpensive, low-
latency, and scalable replication of write-intensive relational
databases, regardless of workload contention, database size,
or update patterns.

1.1 Fictional Rows deployment
Imagine a classic, disk-bound TPC-C installation. On

modern hardware, such a system would have tens of disks,
and would be seek limited. Consider the problem of pro-
ducing a read-only, low-latency replica of the system for
analytical processing, decision support, or some other ex-
pensive read-only workload. If the replica uses the same
storage engine as the master, its hardware resources would
be comparable to (certainly within an order of magnitude)
those of the master database instances. Worse, a significant
fraction of these resources would be devoted to replaying
updates from the master. As we show below, the I/O cost
of maintaining a Rows replica can be less than 1% of the
cost of maintaining the master database.

Therefore, unless the replica’s read-only query workload is
seek limited, a Rows replica requires many fewer disks than
the master database instance. If the replica must service
seek-limited queries, it will likely need to run on a machine
similar to the master database, but will use almost none of
its (expensive) I/O capacity for replication, increasing the
resources available to queries. Furthermore, Rows’ indices
are allocated sequentially, reducing the cost of index scans,
and Rows’ buffer pool stores compressed pages, increasing
the effective size of system memory.

The primary drawback of this approach is that it roughly
doubles the cost of each random index lookup. Therefore,
the attractiveness of Rows hinges on two factors: the frac-
tion of the workload devoted to random tuple lookups, and
the premium one would have paid for a piece of specialized
storage hardware that Rows replaces.

1.2 Paper structure
We begin by providing an overview of Rows’ system design

and then present a simplified analytical model of LSM-Tree
I/O behavior. We apply this model to our test hardware,
and predict that Rows will greatly outperform database
replicas that store data in B-Trees. We proceed to present a
row-oriented page layout that adapts most column-oriented
compression schemes for use in Rows. Next, we evaluate
Rows’ replication performance on a real-world dataset, and
demonstrate orders of magnitude improvement over a MySQL
InnoDB B-Tree index. Our performance evaluations con-
clude with an analysis of our prototype’s performance and
shortcomings. We defer related work to the end of the pa-
per, as recent research suggests a number of ways in which
Rows could be improved.

2. SYSTEM OVERVIEW
A Rows replica takes a replication log as input, and stores

the changes it contains in a log structured merge (LSM)
tree[7].

An LSM-Tree is an index method that consists of multi-
ple sub-trees (components). The smallest component, C0

is a memory resident binary search tree. The next smallest
component, C1 is a bulk loaded B-Tree. Updates are ap-
plied directly to C0. As C0 grows, it is merged with C1.
The merge process consists of index scans, and produces a
new (bulk loaded) version of C1 that contains the updates
from C0. LSM-Trees can have arbitrarily many components,
though three components (two on-disk tress) are generally
adequate. The memory-resident component, C0, is updated
in place. All other components are produced by repeated
merges with the next smaller component. Therefore, LSM-
Trees are updated without resorting to random disk I/O.

Unlike the original LSM work, Rows compresses the data
using techniques from column-oriented databases, and is de-
signed exclusively for database replication. Merge through-
put is bounded by sequential I/O bandwidth, and lookup
performance is limited by the amount of available mem-
ory. Rows uses compression to trade surplus computational
power for scarce storage resources.

The replication log should record each transaction begin,
commit, and abort performed by the master database, along
with the pre- and post-images associated with each tuple
update. The ordering of these entries must match the order
in which they are applied at the database master.

Upon receiving a log entry, Rows applies it to an in-
memory tree, and the update is immediately available to
queries that do not require a consistent view of the data.
Rows provides snapshot consistency to readers that require
transactional isolation. It does so in a lock-free manner;
transactions’ reads and writes are not tracked, and no Rows
transaction can ever force another to block or abort. When
given appropriate workloads, Rows provides extremely low-
latency replication. Transactionally consistent data becomes
available after a delay on the order of the duration of a few
update transactions. The details of Rows’ concurrency con-
trol mechanisms are provided in Section 2.5.

In order to look up a tuple stored in Rows, a query must
examine all three tree components, typically starting with
the in-memory (fastest, and most up-to-date) component,
and then moving on to progressively larger and out-of-date
trees. In order to perform a range scan, the query can iterate
over the trees manually. Alternatively, it can wait until the
next round of merging occurs, and apply the scan to tuples
as the mergers examine them. By waiting until the tuples
are due to be merged, the range-scan can occur with zero
I/O cost, at the expense of significant delay.

Rows merges LSM-Tree components in background threads.
This allows it to continuously process updates and service
index lookup requests. In order to minimize the overhead of
thread synchronization, index lookups lock entire tree com-
ponents at a time. Because on-disk tree components are
read-only, these latches only block tree deletion, allowing
merges and lookups to occur concurrently. C0 is updated in
place, preventing inserts from occurring concurrently with
merges and lookups. However, operations on C0 are com-
paratively fast, reducing contention for C0’s latch.

Recovery, space management and atomic updates to Rows’
metadata are handled by an existing transactional storage
system. Rows is implemented as an extension to the trans-
action system and stores its data in a conventional database
page file. Rows does not use the underlying transaction sys-
tem to log changes to its tree components. Instead, it force
writes tree components to disk after each merge completes,
ensuring durability without significant logging overhead.

2

As far as we know, Rows is the first LSM-Tree implemen-
tation. This section provides an overview of LSM-Trees, and
explains how we quantify the cost of tuple insertions. It then
steps through a rough analysis of LSM-Tree performance on
current hardware (we refer the reader to the original LSM
work for a thorough analytical discussion of LSM perfor-
mance). Finally, we explain how our implementation pro-
vides transactional isolation, exploits hardware parallelism,
and supports crash recovery. These implementation specific
details are an important contribution of this work; they ex-
plain how to adapt LSM-Trees to provide high performance
database replication. We defer discussion of Rows’ compres-
sion techniques to the next section.

2.1 Tree merging
For simplicity, this paper considers three component LSM-

Trees. Component zero (C0) is an in-memory binary search
tree. Components one and two (C1, C2) are read-only, bulk-
loaded B-Trees. Each update is handled in three stages. In
the first stage, the update is applied to the in-memory tree.
Next, once enough updates have been applied, a tree merge
is initiated, and the tuple is eventually merged with existing
tuples in C1. The merge process performs a sequential scan
over the in-memory tree and C1, producing a new version
of C1.

When the merge is complete, C1 is atomically replaced
with the new tree, and C0 is atomically replaced with an
empty tree. The process is then eventually repeated when
C1 and C2 are merged.

Although our prototype replaces entire trees at once, this
approach introduces a number of performance problems.
The original LSM work proposes a more sophisticated scheme
that addresses some of these issues. Instead of replacing en-
tire trees at once, it replaces one subtree at a time. This
reduces peak storage and memory requirements.

Truly atomic replacement of portions of an LSM-Tree
would cause ongoing merges to block insertions, and force
the mergers to run in lock step. (This problem is mentioned
in the LSM paper.) We address this issue by allowing data
to be inserted into the new version of the smaller compo-
nent before the merge completes. This forces Rows to check
both versions of components C0 and C1 in order to look up
each tuple, but it handles concurrency between merge steps
without resorting to fine-grained latches. Applying this ap-
proach to subtrees would reduce the impact of these extra
lookups, which could be filtered out with a range comparison
in the common case.

2.2 Amortized insertion cost
In order to compute the amortized cost of insertion into

an LSM-Tree, we need only consider the cost of comparing
the inserted tuple with older tuples (otherwise, we would
count the cost of each comparison twice). Therefore, we
say that each tuple insertion ultimately causes two rounds
of I/O operations; one for the merge into C1, and another
to merge into C2. Once a tuple reaches C2 it does not
contribute to the initiation of more I/O (For simplicity, we
assume the LSM-Tree has reached a steady state).

In a populated LSM-Tree C2 is the largest component,
and C0 is the smallest component. The original LSM-Tree
work proves that throughput is maximized when the ratio
of the sizes of C1 to C0 is equal to the ratio between C2
and C1. They call this ratio R. Note that (on average in

a steady state) for every C0 tuple consumed by a merge, R
tuples from C1 must be examined. Similarly, each time a
tuple in C1 is consumed, R tuples from C2 are examined.
Therefore, in a steady state, insertion rate times the sum of
R∗costread and write C2 and R∗costread and write C1 cannot
exceed the drive’s sequential I/O bandwidth. Note that the
total size of the tree is approximately R2 ∗ |C0| (neglecting
the data stored in C0 and C1)2.

2.3 Replication Throughput
LSM-Trees have different asymptotic performance charac-

teristics than conventional index structures. In particular,
the amortized cost of insertion is O(

√
n) in the size of the

data. This cost isO(log n) for a B-Tree. The relative costs of
sequential and random I/O determine whether or not Rows
is able to outperform B-Trees in practice. This section de-
scribes the impact of compression on B-Tree and LSM-Tree
performance using (intentionally simplistic) models of their
performance characteristics.

Starting with the (more familiar) B-Tree case, in the steady
state we can expect each index update to perform two ran-
dom disk accesses (one evicts a page, the other reads a page).
Tuple compression does not reduce the number of disk seeks:

costBtree update = 2 costrandom io

(We assume that the upper levels of the B-Tree are mem-
ory resident.) If we assume uniform access patterns, 4 KB
pages and 100 byte tuples, this means that an uncompressed
B-Tree would keep ∼ 2.5% of the tuples in memory. Pre-
fix compression and a skewed update distribution would im-
prove the situation significantly, but are not considered here.
Without a skewed update distribution, batching I/O into se-
quential writes only helps if a significant fraction of the tree’s
data fits in RAM.

In Rows, we have:

costLSMtree update = 2 ∗ 2 ∗ 2 ∗R ∗ costsequential io

compression ratio

where R is the ratio of adjacent tree component sizes (R2 =
|tree|
|mem|). We multiply by 2R because each new tuple is even-

tually merged into both of the larger components, and each
merge involves R comparisons with existing tuples on aver-
age.

An update of a tuple is handled as a deletion of the old
tuple (an insertion of a tombstone), and an insertion of the
new tuple, leading to a second factor of two. The third
reflects the fact that the merger must read existing tuples
into memory before writing them back to disk.

The compression ratio is uncompressed size
compressed size

, so improved
compression leads to less expensive LSM-Tree updates. For
simplicity, we assume that the compression ratio is the same
throughout each component of the LSM-Tree; Rows ad-
dresses this at run-time by reasoning in terms of the number
of pages used by each component.

Our test hardware’s hard drive is a 7200RPM, 750 GB
Seagate Barracuda ES. Third party benchmarks[8] report
random access times of 12.3/13.5msec and 44.3−78.5MB/s
sustained throughput. Timing dd if=/dev/zero of=file;

2The proof that keeping R constant across our three tree
components follows from the fact that the mergers compete
for I/O bandwidth and x(1−x) is maximized when x = 0.5.
The LSM-Tree paper proves the general case.

3

sync on an empty ext3 file system suggests our test hard-
ware provides 57.5MB/s of storage bandwidth.

Assuming a fixed hardware configuration, and measuring
cost in disk time, we have:

costsequential =
|tuple|

78.5MB/s
= 12.7 |tuple| nsec/tuple (min)

costsequential =
|tuple|

44.3MB/s
= 22.6 |tuple| nsec/tuple (max)

and

costrandom =
12.3 + 13.5

2
= 12.9 msec/tuple

Pessimistically setting

2 costrandom ≈ 1, 000, 000
costsequential

|tuple|

yields:

costLSMtree update

costBtree update
=

2 ∗ 2 ∗ 2 ∗R ∗ costsequential

compression ratio ∗ 2 ∗ costrandom

≈ R ∗ |tuple|
250, 000 ∗ compression ratio

If tuples are 100 bytes and we assume a compression ratio of
4 (lower than we expect to see in practice, but numerically
convenient), the LSM-Tree outperforms the B-Tree when:

R <
250, 000 ∗ compression ratio

|tuple|

R < 10, 000

on a machine that can store 1 GB in an in-memory tree, this
yields a maximum “interesting” tree size of R2 ∗1GB = 100
petabytes, well above the actual drive capacity of 750 GB.
A 750 GB tree would have a C2 component 750 times larger
than the 1GB C0 component. Therefore, it would have an
R of

√
750 ≈ 27; we would expect such a tree to have a

sustained insertion throughput of approximately 8000 tuples
/ second, or 800 kbyte/sec3 given our 100 byte tuples.

Our hard drive’s average access time tells us that we can
expect the drive to deliver 83 I/O operations per second.
Therefore, we can expect an insertion throughput of 41.5
tuples / sec from a B-Tree with a 18.5 GB buffer pool. With
just 1GB of RAM, Rows should outperform the B-Tree by
more than two orders of magnitude. Increasing Rows’ sys-
tem memory to cache 10GB of tuples would increase write
performance by a factor of

√
10.

Increasing memory another ten fold to 100GB would yield
an LSM-Tree with an R of

p
750/100 = 2.73 and a through-

put of 81,000 tuples/sec. In contrast, the B-Tree could cache
roughly 80GB of leaf pages in memory, and write approx-
imately 41.5

(1−(80/750)
= 46.5 tuples/sec. Increasing memory

further yields a system that is no longer disk bound.
Assuming that the CPUs are fast enough to allow Rows

compression and merge routines to keep up with the band-
width supplied by the disks, we conclude that Rows will
provide significantly higher replication throughput for disk
bound applications.

3It would take 11 days to overwrite every tuple on the drive
in random order.

Table 1: Tree creation overhead - five column (20
bytes/column)

Format Compression Page count
PFOR 1.96x 2494
PFOR + tree 1.94x +80
RLE 3.24x 1505
RLE + tree 3.22x +21

Table 2: Tree creation overhead - 100 columns (400
bytes/column)

Format Compression Page count
PFOR 1.37x 7143
PFOR + tree 1.17x 8335
RLE 1.75x 5591
RLE + tree 1.50x 6525

2.4 Indexing
Our analysis ignores the cost of allocating and initializing

our LSM-Trees’ internal nodes. The compressed data consti-
tutes the leaf pages of the tree. Each time the compression
process fills a page, it inserts an entry into the leftmost entry
in the tree, allocating additional internal nodes if necessary.
Our prototype does not compress internal tree nodes4, so
it writes one tuple into the tree’s internal nodes per com-
pressed page. Rows inherits a default page size of 4KB from
the transaction system we based it upon. Although 4KB is
fairly small by modern standards, Rows is not particularly
sensitive to page size; even with 4KB pages, Rows’ per-page
overheads are acceptable. Assuming tuples are 400 bytes,
∼ 1

10
th of our pages are dedicated to the lowest level of tree

nodes, with 1
10

th that number devoted to the next highest
level, and so on. See Table 2 for a comparison of compression
performance with and without tree creation enabled5. The
data was generated by applying Rows’ compressors to ran-
domly generated five column, 1,000,000 row tables. Across
five runs, in Table 1 RLE’s page count had a standard de-
viation of σ = 2.35; the other values had σ = 0. In Table 2,
σ < 7.26 pages.

As the size of the tuples increases, the number of com-
pressed pages that each internal tree node points to de-
creases, increasing the overhead of tree creation. In such
circumstances, internal tree node compression and larger
pages should improve the situation.

2.5 Isolation
Rows combines replicated transactions into snapshots. Each

transaction is assigned to a snapshot according to a times-
tamp; two snapshots are active at any given time. Rows
assigns incoming transactions to the newer of the two ac-
tive snapshots. Once all transactions in the older snapshot
have completed, that snapshot is marked inactive, exposing
its contents to new queries that request a consistent view
of the data. At this point a new active snapshot is created,

4This is a limitation of our prototype; not our approach. In-
ternal tree nodes are append-only and, at the very least, the
page ID data is amenable to compression. Like B-Tree com-
pression, this would decrease the memory used by lookups.
5Our analysis ignores page headers, per-column, and per-
tuple overheads; these factors account for the additional in-
dexing overhead.

4

and the process continues.
The timestamp is simply the snapshot number. In the case

of a tie during merging (such as two tuples with the same
primary key and timestamp), the version from the newer
(lower numbered) component is taken.

This ensures that, within each snapshot, Rows applies all
updates in the same order as the primary database. Across
snapshots, concurrent transactions (which can write non-
conflicting tuples in arbitrary orders) lead to reordering of
updates. However, these updates are guaranteed to be ap-
plied in transaction order. The correctness of this scheme
hinges on the correctness of the timestamps applied to each
transaction.

If the master database provides snapshot isolation using
multiversion concurrency control (as is becoming increas-
ingly popular), we can simply reuse the timestamp it applies
to each transaction. If the master uses two phase locking,
the situation becomes more complex, as we have to use the
commit time of each transaction6. Until the commit time
is known, Rows stores the transaction id in the LSM-Tree.
As transactions are committed, it records the mapping from
transaction id to snapshot. Eventually, the merger trans-
lates transaction id’s to snapshots, preventing the mapping
from growing without bound.

New snapshots are created in two steps. First, all transac-
tions in epoch t−1 must complete (commit or abort) so that
they are guaranteed to never apply updates to the database
again. In the second step, Rows’ current snapshot number
is incremented, new read-only transactions are assigned to
snapshot t − 1, and new updates are assigned to snapshot
t + 1. Each such transaction is granted a shared lock on
the existence of the snapshot, protecting that version of the
database from garbage collection. In order to ensure that
new snapshots are created in a timely and predictable fash-
ion, the time between them should be acceptably short, but
still slightly longer than the longest running transaction.

2.5.1 Isolation performance impact
Although Rows’ isolation mechanisms never block the ex-

ecution of index operations, their performance degrades in
the presence of long running transactions. Long running
updates block the creation of new snapshots. Ideally, upon
encountering such a transaction, Rows simply asks the mas-
ter database to abort the offending update. It then waits
until appropriate rollback (or perhaps commit) entries ap-
pear in the replication log, and creates the new snapshot.
While waiting for the transactions to complete, Rows con-
tinues to process replication requests by extending snapshot
t.

Of course, proactively aborting long running updates is
simply an optimization. Without a surly database admin-
istrator to defend it against application developers, Rows
does not send abort requests, but otherwise behaves identi-
cally. Read-only queries that are interested in transactional
consistency continue to read from (the increasingly stale)
snapshot t− 2 until t− 1’s long running updates commit.

Long running queries present a different set of challenges
to Rows. Although Rows provides fairly efficient time-travel
support, versioning databases are not our target application.

6This assumes all transactions use transaction-duration
write locks, and lock release and commit occur atomically.
Transactions that obtain short write locks can be treated as
a set of single action transactions.

Rows provides each new read-only query with guaranteed
access to a consistent version of the database. Therefore,
long-running queries force Rows to keep old versions of over-
written tuples around until the query completes. These tu-
ples increase the size of Rows’ LSM-Trees, increasing merge
overhead. If the space consumed by old versions of the data
is a serious issue, long running queries should be disallowed.
Alternatively, historical, or long-running queries could be
run against certain snapshots (every 1000th, or the first one
of the day, for example), reducing the overhead of preserving
old versions of frequently updated data.

2.5.2 Merging and Garbage collection
Rows merges components by iterating over them in order,

garbage collecting obsolete and duplicate tuples and writing
the rest into a new version of the largest component. Be-
cause Rows provides snapshot consistency to queries, it must
be careful not to collect a version of a tuple that is visible
to any outstanding (or future) queries. Because Rows never
performs disk seeks to service writes, it handles deletions by
inserting special tombstone tuples into the tree. The tomb-
stone’s purpose is to record the deletion event until all older
versions of the tuple have been garbage collected. Sometime
after that point, the tombstone is collected as well.

In order to determine whether or not a tuple can be col-
lected, Rows compares the tuple’s timestamp with any match-
ing tombstones (or record creations, if the tuple is a tomb-
stone), and with any tuples that match on primary key.
Upon encountering such candidates for garbage collection,
Rows compares their timestamps with the set of locked snap-
shots. If there are no snapshots between the tuple being
examined and the updated version, then the tuple can be
collected. Tombstone tuples can also be collected once they
reach C2 and any older matching tuples have been removed.

Actual reclamation of pages is handled by the underlying
transaction system; once Rows completes its scan over ex-
isting components (and registers new ones in their places),
it tells the transaction system to reclaim the regions of the
page file that stored the old components.

2.6 Parallelism
Rows provides ample opportunities for parallelism. All of

its operations are lock-free; concurrent readers and writers
work independently, avoiding blocking, deadlock and live-
lock. Index probes must latch C0 in order to perform a
lookup, but the more costly probes into C1 and C2 are
against read-only trees; beyond locating and pinning tree
components against deallocation, probes of these compo-
nents do not interact with the merge processes.

Our prototype exploits replication’s pipelined parallelism
by running each component’s merge process in a separate
thread. In practice, this allows our prototype to exploit two
to three processor cores during replication. Remaining cores
could be used by queries, or (as hardware designers increase
the number of processor cores per package) by using data
parallelism to split each merge across multiple threads.

Finally, Rows is capable of using standard database im-
plementation techniques to overlap I/O requests with com-
putation. Therefore, the I/O wait time of CPU bound work-
loads should be negligible, and I/O bound workloads should
be able to take complete advantage of the disk’s sequential
I/O bandwidth. Therefore, given ample storage bandwidth,
we expect the throughput of Rows replication to increase

5

with Moore’s law for the foreseeable future.

2.7 Recovery
Like other log structured storage systems, Rows’ recovery

process is inexpensive and straightforward. However, Rows
does not attempt to ensure that transactions are atomically
committed to disk, and is not meant to replace the master
database’s recovery log.

Instead, recovery occurs in two steps. Whenever Rows
writes a tree component to disk, it does so by beginning a
new transaction in the underlying transaction system. Next,
it allocates contiguous regions of disk pages (generating one
log entry per region), and performs a B-Tree style bulk load
of the new tree into these regions (this bulk load does not
produce any log entries). Then, Rows forces the tree’s re-
gions to disk, and writes the list of regions used by the tree
and the location of the tree’s root to normal (write ahead
logged) records. Finally, it commits the underlying transac-
tion.

After the underlying transaction system completes recov-
ery, Rows will have a set of intact and complete tree com-
ponents. Space taken up by partially written trees was al-
located by an aborted transaction, and has been reclaimed
by the transaction system’s recovery mechanism. After the
underlying recovery mechanisms complete, Rows reads the
last committed timestamp from the LSM-Tree header, and
begins playback of the replication log at the appropriate po-
sition. Upon committing new components to disk, Rows
allows the appropriate portion of the replication log to be
truncated.

3. ROW COMPRESSION
Disk heads are the primary storage bottleneck for most

OLTP environments, and disk capacity is of secondary con-
cern. Therefore, database compression is generally performed
to improve system performance, not capacity. In Rows, se-
quential I/O throughput is the primary replication bottle-
neck; and is proportional to the compression ratio. Further-
more, compression increases the effective size of the buffer
pool, which is the primary bottleneck for Rows’ random in-
dex lookups.

Although Rows targets row-oriented workloads, its com-
pression routines are based upon column-oriented techniques
and rely on the assumption that pages are indexed in an
order that yields easily compressible columns. Rows’ com-
pression formats are based on our multicolumn compression
format. In order to store data from an N column table, we
divide the page into N+1 variable length regions. N of these
regions each contain a compressed column. The remaining
region contains “exceptional” column data (potentially from
more than one column).

For example, a column might be encoded using the frame
of reference (FOR) algorithm, which stores a column of in-
tegers as a single offset value and a list of deltas. When a
value too different from the offset to be encoded as a delta
is encountered, an offset into the exceptions region is stored.
When applied to a page that stores data from a single col-
umn, the resulting algorithm is MonetDB’s patched frame of
reference (PFOR) [11].

Rows’ multicolumn pages extend this idea by allowing
multiple columns (each with its own compression algorithm)
to coexist on each page. This reduces the cost of reconstruct-
ing tuples during index lookups, and yields a new approach

Table 3: Compressor throughput - Random data
Mean of 5 runs, σ < 5%, except where noted

Format (#col) Ratio Comp. mb/s Decomp. mb/s
PFOR (1) 3.96x 547 2959
PFOR (10) 3.86x 256 719
RLE (1) 48.83x 960 1493 (12%)
RLE (10) 47.60x 358 (9%) 659 (7%)

to superscalar compression with a number of new, and po-
tentially interesting properties.

We implemented two compression formats for Rows’ mul-
ticolumn pages. The first is PFOR, the other is run length
encoding, which stores values as a list of distinct values and
repetition counts. This section discusses the computational
and storage overhead of the multicolumn compression ap-
proach.

3.1 Multicolumn computational overhead
Rows builds upon compression algorithms that are amenable

to superscalar optimization, and can achieve throughputs in
excess of 1GB/s on current hardware.

Additional computational overhead is introduced in two
areas. First, Rows compresses each column in a separate
buffer, then uses memcpy() to gather this data into a single
page buffer before writing it to disk. This memcpy() occurs
once per page allocation.

Second, we need a way to translate requests to write a
tuple into calls to appropriate page formats and compres-
sion implementations. Unless we hardcode our Rows exe-
cutable to support a predefined set of page formats (and
table schemas), this invokes an extra for loop (over the
columns) whose body contains a switch statement (in or-
der to choose between column compressors) to each tuple
compression request.

This form of multicolumn support introduces significant
overhead; these variants of our compression algorithms run
significantly slower than versions hard-coded to work with
single column data. Table 3 compares a fixed-format single
column page layout with Rows’ dynamically dispatched (not
custom generated code) multicolumn format.

3.2 The append() operation
Rows’ compressed pages provide a tupleAppend() oper-

ation that takes a tuple as input, and returns false if the
page does not have room for the new tuple. tupleAppend()

consists of a dispatch routine that calls append() on each
column in turn. Each column’s append() routine secures
storage space for the column value, or returns false if no
space is available. append() has the following signature:

append(COL TYPE value, int* exception offset,

void* exceptions base, void* column base, int*

freespace)

where value is the value to be appended to the column,
exception offset is a pointer to the first free byte in the
exceptions region, exceptions base and column base point
to (page sized) buffers used to store exceptions and column
data as the page is being written to. One copy of these
buffers exists for each page that Rows is actively writing to
(one per disk-resident LSM-Tree component); they do not
significantly increase Rows’ memory requirements. Finally,

6

freespace is a pointer to the number of free bytes remaining
on the page. The multicolumn format initializes these values
when the page is allocated.

As append() implementations are called they update this
data accordingly. Initially, our multicolumn module man-
aged these values and the exception space. This led to extra
arithmetic operations and conditionals and did not signifi-
cantly simplify the code. Note that, compared to techniques
that store each tuple contiguously on the page, our format
avoids encoding the (variable) length of each tuple; instead
it encodes the length of each column.

The existing PFOR implementation assumes it has ac-
cess to a buffer of uncompressed data and that it is able
to make multiple passes over the data during compression.
This allows it to remove branches from loop bodies, im-
proving compression throughput. We opted to avoid this
approach in Rows, as it would increase the complexity of
the append() interface, and add a buffer to Rows’ merge
threads.

3.3 Static code generation
After evaluating the performance of a C implementation

of Rows’ compression routines, we decided to rewrite the
compression routines as C++ templates. C++ template in-
stantiation performs compile-time macro substitutions. We
declare all functions inline, and place them in header files
(rather than separate compilation units). This gives g++
the opportunity to perform optimizations such as cross-module
constant propagation and branch elimination. It also allows
us to write code that deals with integer data types instead
of void pointers without duplicating code or breaking encap-
sulation.

Such optimizations are possible in C, but, because of lim-
itations of the preprocessor, would be difficult to express or
require separate code-generation utilities. We found that
this set of optimizations improved compression and decom-
pression performance by roughly an order of magnitude.
Although compressor throughput varies with data distribu-
tions and type, optimizations yield a similar performance
improvement across varied datasets and random data dis-
tributions.

We performed one additional set of optimizations. Rather
than instantiate each compressor template once for each col-
umn type at compile time, we instantiate a multicolumn
page format template for each page format we wish to sup-
port. This removes the for loop and switch statement that
supporting multiple columns per page introduced, but hard-
codes page schemas at compile time.

The two approaches could coexist in a single runtime en-
vironment, allowing the use of hardcoded implementations
for performance critical tables, while falling back on slower,
general purpose implementations for previously unseen table
layouts.

3.4 Buffer manager interface extensions
Rows uses a preexisting, conventional database buffer man-

ager. Each page contains an LSN (which is largely un-
used, as we bulk-load Rows’ trees) and a page implemen-
tation number. This allows it to coexist with conventional
write ahead logging mechanisms. As mentioned above, this
greatly simplifies crash recovery without introducing signif-
icant logging overhead.

Memory resident pages are stored in a hashtable keyed by

page number, and replaced using an LRU strategy7.
In implementing Rows, we made use of a number of gen-

erally useful callbacks that are of particular interest to Rows
and other database compression schemes. The first, pageLoaded()
instantiates a new multicolumn page implementation when
the page is first read into memory. The second, pageFlushed()
informs our multicolumn implementation that the page is
about to be written to disk, and the third pageEvicted()

invokes the multicolumn destructor.
We need to register implementations for these functions

because the transaction system maintains background threads
that control eviction of Rows’ pages from memory. Register-
ing these callbacks provides an extra benefit; we parse the
page headers, calculate offsets, and choose optimized com-
pression routines when a page is read from disk instead of
each time we access it.

As we mentioned above, pages are split into a number
of temporary buffers while they are being written, and are
then packed into a contiguous buffer before being flushed.
Although this operation is expensive, it does present an op-
portunity for parallelism. Rows provides a per-page opera-
tion, pack() that performs the translation. We can register
pack() as a pageFlushed() callback or we can explicitly call
it during (or shortly after) compression.
pageFlushed() could be safely executed in a background

thread with minimal impact on system performance. How-
ever, the buffer manager was written under the assump-
tion that the cost of in-memory operations is negligible.
Therefore, it blocks all buffer management requests while
pageFlushed() is being executed. In practice, this causes
multiple Rows threads to block on each pack().

Also, pack() reduces Rows’ memory utilization by freeing
up temporary compression buffers. Delaying its execution
for too long might allow this memory to be evicted from
processor cache before the memcpy() can occur. For these
reasons, the merge threads explicitly invoke pack() as soon
as possible.

3.5 Storage overhead
The multicolumn page format is quite similar to the for-

mat of existing column-wise compression formats. The al-
gorithms we implemented have page formats that can be
(broadly speaking) divided into two sections. The first sec-
tion is a header that contains an encoding of the size of the
compressed region, and perhaps a piece of uncompressed
exemplar data (as in frame of reference compression). The
second section typically contains the compressed data.

A multicolumn page contains this information in addition
to metadata describing the position and type of each col-
umn. The type and number of columns could be encoded
in the “page type” field, or be explicitly represented using a
few bytes per page column. Allocating 16 bits for the page
offset and 16 bits for the column type compressor uses 4
bytes per column. Therefore, the additional overhead for an
N column page’s header is

(N − 1) ∗ (4 + |average compression format header|)

bytes. A frame of reference column header consists of 2
bytes to record the number of encoded rows and a single

7LRU is a particularly poor choice, given that Rows’ I/O
is dominated by large table scans. Eventually, we hope to
add support for explicit eviction of pages read by the merge
processes.

7

uncompressed value. Run length encoding headers consist
of a 2 byte count of compressed blocks. Therefore, in the
worst case (frame of reference encoding 64-bit integers, and
Rows’ 4KB pages) our prototype’s multicolumn format uses
14/4096 ≈ 0.35% of the page to store each column header.
If the data does not compress well, and tuples are large,
additional storage may be wasted because Rows does not
split tuples across pages. Tables 1 and 2, which draw column
values from independent, identical distributions, show that
Rows’ compression ratio can be significantly impacted by
large tuples.

Breaking pages into smaller compressed blocks changes
the compression ratio in another way; the compressibility of
the data varies with the size of each compressed block. For
example, when frame of reference is applied to sorted data,
incoming values eventually drift too far from the page offset,
causing them to be stored as exceptional values. Therefore
(neglecting header bytes), smaller frame of reference blocks
provide higher compression ratios.

Of course, conventional compression algorithms are free to
divide their compressed data into blocks to maximize com-
pression ratios. Although Rows’ smaller compressed block
size benefits some compression implementations (and does
not adversely impact either of the algorithms we imple-
mented), it creates an additional constraint, and may in-
teract poorly with some compression algorithms.

3.6 Supporting Random Access
The multicolumn page format is designed to allow effi-

cient row-oriented access to data. The efficiency of random
access within a page depends on the format used by indi-
vidual compressors. Rows compressors support two access
methods. The first looks up a value by slot id. This oper-
ation is O(1) for frame of reference columns, and O(log n)
(in the number of runs of identical values on the page) for
run length encoded columns.

The second operation is used to look up tuples by value,
and is based on the assumption that the the tuples (not
columns) are stored in the page in sorted order. It takes a
range of slot ids and a value, and returns the offset of the
first and last instance of the value within the range. This
operation is O(log n) (in the number of values in the range)
for frame of reference columns, and O(log n) (in the num-
ber of runs on the page) for run length encoded columns.
The multicolumn implementation uses this method to look
up tuples by beginning with the entire page in range, and
calling each compressor’s implementation in order to nar-
row the search until the correct tuple(s) are located or the
range is empty. Note that partially-matching tuples are only
partially examined during the search, and that our binary
searches within a column should have better cache locality
than searches of row-oriented page layouts.

We have not examined the tradeoffs between different im-
plementations of tuple lookups. Currently, rather than using
binary search to find the boundaries of each range, our com-
pressors simply iterate over the compressed representation of
the data in order to progressively narrow the range of tuples
to be considered. It is possible that (because of expensive
branch mispredictions and Rows’ small pages) that our lin-
ear search implementation will outperform approaches based
upon binary search.

4. EVALUATION

Table 4: Weather data schema
Column Name Compression Format Key
Longitude RLE *
Latitude RLE *
Timestamp PFOR *
Weather conditions RLE
Station ID RLE
Elevation RLE
Temperature PFOR
Wind Direction PFOR
Wind Speed PFOR
Wind Gust Speed RLE

4.1 The data set
In order to evaluate Rows’ performance, we used it to

index weather data. The data we used ranges from May
1, 2007 to Nov 2, 2007, and contains readings from ground
stations around the world [6]. This data is approximately
1.3GB when stored in an uncompressed tab delimited file.
We duplicated the data by changing the date fields to cover
ranges from 2001 to 2009, producing a 12GB ASCII dataset
that contains approximately 122 million tuples.

Duplicating the data should have a limited effect on Rows’
compression ratios. Although we index on geographic posi-
tion, placing all readings from a particular station in a con-
tiguous range, we then index on date. This separates most
duplicate versions of the same tuple from each other.

Rows only supports integer data types. We encode the
ASCII columns in the data by packing each character into 5
bits (the strings only contain the characters A-Z, “+,” “-,”
and “*”). Floating point columns in the raw data set are
always represented with two digits of precision; we multiply
them by 100, yielding an integer. The data source uses
nonsensical readings (such as -9999.00) to represent NULL.
Our prototype does not understand NULL, so we leave these
fields intact.

We represent each column as a 32-bit integer (even when
a 16-bit value would do), except current weather conditions,
which is packed into a 64-bit integer. Table 4 lists the
columns and compression algorithms we assigned to each
column. The “Key” column refers to whether or not the
field was used as part of a MySQL primary key. InnoDB
performance tuning guides suggest limiting the length of the
table’s primary key. Rows does not support this optimiza-
tion, so we indexed the Rows table on all columns.

Rows targets seek limited applications; we assign a (sin-
gle) random order to the tuples, and insert them in this
order. We compare Rows’ performance with the MySQL
InnoDB storage engine’s bulk loader8. This avoids the over-
head of SQL insert statements. To force InnoDB to update
its B-Tree index in place, we break the dataset into 100,000
tuple chunks, and bulk load each one in succession.

If we did not do this, MySQL would simply sort the tuples,
and then bulk load the index. This behavior is unacceptable
in low-latency environments. Breaking the bulk load into
multiple chunks forces MySQL to make intermediate results
available as the bulk load proceeds9.

8We also evaluated MySQL’s MyISAM table format. Pre-
dictably, performance degraded quickly as the tree grew;
ISAM indices do not support node splits.
9MySQL’s concurrent keyword allows access to existing

8

0.1 1 10 100

million tuples inserted

0.10

1.00

10.00

100.00
a
v
e
ra

g
e
 m

e
g

a
b

y
te

s
/

s
InnoDB
Rows

Figure 1: Insertion throughput (log-log, average
over entire run).

We set InnoDB’s buffer pool size to 1GB, MySQL’s bulk
insert buffer size to 900MB, the log buffer size to 100MB,
and disabled InnoDB’s double buffer, which writes a copy of
each updated page to a sequential log. The double buffer in-
creases the amount of I/O performed by InnoDB, but allows
it to decrease the frequency with which it needs to fsync()
the buffer pool to disk. Once the system reaches steady
state, this would not save InnoDB from performing random
I/O, but it would increase I/O overhead.

We compiled Rows’ C components with “-O2”, and the
C++ components with “-O3”. The later compiler flag is
crucial, as compiler inlining and other optimizations improve
Rows’ compression throughput significantly. Rows was set
to allocate 1GB to C0 and another 1GB to its buffer pool.
The later memory is essentially wasted, given the buffer
pool’s LRU page replacement policy, and Rows’ sequential
I/O patterns.

Our test hardware has two dual core 64-bit 3GHz Xeon
processors with 2MB of cache (Linux reports 4 CPUs) and
8GB of RAM. All software used during our tests was com-
piled for 64 bit architectures. We used a 64-bit Ubuntu
Gutsy (Linux “2.6.22-14-generic”) installation, and the “5.0.45-
Debian 1ubuntu3” build of MySQL.

4.2 Comparison with conventional techniques
As Figure 1 shows, on an empty tree Rows provides roughly

7.5 times more throughput than InnoDB. As the tree size
increases, InnoDB’s performance degrades rapidly. After 35
million tuple insertions, we terminated the InnoDB run, as
Rows was providing nearly 100 times more throughput. We
continued the Rows run until the dataset was exhausted;
at this point, it was providing approximately 1

10
th its orig-

inal throughput, and had a target R value of 7.1. Figure 2
suggests that InnoDB was not actually disk bound during
our experiments; its worst-case average tuple insertion time
was approximately 3.4ms; well below the drive’s average ac-
cess time. Therefore, we believe that the operating system’s
page cache was insulating InnoDB from disk bottlenecks10.
This problem with our experimental setup should work in

data during a bulk load; new data is still exposed atomi-
cally.

10In the process of running our experiments, we found that
while Rows correctly handles 64-bit file offsets, and runs on

0.1 1 10

million tuples inserted

0.00

0.01

0.10

1.00

10.00

m
s

p
e
r

tu
p

le
 i
n
se

rt
io

n

InnoDB
Rows

Figure 2: Tuple insertion time (log-log, average over
entire run).

0 5 10

million tuples inserted

0.00

2.00

4.00

6.00

8.00

10.00

12.00

in
st

a
n
ta

n
e
o
u
s

m
e
g

a
b

y
te

s
/

s

InnoDB
Rows

Figure 3: Instantaneous insertion throughput (aver-
age over 100,000 tuple windows).

InnoDB’s favor.

4.3 Prototype evaluation
Rows outperforms B-Tree based solutions, as expected.

However, the prior section says little about the overall qual-
ity of our prototype implementation. In this section, we
measure update latency, and compare our implementation’s
performance with our simplified analytical model.

Figure 3 reports Rows’ replication throughput averaged
over windows of 100,000 tuple insertions. The large down-
ward spikes occur periodically throughout our experimental
run, though the figure is truncated to only show the first
10 million inserts. They occur for two reasons. First, C0
accepts insertions at a much greater rate than C1 or C2 can
accept them. Over 100,000 tuples fit in memory, so multiple
samples are taken before each new C0 component blocks on
the disk bound mergers. Second, Rows merges entire trees
at once, occasionally blocking smaller components for long
periods of time while larger components complete a merge
step. Both of these problems could be masked by rate limit-
ing the updates presented to Rows. A better solution would

64-bit platforms, it crashes when given more than 2GB of
RAM.

9

perform incremental tree merges instead of merging entire
components at once.

This paper has mentioned a number of limitations in our
prototype implementation. Figure 4 seeks to quantify the
performance impact of these limitations. This figure uses
our simplistic analytical model to calculate Rows’ effective
disk throughput utilization from Rows’ reported value of
R and instantaneous throughput. According to our model,
we should expect an ideal, uncompressed version of Rows
to perform about twice as fast as our prototype performed
during our experiments. During our tests, Rows maintains
a compression ratio of two. Therefore, our model suggests
that the prototype is running at 1

4
th its ideal speed.

A number of factors contribute to the discrepancy between
our model and our prototype’s performance. First, the pro-
totype’s whole-tree-at-a-time approach to merging forces us
to make extremely coarse and infrequent runtime adjust-
ments to the ratios between tree components. This prevents
Rows from reliably keeping the ratios near the current target
value for R. Second, Rows currently synchronously forces
tree components to disk. Given our large buffer pool, a sig-
nificant fraction of each new tree component is in the buffer
pool or operating system cache when the merge thread forces
it to disk. This prevents Rows from overlapping I/O with
computation. Finally, our analytical model neglects some
minor sources of storage overhead.

One other factor significantly limits our prototype’s per-
formance. Atomically replacing C0 doubles Rows peak mem-
ory utilization, halving the effective size of C0. The balanced
tree implementation that we use roughly doubles memory
utilization again. Therefore, in our tests, the prototype was
wasting approximately 750MB of the 1GB we allocated for
C0.

Our performance figures show that Rows significantly out-
performs a popular, production quality B-Tree implementa-
tion. Our experiments reveal a number of deficiencies in
our prototype implementation, suggesting that further im-
plementation efforts would improve its performance signif-
icantly. Finally, though our prototype could be improved,
it already performs at roughly 1

4
th of its ideal throughput.

Our analytical models suggest that it will significantly out-
perform any B-Tree implementation when applied to appro-
priate update workloads.

5. RELATED WORK

5.1 LSM-Trees
The original LSM-Tree work[7] provides a more detailed

analytical model than the one presented above. It focuses on
update intensive OLTP (TPC-A) workloads, and hardware
provisioning for steady state workloads.

Later work proposes the reuse of existing B-Tree imple-
mentations as the underlying storage mechanism for LSM-
Trees[3]. Many standard B-Tree operations (such as prefix
compression and bulk insertion) would benefit LSM-Tree im-
plementations. Rows uses a custom tree implementation so
that it can take advantage of compression. Compression al-
gorithms used in B-Tree implementations must provide for
efficient, in place updates of tree nodes. The bulk-load up-
date of Rows updates imposes fewer constraints upon our
compression algorithms.

Recent work on optimizing B-Trees for write intensive up-
dates dynamically relocates regions of B-Trees during writes [4].

0 20 40 60 80 100 120

million tuples inserted

0.00

10.00

20.00

30.00

40.00

50.00

60.00

4
R

 *
 t

h
ro

u
g

h
p

u
t

Actual
Ideal (without compression)

Figure 4: The Rows prototype’s effective band-
width utilization. Given infinite CPU time and a
perfect implementation, our simplified model pre-
dicts 4R ∗ throughput = sequential disk bandwidth ∗
compression ratio. (Our experimental setup never
updates tuples in place)

This reduces index fragmentation, but still relies upon ran-
dom I/O in the worst case. In contrast, LSM-Trees never use
disk-seeks to service write requests, and produce perfectly
laid out B-Trees.

The problem of Online B-Tree merging is closely related
to LSM-Trees’ merge process. B-Tree merging addresses sit-
uations where the contents of a single table index have been
split across two physical B-Trees that now need to be recon-
ciled. This situation arises, for example, during rebalancing
of partitions within a cluster of database machines.

One particularly interesting approach lazily piggybacks
merge operations on top of tree access requests. Upon ser-
vicing an index probe or range scan, the system must read
leaf nodes from both B-Trees. Rather than simply evicting
the pages from cache, lazy merging merges the portion of
the tree that has already been brought into memory [9].

The original LSM-Tree paper proposes a mechanism that
provides delayed LSM-Tree index scans with no additional
I/O. The idea is to wait for the merge thread to make a pass
over the index, and to supply the pages it produces to the
index scan before evicting them from the buffer pool.

If one were to applying lazy merging to an LSM-Tree, it
would service range scans immediately without significantly
increasing the amount of I/O performed by the system.

5.2 Row-based database compression
Row-oriented database compression techniques compress

each tuple individually, and (in some cases) ignore simi-
larities between adjacent data items. One such approach
(for low cardinality data) builds a table-wide mapping from
short identifier codes to longer string values. The mapping
table is stored in memory for convenient compression and
decompression. Other approaches include NULL suppres-
sion, which stores runs of NULL values as a single count,
and leading zero suppression which stores integers in a vari-
able length format that suppresses leading zeros. Row-based
schemes typically allow for easy decompression of individual
tuples. Therefore, they generally store the offset of each tu-
ple explicitly at the head of each page.

10

Another approach is to compress page data using a generic
compression algorithm, such as gzip. The primary drawback
to this approach is that the size of the compressed page is
not known until after compression. Also, general purpose
compression techniques are typically more processor inten-
sive than specialized database compression techniques [10].

5.3 Column-oriented database compression
Column-based compression is based on the observation

that sorted columns of data are often easier to compress than
sorted tuples. Each column contains a single data type, and
sorting decreases the cardinality and range of data stored on
each page. This increases the effectiveness of simple, special
purpose, compression schemes.

PFOR (patched frame of reference) was introduced as an
extension to the MonetDB[11] column-oriented database,
along with two other formats (PFOR-delta, which is similar
to PFOR, but stores values as deltas, and PDICT, which
encodes columns as keys and a dictionary that maps to the
original values). We plan to add both these formats to Rows
in the future. We chose these formats as a starting point
because they are amenable to superscalar optimization, and
compression is Rows’ primary CPU bottleneck. Like Mon-
etDB, each Rows table is supported by custom-generated
code.

C-Store, another column oriented database, has relational
operators that have been optimized to work directly on com-
pressed data[1]. For example, when joining two run length
encoded columns, it is unnecessary to explicitly represent
each row during the join. This optimization would be par-
ticularly useful in Rows, as its merge processes perform re-
peated joins over compressed data. Our prototype does not
make use of these optimizations, though they would likely
improve performance for CPU-bound workloads.

A recent paper provides a survey of database compres-
sion techniques and characterizes the interaction between
compression algorithms, processing power and memory bus
bandwidth. To the extent that multiple columns from the
same tuple are stored within the same page, all formats
within their classification scheme group information from
the same tuple together [5].

Rows, which does not split tuples across pages, takes a dif-
ferent approach, and stores each column separately within
a page. Our column oriented page layouts incur different
types of per-page overhead, and have fundamentally differ-
ent processor cache behaviors and instruction-level paral-
lelism properties than the schemes they consider.

In addition to supporting compression, column databases
typically optimize for queries that project away columns
during processing. They do this by precomputing the pro-
jection and potentially resorting and recompressing the data.
This reduces the amount of data on the disk and the amount
of I/O performed by the query. In a column store, such op-
timizations happen off-line, leading to high-latency inserts.
Rows can support such optimizations by producing multiple
LSM-Trees for a single table.

Unlike read-optimized column-oriented databases, Rows
is optimized for write throughput, and provides low-latency,
in-place updates. This property does not come without cost;
compared to a column store, Rows must merge replicated
data more often, achieves lower compression ratios, and per-
forms index lookups that are roughly twice as expensive as
a B-Tree lookup.

5.4 Snapshot consistency
Rows relies upon the correctness of the master database’s

concurrency control algorithms to provide snapshot consis-
tency to queries. Rows is compatible with the two most
popular approaches to concurrency control in OLTP envi-
ronments: two-phase locking and timestamps (multiversion
concurrency control).

Rows only processes read-only transactions. Therefore, its
concurrency control algorithms need only address read-write
conflicts. Well-understood techniques protect against read-
write conflicts without causing requests to block, deadlock
or livelock [2].

5.5 Log shipping
Log shipping mechanisms are largely outside the scope of

this paper; any protocol that provides Rows replicas with
up-to-date, intact copies of the replication log will do. De-
pending on the desired level of durability, a commit protocol
could be used to ensure that the Rows replica receives up-
dates before the master commits. Because Rows is already
bound by sequential I/O throughput, and because the repli-
cation log might not be appropriate for database recovery,
large deployments would probably opt to store recovery and
logs on machines that are not used for replication.

6. CONCLUSION
Compressed LSM trees are practical on modern hardware.

As CPU resources increase, increasingly sophisticated com-
pression schemes will become practical. Improved compres-
sion ratios improve Rows’ throughput by decreasing its se-
quential I/O requirements. In addition to applying com-
pression to LSM-Trees, we presented a new approach to
database replication that leverages the strengths of LSM-
Tree indices by avoiding index probing during updates. We
also introduced the idea of using snapshot consistency to
provide concurrency control for LSM-Trees. Our prototype’s
LSM-Tree recovery mechanism is extremely straightforward,
and makes use of a simple latching mechanism to maintain
our LSM-Trees’ consistency. It can easily be extended to
more sophisticated LSM-Tree implementations that perform
incremental tree merging.

Our implementation is a first cut at a working version of
Rows; we have mentioned a number of potential improve-
ments throughout this paper. We have characterized the
performance of our prototype, and bounded the performance
gain we can expect to achieve via continued optimization of
our prototype. Without compression, LSM-Trees can out-
perform B-Tree based indices by at least 2 orders of magni-
tude. With real-world database compression ratios ranging
from 5-20x, we expect Rows database replicas to outper-
form B-Tree based database replicas by an additional factor
of ten.

We implemented Rows to address scalability issues faced
by large scale database installations. Rows addresses seek-
limited applications that require near-realtime analytical and
decision support queries over extremely large, frequently up-
dated data sets. We know of no other database technology
capable of addressing this class of application. As auto-
mated financial transactions, and other real-time data ac-
quisition applications are deployed, applications with these
requirements are becoming increasingly common.

11

7. REFERENCES
[1] D. Abadi, S. Madden, and M. Ferreira. Integrating

compression and execution in column-oriented
database systems. In SIGMOD ’06: Proceedings of the
2006 ACM SIGMOD international conference on
Management of data, pages 671–682, New York, NY,
USA, 2006. ACM.

[2] P. A. Bernstein and N. Goodman. Concurrency
control in distributed database systems. ACM
Comput. Surv., 13(2):185–221, 1981.

[3] G. Graefe. Sorting and indexing with partitioned
b-trees. In CIDR, 2003.

[4] G. Graefe. B-tree indexes for high update rates.
SIGMOD Rec., 35(1):39–44, 2006.

[5] A. L. Holloway, V. Raman, G. Swart, and D. J.
DeWitt. How to barter bits for chronons: compression
and bandwidth trade offs for database scans. In
SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD
international conference on Management of data,
pages 389–400, New York, NY, USA, 2007. ACM.

[6] National Severe Storms Laboratory Historical
Weather Data Archives, Norman, Oklahoma, from
their Web site at http://data.nssl.noaa.gov.

[7] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (LSM-tree). Acta
Informatica, 33(4):351–385, 1996.

[8] StorageReview.com. Seagate barracuda 750es.
http://www.storagereview.com/ST3750640NS.sr, 12
2006.

[9] X. Sun, R. Wang, B. Salzberg, and C. Zou. Online
b-tree merging. In SIGMOD ’05: Proceedings of the
2005 ACM SIGMOD international conference on
Management of data, pages 335–346, New York, NY,
USA, 2005. ACM.

[10] T. Westmann, D. Kossmann, S. Helmer, and
G. Moerkotte. The implementation and performance
of compressed databases. SIGMOD Rec., 29(3):55–67,
2000.

[11] M. Zukowski, S. Heman, N. Nes, and P. Boncz.
Super-scalar ram-cpu cache compression. In ICDE
’06: Proceedings of the 22nd International Conference
on Data Engineering (ICDE’06), page 59,
Washington, DC, USA, 2006. IEEE Computer Society.

12

