
LLADD: Extensible Transactional Storage FIXME

Your N. Here
Your Institution

yourname@host.site.dom, http://host.site.dom/yoururl
Name Two Here

Two’s Institution
two@host.site.dom, http://host.site.dom/twourl

Abstract

Although many systems provide transactionally con-
sistent data management, existing implementations
are generally monolithic and tied to a higher-level
DBMS, limiting the scope of their usefulness to a
single application, or a specific type of problem. As
a result, many systems are forced to “work around”
the data models provided by a transactional stor-
age layer. Manifestation of this problem include
“impedence mismatch” in the database world and
the limited number of data models provided by ex-
isting libraries such as BerkeleyDB. In this paper,
we describe a light-weight, easily extensible library,
LLADD, that allows application developers to de-
velop scalable and transactional application-specific
data structures. We demonstrate that LLADD is
simpler than prior systems and is very flexible,
while performing favorably in a number of micro-
benchmarks. We also describe, in simple and con-
crete terms, the issues inherent in the design and im-
plementation of robust, scalable transactional data
structures. In addition to the source code, we have
also made a comprehensive suite of unit-tests, API
documentation, and debugging mechanisms publicly
available.1

1 Introduction

Changes in data models, consistency requirements,
system scalibility, communication models and fault
models require changes to the storage and recovery
subsystems of modern applications.

For applications that are willing to store all of
their data in a DBMS, and access it only via SQL,
existing databases are just fine and LLADD has little
to offer. However, for those applications that need
more direct management of data, LLADD offers a

1http://lladd.sourceforge.net/

layered architecture that enables simple but robust
data management.2

The basic approach of LLADD, taken from ARIES
[xx], is to build transactional pages, which enables
recovery on a page-by-page basis, despite support
for high concurrency and the minimization of dish
seeks during commit (by using a log). We show
how to build a variety of useful data managers on
top of this layer, including persistent hash tables,
lightweight recoverable virtual memory, and simple
databases. We also cover the details of crash recov-
ery, application-level support for transaction abort
and commit, and basic latching for multithreaded
applications.

We also discuss the shortcomings of common ap-
plications , and explain why LLADD provides an
appropriate solution to these problems.

Many implementations of transactional pages ex-
ist in industry and in the literature. Unfortunately,
these algorithms tend either to be straightforward
and unsuitable for real-world deployment, or are ro-
bust and scalable, but achieve these properties by
relying upon intricate sets of internal (and often im-
plicit) interactions. The ARIES algorithm falls into
the second category, has been extremely sucessful
as part of the IBM DB2 database system. It pro-
vides performance and reliability that is comparable
to that of current commercial and open-source prod-
ucts. Unfortunately, while the algorithm is concep-
tually simple, many subtlties arise in its implemen-
tation. We chose ARIES as the basis of LLADD, and
have made a significant effort to document these in-

2A large class of such applications are deemed “naviga-
tional” in the database vocabulary, as they directly navigate
data structures rather than perform set operations. We also
believe that LLADD is applicable in the context of new, spe-
cial purpose database systems (XML databases, streaming
databases, database/semantic file systems, etc), which is a
fruitful area of current work both within the database re-
search community and in industry.

teractions. Although a complete discussion of the
AIRES algorithm is beyond the scope of this paper,
we will provide a breif overview, and explain the
details that are relevant to developers that wish to
extend LLADD.

By documenting the interface between AIRES and
higher-level primitives such as data structures, and
by structuring LLADD to make this interface ex-
plicit in both the library and its extensions, we
hope to make it easy to produce correct and effi-
cient durable data structures. In existing systems
(and indeed, in earlier versions of LLADD), the im-
plementation of such structures is extremely compli-
cated, and subject to the introduction of incredibly
subtle errors that would only be evident during crash
recovery or at other inconvenient times. Thus there
is great value is reusing these lower layers once de-
veloped.

Finally, by approaching this problem by imple-
menting a number of simple modules that “do one
thing and do it well”, we believe that LLADD can
provide competitive performance while making fu-
ture improvements to its core implementation signif-
icantly easier. In order to achieve this goal, LLADD
has been split into a number of modules forming a
’core library’, and a number of extensions called ’op-
erations’ that build upon the core library. Since each
of these modules exports a stable interface, they can
be independently improved.

1.1 Prior Work

An extensive amount of prior work covers the al-
gorithms presented in this paper. Most fundamen-
tally, systems that provide transactional consistency
to their users generally include a number of common
modules. A high-level overview of a typical system
is given in Figure 1.

Many applications make use of transactional stor-
age, and each is designed for a specific application, or
set of applications. LLADD provides a flexible sub-
strate that allows such applications to be developed.
The complexity of existing systems varies widely, as
do the applications for which these systems are de-
signed.

On the database side of things, relational
databases excel in areas where performance is im-
portant, but where the consistency and durability
of the data is crucial. Often, databases significantly
outlive the software that uses them, and must be
able to cope with changes in business practices, sys-
tem architechtures, etc.

Object-oriented databases are more focused on fa-
cilitating the development of complex applications

Application code

Abstraction Layer
Replication

Indexes Locking

LogRecoveryRollbackBuffers

Transactional Interface

Distribution

Figure 1: Conceptual view of a modern transactional
application. Current systems include high level func-
tionality, such as indices and locking, but are not
designed to allow developers to replace this func-
tionality with application specific modules.

that require reliable storage, and may take advan-
tage of less-flexible, more efficient data models, as
they often only interact with a single application, or
a handful of variants of that application.

Databases are designed for circumstances where
development time may dominate cost, many users
must share access to the same data, and where secu-
rity, scalability, and a host of other concerns are im-
portant. In many, if not most, circumstances these
issues are less important, or even irrelevant. There-
fore, applying a database in these situations is likely
overkill, which may partially explain the popularity
of MySQL, which allows some of these constraints
to be relaxed at the discretion of a developer or end
user.

Still, there are many applications where MySQL
is still too inflexible. In order to serve these appli-
cations, a host of software solutions have been de-
vised. Some are extremely complex, such as seman-
tic file systems, where the file system understands
the contents of the files that it contains, and is able
to provide services such as rapid search, or file-type
specific operations such as thumbnailing, automatic
content updates, and so on. Others are simpler, such
as BerkeleyDB, which provides transactional storage
of data in unindexed form, in indexed form using a
hash table, or a tree. LRVM is a version of malloc()
that provides transacational memory, and is similar
to an object-oriented database, but is much lighter
weight, and more flexible.

Finally, some applications require incredibly sim-

2

ple, but extremely scalable storage mechanisms.
Cluster Hash Tables are a good example of the type
of system that serves these applications well, due to
their relative simplicity, and extremely good scala-
bility characteristics. Depending on the fault model
on which a cluster hash table is implemented, it is
quite plausible that key portions of the transactional
mechanism, such as forcing log entries to disk, will
be replaced with other durability schemes, such as
in-memory replication across many nodes, or mul-
tiplexing log entries across multiple systems. This
level of flexibility would be difficult to retrofit into
existing transactional applications, but is appropri-
ate in many environments.

We have only provided a small sampling of the
many applications that make use of transactional
storage. Unfortunately, it is extremely difficult to
implement a correct, efficient and scalable transac-
tional data store, and we know of no library that
provides low level access to the primitives of such a
durability algorithm. These algorithms have a repu-
tation of being complex, with many intricate interac-
tions, which prevent them from being implemented
in a modular, easily understandable, and extensible
way.

Because of this, many applications that would
benefit from transactional storage, such as CVS, and
many implementations of IMAP either ignore the
problem, leaving the burden of recovery to system
administrators or users, or implement ad-hoc solu-
tions that employ complex, application specific con-
sistency protocols in order to ensure the consistency
of their data. This increases the complexity of such
applications, and often provides only a partial solu-
tion to the transactional storage problem, resulting
in erratic and unpredictable application behavior.

In addition to describing such an implementation
of ARIES, a well-tested “industrial strength” algo-
rithm for transactional storage, this paper outlines
the most important interactions that we discovered
(that is, the ones that could not be encapsulated
within our implementation), and gives the reader a
sense of how to use the primitives the library pro-
vides.

2 ARIES from an Operation’s Per-
spective

Instead of providing a comprehensive discussion of
ARIES, we will focus upon those features of the algo-
rithm that are most relevant to a developer attempt-
ing to add a new set of operations. Correctly imple-
menting such extensions is complicated by concerns

regarding concurrency, recovery, and the possibility
that any operation may be rolled back at runtime.

We first sketch the constraints placed upon opera-
tion implementations, and then describe the proper-
ties of our implementation of ARIES that make these
constraints necessary. Because comprehensive dis-
cussions of write ahead logging protocols and ARIES
are available elsewhere, we only discuss those details
relevant to the implementation of new operations in
LLADD.

2.1 Properties of an Operation

A LLADD operation consists of some code that per-
forms some action on the developer’s behalf. These
operations implement the high-level actions that are
composed into transactions. They are implemented
at a relatively low level, and have full access to the
ARIES algorithm. We expect the majority of an
application to reason in terms of the interface pro-
vided by custom operations, allowing the the appli-
cation, the operation, and LLADD itself to be inde-
pendently improved.

Since transactions may be aborted, the effects
of an operation must be reversible. Furthermore,
aborting and comitting transactions may be in-
terleaved, and LLADD does not allow cascading
aborts,3 so in order to implement an operation, we
must implement some sort of locking, or other con-
currency mechanism that isolates transactions from
each other. LLADD only provides physical consis-
tency; we leave it to the application to decide what
sort of transaction isolation is appropriate. For ex-
ample, it is relatively easy to build a strict two-phase
locking lock manager on top of LLADD, as needed
by a DBMS, or a simpler lock-per-folder approach
that would suffice for an IMAP server. Thus, data
dependencies among transactions are allowed, but
we still must ensure the physical consistency of our
data structures, such as operations on pages or locks.

Also, all actions performed by a transaction that
committed must be restored in the case of a crash,
and all actions performed by aborting transactions
must be undone. In order for LLADD to arrange for
this to happen at recovery, operations must produce
log entries that contain all information necessary for
undo and redo.

An important concept in ARIES is the “log se-
quence number” or LSN. An LSN is essentially a

3That is, by aborting, one transaction may not cause other
transactions to abort. To understand why operation imple-
mentors must worry about this, imagine that transaction A
split a node in a tree, transaction B added some data to the
node that A just created, and then A aborted. When A was
undone, what would become of the data that B inserted?

3

virtual timestamp that goes on every page; it tells
you the last log entry that is reflect on the page,
which implies that all previous log entries are also
reflected. Given the LSN, you can tell where to start
playing back the log to bring a page up to date. The
LSN goes on the page so that it is always written to
disk atomically with the data of the page.

ARIES (and thus LLADD) allows pages to be
stolen, i.e. written back to disk while they still con-
tain uncommitted data. It is tempting to disallow
this, but to do so has serious consequences such as a
increased need for buffer memory (to hold all dirty
pages). Worse, as we allow multiple transactions to
run concurrently on the same page (but not typi-
cally the same item), it may be that a given page
always contains some uncommitted data and thus
could never be written back to disk. To handle stolen
pages, we log UNDO records that we can use to undo
the uncommitted changes in case we crash. LLADD
ensures that the UNDO record is be durable in the
log before the page is written back to disk, and that
the page LSN reflects this log entry.

Similarly, we do not force pages out to disk every
time a transaction commits, as this limits perfor-
mance. Instead, we log REDO records that we can
use to redo the change in case the committed ver-
sion never makes it to disk. LLADD ensures that the
REDO entry is durable in the log before the transac-
tion commits. REDO entries are physical changes to
a single page (“page-oriented redo”), and thus must
be redone in the exact order.

One unique aspect of LLADD, which is not true
for ARIES, is that normal operations use the REDO
function; i.e. there is no way to modify the page
except via the REDO operation. This has the great
property that the REDO code is known to work,
since even the original update is a“redo”. In general,
the LLADD philosophy is that you define operations
in terms of their REDO/UNDO behavior, and then
build the actual update methods around those.

Eventually, the page makes it to disk, but the
REDO entry is still useful: we can use it to roll for-
ward a single page from an archived copy. Thus one
of the nice properties of LLADD, which has been
tested, is that we can handle media failures very
gracefully: lost disk blocks or even whole files can
be recovered given an old version and the log.

2.2 Normal Processing

Operation implementors follow the pattern in Fig-
ure 2, and need only implement a wrapper function
(“Tset()” in the figure, and a pair of redo and undo
functions will be registered with LLADD. The Tup-

date function, which is built into LLADD, handles
most of the runtime complexity. LLADD also uses
the undo and redo functions during recovery, in the
same way that they are used during normal process-
ing.

2.2.1 The buffer manager

LLADD manages memory on behalf of the applica-
tion and prevents pages from being stolen prema-
turely. Although LLADD uses the STEAL policy
and may write buffer pages to disk before transac-
tion commit, it still must make sure that the undo
log entries have been forced to disk before the page is
written to disk. Therefore, operations must inform
the buffer manager when they write to a page, and
update the LSN of the page. This is handled au-
tomatically by many of the write methods provided
to operation implementors (such as writeRecord()),
but the low-level page manipulation calls (which al-
low byte-level page manipulation) leave it to their
callers to update the page metadata appropriately.

2.2.2 Log entries and forward operation (the
Tupdate() function)

[TODO...need to make this clearer... I think we need
to say that we define a function to do redo, and then
we define an update that use it. Recovery uses the
same function the same way.]

In order to handle crashes correctly, and in or-
der to the undo the effects of aborted transactions,
LLADD provides operation implementors with a
mechanism to log undo and redo information for
their actions. This takes the form of the log en-
try interface, which works as follows. Operations
consist of a wrapper function that performs some
pre-calculations and perhaps acquires latches. The
wrapper function then passes a log entry to LLADD.
LLADD passes this entry to the logger, and then
processes it as though it were redoing the action
during recovery, calling a function that the oper-
ation implementor registered with LLADD. When
the function returns, control is passed back to the
wrapper function, which performs any post process-
ing (such as generating return values), and releases
any latches that it acquired.

This way, the operation’s behavior during recov-
ery’s redo phase (an uncommon case) will be identi-
cal to the behavior during normal processing, mak-
ing it easier to spot bugs. Similarly, undo and redo
operations take an identical set of parameters, and
undo during recovery is the same as undo during
normal processing. This makes recovery bugs more

4

Read pre−image
Allocate log entry

Load page (pin in memory)

Write log entry

Serialize arguments for log

Release page

Update lsn

Write data to page

Parse arguments

do_set(LogEntry)

TUpdate(Record, Args)

TSet(Record, Value)

Invoke redo operation

Figure 2: Runtime behavior of a simple operation.
Tset() and do set() are implemented as extensions,
while Tupdate() is built in. New operations need not
be aware of the complexities of LLADD.

obvious and allows redo functions to be reused to
implement undo.

Although any latches acquired by the wrapper
function will not be reacquired during recovery, the
redo phase of the recovery process is single threaded.
Since latches acquired by the wrapper function are
held while the log entry and page are updated, the
ordering of the log entries and page updates asso-
ciated with a particular latch must be consistent.
Because undo occurs during normal operation, some
care must be taken to ensure that undo operations
obtain the proper latches.

2.2.3 Concurrency and Aborted Transac-
tions

[move to later?]
Section 2.1 states that LLADD does not allow

cascading aborts, implying that operation imple-
mentors must protect transactions from any struc-
tural changes made to data structures by uncomit-
ted transactions, but LLADD does not provide any
mechanisms designed for long-term locking. How-
ever, one of LLADD’s goals is to make it easy to im-
plement custom data structures for use within safe,
multi-threaded transactions. Clearly, an additional
mechanism is needed.

The solution is to allow portions of an operation
to ’commit’ before the operation returns.4 An op-

4We considered the use of nested top actions, which

eration’s wrapper is just a normal function, and
therefore may generate multiple log entries. First,
it writes an undo-only entry to the log. This entry
will cause the logical inverse of the current opera-
tion to be performed at recovery or abort, must be
idempotent, and must fail gracefully if applied to a
version of the database that does not contain the re-
sults of the current operation. Also, it must behave
correctly even if an arbitrary number of intervening
operations are performed on the data structure.

[TODO...this next paragraph doesn’t make sense;
also maybe move this whole subsection to later, since
it is complicated] The remaining log entries are redo-
only, and may perform structural modifications to
the data structure. They should not make any as-
sumptions about the consistency of the current ver-
sion of the database. Finally, any prefix of the se-
quence of the redo-only operations performed by this
operation must leave the database in a consistent
state. The BLINK tree [...] is an example of a B-
Tree implementation that behaves in this way, as
is the linear hash table implementation discussed in
Section 4.1.

Some of the logging constraints introduced in this
section may seem strange at this point, but are mo-
tivated by the recovery process.

[TODO...need to explain this...]

2.3 Recovery

2.3.1 ANALYSIS / REDO / UNDO

Recovery in AIRES consists of three stages, analysis,
redo and undo . The first, analysis, is implemented
by LLADD, but will not be discussed in this paper.
The second, redo, ensures that each redo entry in
the log will have been applied each page in the page
file exactly once. The third phase, undo, rolls back
any transactions that were active when the crash
occured, as though the application manually aborted
them with the “abort()” call.

After the analysis phase, the on-disk version of
the page file is in the same state it was in when
LLADD crashed. This means that some subset of
the page updates performed during normal opera-
tion have made it to disk, and that the log contains
full redo and undo information for the version of
each page present in the page file.5 However, we

LLADD could easily support. However, we currently use
the slightly simpler (and lighter-weight) mechanism described
here. If the need arises, we will add support for nested top
actions.

5Although this discussion assumes that the entire log is
present, the ARIES algorithm supports log truncation, which
allows us to discard old portions of the log, bounding its size

5

make no further assumptions regarding the order in
which pages were propogated to disk. Therefore,
redo must assume that any data structures, lookup
tables, etc. that span more than a single page are in
an inconsistent state. Therefore, as the redo phase
re-applies the information in the log to the page file,
it must address all pages directly.

Therefore, the redo information for each operation
in the log must contain the physical address (page
number) of the information that it modifies, and the
portion of the operation executed by a single log
entry must only rely upon the contents of the page
that the log entry refers to. Since we assume that
pages are propagated to disk atomically, the REDO
phase may rely upon information contained within
a single page.

Once redo completes, we have applied some prefix
of the run-time log that contains complete entries
for all committed transactions. Therefore, we know
that the page file is in a physically consistent state,
although it contains portions of the results of un-
comitted transactions. The final stage of recovery is
the undo phase, which simply aborts all uncomitted
transactions. Since the page file is physically con-
sistent, the transactions are aborted exactly as they
would be during normal operation.

2.3.2 Physical, Logical and Phisiological
Logging.

The above discussion avoided the use of some termi-
nology that is common in the database literature and
which should be presented here. “Physical loggging”
is the practice of logging physical (byte level) upates
and the physical (page number) addresses that they
are applied to.

It is subtly different than “physiological logging,”
which is what LLADD recommends for its redo
records. In physiological logging, the physical (page
number) address is stored, but the byte offset and
the actual difference are stored implicitly in the pa-
rameters of some function. When the parameters
are applied to the function, it will update the page
in a way that preserves application semantics. This
allows for some convenient optimizations. For exam-
ple, data within a single page can be re-arranged at
runtime to produce contiguous regions of free space,
or the parameters passed to the function may be sig-
nificantly smaller than the physical change made to
the page.

“Logical logging”can only be used for undo entries
in LLADD, and is identical to physiological logging,
except that it stores a logical address (the key of a

on disk.

hash table, for instance) instead of a physical ad-
dress. This allows the location of data in the page
file to change, even if outstanding transactions may
have to roll back changes made to that data. Clearly,
for LLADD to be able to apply logical log entries,
the page file must be physically consistent, ruling
out use of logical logging for redo operations.

LLADD supports all three types of logging, and
allows developers to register new operations, which
is the key to its extensibility. After discussing
LLADD’s architecture, we will revisit this topic with
a concrete example.

2.4 Summary

This section presented a relatively simple set of rules
and patterns that a developer must follow in order
to implement a durable, transactional and highly-
concurrent data structure using LLADD:

• Pages should only be updated inside of a redo
or undo function.

• An update to a page should update the LSN.

• If the data read by the wrapper function must
match the state of the page that the redo func-
tion sees, then the wrapper should latch the rel-
evant data.

• Redo operations should address pages by their
physical offset, while Undo operations should
use a more permenant address (such as index
key) if the data may move between pages over
time.

• An undo operation must correctly update a data
structure if any prefix of its corresponding redo
operations are applied to the structure, and if
any number of intervening operations are ap-
plied to the structure.

Because undo and redo operations during normal op-
eration and recovery are similar, most bugs will be
found with conventional testing strategies. It is dif-
ficult to verify the final property, although a number
of tools could be written to simulate various crash
scenarios, and check the behavior of operations un-
der these scenarios.

Note that the ARIES algorithm is extremely com-
plex, and we have left out most of the details needed
to understand how ARIES works, or to implement
it correctly.6 Yet, we believe we have covered every-
thing that a programmer needs to know in order to

6The original ARIES paper was around 70 pages, and
the ARIES/IM paper, which covered index implementation
is roughly the same length.

6

Recovery

Page I/O

Linear HashPrepare

Page Layout Record

Buffer Manager

Logger LRU−2S(?)

Expandable Array

Operations

LLADD ‘Core’

Operations

Figure 3: Simplified LLADD Architecture: The core
of the library places as few restrictions on the ap-
plication’s data layout as possible. Custom “oper-
ations” implement the client’s desired data layout.

systems independently, and have documented both
external and internal interfaces, making it easy to
add new tests and debug old ones. Furthermore,
by adding a ’simulate crash’ operation to a few of
the key components, we can simulate application
level crashes by clearing LLADD’s internal state, re-
initializing the library and verifying that recovery
was successful. These tests currently cover approxi-
mately 90% of the code. We have not yet developed
a mechanism that will allow us to accurately model
hardware failures, which is an area where futher
work is needed. However, the basis for this work
will be the development of test harnesses that verify
operation behavior in exceptional circumstances.

LLADD’s performance requirements vary wildly
depending on the workload with which it is pre-
sented. Its performance on a large number of small,
sequential transactions will always be limited by the
amount time required to flush a page to disk. To
some extent, compact logical and physiological log
entries improve this situation. On the other hand,
long running transactions only rarely force-write to
disk and become CPU bound. Standard profiling
techniques of the overall library’s performance and
microbenchmarks of crucial modules handle such sit-
uations nicely.

A more interesting set of performance require-
ments are imposed by multithreaded workloads.
Each module of LLADD is reentrant, and a C pre-
processor directive allows the entire library to be
instrumented in order to profile latching behavior,
which is useful both for perfomance tuning and for
debugging purposes. A thread that is not involved
in an I/O request never needs to wait for a latch held
by a thread that is waiting for I/O.8

There are a number of performance optimizations
that are specific to multithreaded operations that
we do not perform. The most glaring omission is log
bundling; if multiple transactions commit at once,
LLADD must force the log to disk one time per
transaction. This problem is not fundamental, but
simply has not made it into the current code base.
Similarly, since page eviction requires a force-write if
the full ARIES recovery algorithm is in use, we could
implement a thread that asynchronously maintained
a set of free buffer pages. We plan to implement such
optimizations, but they are not reflected in this pa-
per’s performance figures.

8Strictly speaking, this statement is only true for the
LLADD’s core. However, there are variants of most popu-
lar data structures that allow us to preserve these invariants.
LLADD can correctly support operations whether or not they
have these properties.

4 Sample Operations

In order to validate LLADD’s architecture, and to
show that it simplifies the creation of efficient data
structures, we have have implemented a number of
simple extensions. In this section, we describe their
design, and provide some concrete examples of our
experiences extending LLADD.

4.1 Linear Hash Table

Linear hash tables are hash tables that are able to
extend their bucket list incrementally at runtime.
They work as follows. Imagine that we want to
double the size of a hash table of size 2n, and that
the hash table has been constructed with some hash
function hn(x) = h(x) mod 2n Choose hn+1(x) =
h(x) mod 2n+1 as the hash function for the new ta-
ble. Conceptually we are simply prepending a ran-
dom bit to the old value of the hash function, so
all lower order bits remain the same. At this point,
we could simply block all concurrent access and it-
erate over the entire hash table, reinserting values
according to the new hash function.

However, because of the way we chose hn+1(x),
we know that the contents of each bucket, m, will be
split betwen bucket m and bucket m+2n. Therefore,
if we keep track of the last bucket that was split, we
can split a few buckets at a time, resizing the hash
table without introducing long pauses while we re-
organize the hash table.[...] We can handle overflow
using standard techniques. LLADD’s linear hash ta-
ble uses linked lists of overflow buckets.

For this scheme to work, we must be able to ad-
dress a portion of the page file as though it were an
expandable array. We have implemented this func-
tionality as a separate module, but will not discuss
it here.

For the purposes of comparison, we provide two
linear hash implementations. The first is straight-
forward, and is layered on top of LLADD’s stan-
dard record setting operation, Tset(), and therefore
performs physical undo. This implementation pro-
vided a stepping stone to the more sophisticated ver-
sion which employs logical undo, and uses an iden-
tical on-disk layout. As we discussed earlier, logical
undo provides more opportunities for concurrency,
while decreasing the size of log entries. In fact, the
physical-undo implementation of the linear hash ta-
ble cannot support concurrent transactions, while
threads utilizing the physical-undo implementation
never hold locks on more than two buckets.9

9However, only one thread may expand the hashtable at
once. In order to amortize the overhead of initiating an ex-

8

Delete Bucket Entry

(1) Lock Bucket

(3) Free old Block

(2)

Old

(1) Lock Bucket

(1) Allocate New Block

(2) Lock Bucket

(3)
(4)

New

Insert Bucket Entry

(4)

(3)

(2) Lock Bucket

(5) Delete pointer

Move Entry to New Bucket

Figure 4: Linear Hash Table Bucket operations.

Because another module provides the resizable ar-
rays needed for the bucket list, the complexity of
the linear hash algorithm is in two areas. The first,
linked list management, is straightforward in the
physical case, but must be performed in a specific or-
der in the logical case. See Figure 4 for a sequence of
steps that safely implement the necessary linked list
operations. Note that in the first two cases, the por-
tion of the linked list that is visible from LLADD’s
point of view is always consistent. This is important
for crash recovery; it is possible that LLADD will
crash before the entire sequence of operations has
been completed. The logging protocol guarantees
that some prefix of the log will be available. There-
fore, as long as the run-time version of the hash ta-
ble is always consistent, we do not have to consider
the impact of skipped updates, but we must be cer-
tain that the logical consistency of the linked list is
maintained at all steps. Here, the challenge comes
from the fact that the buffer manager only provides
atomic updates of single pages; in practice, a linked
list may span pages.

The last case, where buckets are split as the bucket
list is expanded, is a bit more complicated. We must
maintain consistency between two linked lists, and a
page at the begining of the hash table that contains
the last bucket that we successfully split. Here, we
misuse the undo entry to ensure proper crash recov-
ery. Our bucket split algorithm is idempotent, so it
may be applied an arbitrary number of times to a
given bucket with no ill-effects. Also note that (for
our purposes), there is never a good reason to undo a
bucket split, so we can safely apply the split whether
or not the current transaction commits.

First, an “undo” record that checks the hash ta-
ble’s meta data and redoes the split if necessary is
written (this record has no effect unless we crash
during this bucket split). Second, we write (and ex-
ecute) a series of redo-only records to the log. These
encode the bucket split, and follow the linked list
protocols listed above. Finally, we write a redo-only
entry that updates the hash table’s metadata.10

We allow pointer aliasing at this step so that a
given key can be present for a short period of time

pansion, and to allow concurrent insertions, the hash table is
expanded in increments of a few thousand buckets.

10Had we been using nested top actions, we would not need
the special undo entry, but we would need to store physical
undo information for each of the modifications made to the
bucket, since any subset of the pages may have been stolen.
This method does have the disadvantage of producing a few
redo-only entries during recovery, but recovery is an uncom-
mon case, and the number of such entries is bounded by the
number of entries that would be produced during normal op-
eration.

9

in both buckets. If we crash before the undo entry
is written, no harm is done. If we crash after the
entire update makes it to log, the redo stage will set
the hash’s metadata appropriately, and the ’undo’
record becomes a no-op. If we crash in the middle of
the bucket split, we know that the current transac-
tion did not commit, and that recovery will execute
the ’undo’ record. It will see that the bucket split is
still pending and finish splitting the bucket appro-
priately. Since the bucket split is idempotent, and
we’ve arranged for it to behave correctly regardless
of the point at which it was interrupted, the hastable
is correctly restored.

Note that there is a point during the undo phase
where the bucket is in an inconsistent physical state,
although normally the redo phase is able to bring
the database to a fully consistent physical state.
We handle this by obtaining a runtime lock on the
bucket during normal operation. This runtime lock
blocks any attempt to write log entries that alter a
bucket that is being split, so we know that no other
logical operations will attempt to access an inconsis-
tent bucket.

Since the second implementation of the linear hash
table uses logical undo, we are able to allow concur-
rent updates to different portions of the table. This
is not true in the case of the implementation that
uses pure physical logging, as physical undo can-
not generally tolerate concurrent structural modi-
fications to data structures.

4.2 Two Phase Commit

The two phase commit protocol is used in cluster-
ing applications where multiple, well maintained,
well connected computers must agree upon a set of
successful transactions. Some of the systems could
crash, or the network could fail during operation, but
we assume that such failures are temporary. Two
phase commit designates a single computer as the co-
ordinator of a given transaction. This computer con-
tacts the other systems participating in the transac-
tion, and asks them to prepare to commit the trans-
action. If a subordinate system sees that an error
has occurred, or the transaction should be aborted
for some other reason, then it informs the coordi-
nator. Otherwise, it enters the prepared state, and
tells the coordinator that it is ready to commit. At
some point in the future, the coordinator will reply
telling the subordinate to commit or abort. From
LLADD’s point of view, the interesting portion of
this algorithm is the prepared state, since it must be
able to commit a prepared transaction if it crashes
before the coordinator responds, but cannot commit

before hearing the response, since it may be asked
to abort the transaction.

Implementing the prepare state on top of the
ARIES algorithm constists of writing a special log
entry that informs the undo portion of the recovery
phase that it should stop rolling back the current
transaction and instead add it to the list of active
transactions.11 Due to LLADD’s extendible logging
system, and the simplicity of its recovery code, it
took an afternoon to add a prepare operation to
LLADD.

5 Performance

We hope that the preceeding sections have given the
reader an idea of the usefulness and extensibility of
the LLADD library. In this section we focus on per-
formance evaluation.

In order to evaluate the physical and logical
hashtable implementations, we first ran a test that
inserts some tuples into the database. For this test,
we chose fixed length key, values pairs of integers.
For simplicity, our hashtable implementations cur-
rently only support fixed-length keys and values,
so this this test puts us at a significant advantage.
It also provides an example of the type of work-
load that LLADD handles well, since LLADD is
specifically designed to support application specific
transactional data structures. For comparison, we
ran “Record Number” trials, named after the Berke-
leyDB access method. In this case, the two programs
essentially stored the data in a large array on disk.
This test provides a measurement of the speed of the
lowest level primitive supported by BerkeleyDB.

The times included in Figure 5 include page file
and log creation, insertion of the tuples as a sin-
gle transaction, and a clean program shutdown. We
used the ’transapp.cs’ program from the Berkeley
DB 4.2 tutorial to run the Berkeley DB tests, and
hardcoded it to use integers instead of strings. We
used the Berkeley DB “DB HASH” index type for
the hashtable implementation, and“DB RECNO”in
order to run the “Record Number” test.

Since LLADD addresses records as {Page, Slot,
Size} triples, which is a lower level interface than
Berkeley DB exports, we used the expandable array
that supports the hashtable implementation to run
the “LLADD Record Number” test.

One should not look at Figure 5, and conclude
“LLADD is almost five times faster than Berke-

11Also, any locks that the transaction obtained should be
restored, which is outside of the scope of LLADD, although
this functionality could be added relatively easily if a lock
manager were implemented on top of LLADD.

10

0e+00 2e+05 4e+05 6e+05 8e+05

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

Insertion of Fixed Length Tuples

tuples

S
e
c
o
n
d
s

Berkeley DB 4.2 Hash
Berkeley DB 4.2 Record Number
LLADD Hash (Logical Log − 200 Threads)
LLADD Hash (Logical Log)
LLADD Hash (Physical Log)
LLADD Record Number

Figure 5: The final data points for LLADD’s and Berkeley DB’s record number based storage are 7.4 and 9.5
seconds, respectively. LLADD’s hash table is significantly faster than Berkeley DB in this test, but provides
less functionality than the Berkeley DB hash. Finally, the logical logging version of LLADD’s hash table is
faster than the physical version, and handles the multi-threaded test well. The threaded test spawned 200
threads and split its workload into 200 separate transactions.

11

ley DB,” since we chose a hash table implementa-
tion that is tuned for fixed-length data. Instead,
the conclusions we draw from this test are that,
first, LLADD’s primitive operations are on par, per-
forance wise, with Berkeley DB’s, which we find very
encouraging. Second, even a highly tuned implemen-
tation of a ’simple,’ general purpose data structure
is not without overhead, and for applications where
performance is important a special purpose structure
may be appropriate.

Also, the multithreaded test run shows that the
library is capable of handling a large number of
threads. The performance degradation associated
with running 200 concurrent threads was negligible.
The logical logging version of LLADD’s hashtable
outperformed the physical logging version for two
reasons. First, since it writes fewer undo records,
it generates a smaller log file. Second, in order to
emphasize the performance benefits of our extension
mechanism, we use lower level primitives for the log-
ical logging version. The logical logging version im-
plements locking at the bucket level, so many mu-
texes that are acquired by LLADD’s default mecha-
nisms are redundant. The physical logging version of
the hashtable serves as a rough proxy for an imple-
mentation on top of a non-extendible system. There-
fore, it uses LLADD’s default mechanisms, which
include the redundant acquisition of locks.

As a final note on our performance graph, we
would like to address the fact that LLADD’s
hashtable curve is non-linear. LLADD currently
uses a fixed-size in-memory hashtable implementa-
tion in many areas, and it is possible that we ex-
ceeded the fixed-size of this hashtable on the larger
test sets. Also, LLADD’s buffer manager is cur-
rently fixed size. Regardless of the cause of this non-
linearity, we do not believe that it is fundamental to
our implementation.

6 Future Work

LLADD is an extendible implementation of the
ARIES algorithm. This allows application devel-
opers to incorporate transactional recovery into a
wide range of systems. We have a few ideas along
these lines, and also have some ideas for extensions
to LLADD itself.

LLADD currently relies upon its buffer manager
for page-oriented storage. Although we did not have
space to discuss it in this paper, we have a blob im-
plementation that stores large data outside of the
page file. This concept could be extended to arbi-
trary primitives, such as transactional updates to file
system directory trees, or integration of networking

or other operations directly into LLADD transac-
tions. Doing this would allow LLADD to act as a
sort of “glue code” among various systems, ensur-
ing data integrity and adding database-style func-
tionality, such as continuous backup to systems that
currently do not provide such mechanisms. We be-
lieve that there is quite a bit of room for the de-
velopement of new software systems in the space
between the high-level, but sometimes inappropri-
ate interfaces exported by database servers, and the
low-level, general-purpose primitives supported by
current file systems.

Currently, although we have implemented a two-
phase commit algorithm, LLADD really is not very
network aware. If we provided a clean abstraction
that allowed LLADD extensions and operations to
cross network boundaries, then we could provide a
wider range of network consistency algorithms, and
cleanly support the implementation of operations
that perform well in networked and in local envi-
ronments.

Although LLADD is re-entrant, its latching mech-
anisms only provide physical consistency. Tradition-
ally, lock managers, which provide higher levels of
consistency, have been tightly coupled with trans-
actional page implementations. Generally, the se-
mantics of undo and redo operations provided by
the transactional page layer and its associated data
structures determine the level of concurrency that
is possible. Since prior systems provide a mono-
lithic set of primitives to their users, these systems
typically had complex interactions among the lock
manager, on-disk formats and the transactional page
layer. Finally, at recovery time it is often desir-
able to reacquire locks on behalf of a transaction.
Without extensible logging and without modifying
the recovery code, it is impossible to ensure that
such locks are correctly restored. By providing ex-
tensible logging, data-structures, and undo/redo se-
mantics, LLADD removes these reasons for coupling
the lock manager and the rest of the storage mech-
anisms. The flexiblity offered by splitting the lock
manager and the ARIES algorithm into independent
sub-systems, and allowing users to independently ex-
tend either module seems to outweigh the extra com-
plexity that will be added to LLADD’s interface. In
particular, most difficulties related to locking seem
to be data-structure dependent, suggesting that, like
page layout or the semantics of various types of log
entires, they are largely orthogonal to the atomicity
and durability algorithms implemented by LLADD.

By releasing LLADD to the community, we hope
that we will be able to provide a toolkit that aids
in the development of real-world applications, and

12

is flexible enough for use as a research platform.

7 Conclusion

8 Acknowledgements

9 Availability

LLADD is free software, available at:

http://www.sourceforge.net/projects/lladd

References

[Beazley] D. M. Beazley and P. S. Lomdahl,
Message-Passing Multi-Cell Molecular Dynam-
ics on the Connection Machine 5, Par-
all. Comp. 20 (1994) p. 173-195.

[RealName] A. N. Author and A. N. Other, Title of
Riveting Article, JournalName VolNum (Year)
p. Start-End

[ET] Embedded Tk,
ftp://ftp.vnet.net/pub/users/drh/ET.html

[Expect] Don Libes, Exploring Expect, O’Reilly &
Associates, Inc. (1995).

[Heidrich] Wolfgang Heidrich and Philipp Slusallek,
Automatic Generation of Tcl Bindings for C
and C++ Libraries., USENIX 3rd Annual
Tcl/Tk Workshop (1995).

[Ousterhout] John K. Ousterhout, Tcl and the Tk
Toolkit, Addison-Wesley Publishers (1994).

[Perl5] Perl5 Programmers reference,
http://www.metronet.com/perlinfo/doc,
(1996).

[Wetherall] D. Wetherall, C. J. Lindblad, “Extend-
ing Tcl for Dynamic Object-Oriented Program-
ming”, Proceedings of the USENIX 3rd Annual
Tcl/Tk Workshop (1995).

13

