
Lemon: A Flexible Transactional Storage System
Paper 198

Existing transactional systems are designed to handle spe-
cific workloads well. Unfortunately, these implementations
are generally monolithic and hide the transaction support un-
der a SQL interface, which forces many systems to “work
around” the relational data model. Manifestations of this
problem include the the poor fit of existing transactional stor-
age systems to persistent objects and hierarchical or semi-
structured data, such as XML or scientific data. This work pro-
poses a novel flexible transaction framework intended for non-
database transactional systems; for example, Lemon makes it
is easy to develop high-performance transactional data struc-
tures. It generally outperforms Berkeley DB, and its extensi-
bility enables optimizations that outperform Berkeley DB by
2x and MySQL by up to 5x. We present novel optimizations for
object serialization and graph traversal that demonstrate this
flexibility.

1 Introduction

Transactions are at the core of databases and thus form the
basis of many important systems. However, the mechanisms
that provide transactions are typically hidden within mono-
lithic database implementations (DBMSs) that make it hard
to benefit from transactions without inheriting the rest of the
database machinery and design decisions, including the use of
a query interface. Although this is clearly not a problem for
databases, it impedes the use of transactions in a wider range
of systems.

Other systems that could benefit from transactions include
file systems, version-control systems, bioinformatics, work-
flow applications, search engines, recoverable virtual memory,
and programming languages with persistent objects.

In essence, there is animpedance mismatchbetween the
data model provided by a DBMS and that required by these ap-
plications. This is not an accident: the purpose of the relational
model is exactly to move to a higher-level set-based data model
that avoids the kind of “navigational” interactions required by
these lower-level systems. Thus in some sense, we are arguing
for the development of modern navigational transaction sys-
tems that can compliment relational systems and that naturally
support current system designs and development methodolo-
gies.

The most obvious example of this mismatch is in the support
for persistent objects in Java, calledEnterprise Java Beans
(EJB). In a typical usage, an array of objects is made persistent
by mapping each object to a row in a table1 and then issuing
queries to keep the objects and rows consistent. A typical up-
date must confirm it has the current version, modify the object,
write out a serialized version using the SQLupdate command

1Normalized objects may actually span many tables [10].

and commit. This is an awkward and slow mechanism; we
show up to a 5x speedup over a MySQL implementation that
is optimized for single-threaded, local access (Section 7).

The DBMS actually has a navigational transaction system
within it, which would be of great use to EJB, but it is not ac-
cessible except via the query language. In general, this occurs
because the internal transaction system is complex and highly
optimized for high-performance update-in-place transactions.

In this paper we introduce Lemon, a flexible framework for
ACID transactions that is intended to support a broader range
of applications. Although we believe Lemon could also be
the basis of a DBMS, there are already many excellent DBMS
solutions, and we thus focus on the rest of the applications.
The primary goal of Lemon is to provide flexible and complete
transactions.

By flexible we mean that Lemon can implement a wide
range of transactional data structures, that it can support a va-
riety of policies for locking, commit, clusters and buffer man-
agement. Also, it is extensible for both new core operations
and new data structures. It is this flexibility that allows the
support of a wide range of systems.

By completewe mean full redo/undo logging that supports
bothno force, which provides durability with only log writes,
andsteal, which allows dirty pages to be written out prema-
turely to reduce memory pressure.2 By complete, we also
mean support for media recovery, which is the ability to roll
forward from an archived copy, and support for error-handling,
clusters, and multithreading. These requirements are difficult
to meet and form theraison d’êtrefor Lemon: the framework
delivers these properties as reusable building blocks for sys-
tems to implement complete transactions.

With these trends in mind, we have implemented a mod-
ular, extensible transaction system based on on ARIES that
makes as few assumptions as possible about application data
and workloads. Where such assumptions are inevitable, we
allow the developer to plug in alternative implementations or
define custom operations whenever possible. Rather than hid-
ing the underlying complexity of the library from developers,
we have produced narrow, simple APIs and a set of invariants
that must be maintained in order to ensure transactional con-
sistency. This allows developers to produce high-performance
extensions with only a little effort.

Specifically, application developers using Lemon can con-
trol: 1) on-disk representations, 2) data structure implemen-
tations (including adding new transactional access methods),
3) the granularity of concurrency, 4) the precise semantics

2A note on terminology: by “dirty” we mean pages that contain uncom-
mitted updates; this is the DB use of the word. Similarly, “no force” does
not mean “no flush”, which is the practice of delaying the log write for better
performance at the risk of losing committed data. We support both versions.

1

of atomicity, isolation and durability, 5) request scheduling
policies, and 6) deadlock detection and avoidance schemes.
Developers can also exploit application-specific or workload-
specific assumptions to improve performance. These features
are enabled by the several mechanisms:

Flexible page layoutsprovide low-level control over transac-
tional data representations (Section 4.2).

Extensible log formats provide high-level control over trans-
action data structures (Section 4.4).

High- and low-level control over the log such as calls to
“log this operation” or “write a compensation record”
(Section 3.3).

In memory logical logging provides a data store independent
record of application requests, allowing “in flight” log re-
ordering, manipulation and durability primitives to be de-
veloped (Section 8).

Extensible locking API provides registration of custom lock
managers and a generic lock manager implementation
(Section 4.1).

Custom durability operations such as two-phase commit’s
prepare call, and savepoints (Section 7).

We have produced a high-concurrency, high-performance
and reusable open-source implementation of our system. Por-
tions of our implementation’s API are still changing, but the
interfaces to low-level primitives, and the most important por-
tions of the implementation have stabilized.

To validate these claims, we walk through a sequence of
optimizations for a transactional hash table in Section 6, an
object serialization scheme in Section 7 and a graph traversal
algorithm in Section 8. Benchmarking figures are provided
for each application. Lemon also includes a cluster hash ta-
ble built upon two-phase commit, which will not be described.
Similarly we did not have space to discuss Lemon’s blob im-
plementation, which demonstrates how Lemon can add trans-
actional primitives to data stored in a file system.

2 Prior work

A large amount of prior work exists in the field of transac-
tional data processing. Instead of providing a comprehensive
summary of this work, we discuss a representative sample of
the systems that are presently in use, and explain how our work
differs from existing systems.

Relational databases excel in areas where performance is
important, but where the consistency and durability of the data
are more important. Often, databases significantly outlive the
software that uses them, and must be able to cope with changes
in business practices, system architectures, etc., which leads to
the relational model [4].

For simpler applications, such as normal web servers, full
DBMS solutions are overkill and expensive. MySQL [17] has
largely filled this gap by providing a simpler, less concurrent
database that can work with a variety of storage options in-
cluding Berkeley DB (covered below) and regular files. How-
ever, these alternatives affect the semantics of transactions and
sometimes disable or interfere with high-level database fea-
tures. MySQL includes multiple storage options for perfor-
mance reasons. We argue that by reusing code, and providing
for a greater amount of customization, a modular storage en-
gine can provide better performance, transparency and flexi-
bility than a set of monolithic storage engines.

The Postgres storage system [22] provides conventional
database functionality, but also provides APIs that allow ap-
plications to add new index and object types [21]. Although
some of the methods are similar to ours, Lemon also imple-
ments a lower-level interface that can coexist with these meth-
ods. Without Lemon’s low-level APIs, Postgres suffers from
many of the limitations inherent to the database systems men-
tioned above, as its extensions focus on improving query lan-
guage and indexing support. Although we believe that many
of the high-level Postgres interfaces could be built on top of
Lemon, we have not yet tried to implement them, although we
have some support for iteration.

Object-oriented and XML database systems provide models
tied closely to programming language abstractions or hierar-
chical data formats. Like the relational model, these models
are extremely general, and are often inappropriate for appli-
cations with stringent performance demands, or those that use
these models in unusual ways. Furthermore, data stored in
these databases often is formatted in a way that ties it to a spe-
cific application or class of algorithms [11]. We will show that
Lemon can provide specialized support for both classes of ap-
plications, via a persistent object example (Section 7) and a
graph traversal example (Section 8).

The impedance mismatch in the use of database systems to
implement certain types of software has not gone unnoticed. In
order to serve these applications, many software systems have
been developed. Some are extremely complex, such as seman-
tic file systems, where the file system understands the contents
of the files that it contains, and is able to provide services such
as rapid search, or file-type specific operations such as thumb
nails [18, 6]. Others are simpler, such as Berkeley DB [19],
which provides transactional storage of data in indexed form
using a hashtable or tree, or as a queue.

Although Berkeley DB’s feature set is similar to the fea-
tures provided by Lemon’s implementation, there is an im-
portant distinction. Berkeley DB provides general implemen-
tations of a handful of transactional structures and provides
flags to enable or tweak certain pieces of functionality such
as lock management, log forces, and so on. Although Lemon
provides some of the high-level calls that Berkeley DB sup-
ports (and could probably be extended to provide most or all
of these calls), Lemon provides lower-level access to transac-

2

tional primitives and provides a rich set of mechanisms that
make it easy to use these primitives. For instance, Berke-
ley DB does not provide access methods to access data by
page offset, and does not provide applications with primitive
access methods to facilitate the development of higher-level
structures. It also seems to be difficult to specialize existing
Berkeley DB functionality (for example page layouts) for new
extensions. We will show that such functionality is useful.

LRVM is a version of malloc() that provides durable mem-
ory, and is similar to an object-oriented database but is much
lighter weight, and lower level [20]. Unlike the solutions men-
tioned above, it does not impose limitations upon the layout of
application data, although it does not provide full transactions.
LRVM’s approach of keeping a single in-memory copy of data
in the application’s address space is similar to the optimization
presented in Section 7, but our approach includes full support
for concurrent transactional data structures as well.

Finally, some applications require incredibly simple but ex-
tremely scalable storage mechanisms. Cluster hash tables [9]
are a good example of the type of system that serves these ap-
plications well, due to their relative simplicity and good scal-
ability. Depending on the fault model on which a cluster hash
table is based, it is quite plausible that key portions of the trans-
actional mechanism, such as forcing log entries to disk, will be
replaced with other durability schemes. Possibilities include
in-memory replication across many nodes, or spooling logical
logs to disk on dedicated servers. Similarly, atomicity seman-
tics may be relaxed under certain circumstances. Lemon is
unique in that it can support the full range of semantics, from
in-memory replication for commit, to full transactions involv-
ing multiple entries, which is not supported by any of the cur-
rent CHT implementations.

Boxwood provides a networked, fault-tolerant transactional
B-Tree and “Chunk Manager”. We believe that Lemon could
be a valuable part of such a system. However, we believe that
Lemon’s concept of a page file and system-independent logi-
cal log suggest an alternative approach to fault-tolerant storage
design, which we hope to explore in future work.

3 Write-ahead Logging Overview

This section describes how existing write-ahead logging pro-
tocols implement the four properties of transactional storage:
Atomicity, Consistency, Isolation and Durability. Lemon pro-
vides these properties and also allows applications to opt-out
of them as appropriate. This can be useful for performance
reasons or to simplify the mapping between application se-
mantics and the storage layer. Unlike prior work, Lemon
also exposes the primitives described below to application de-
velopers, allowing unanticipated optimizations and allowing
changes to be made to low-level behavior such as recovery se-
mantics on a per-application basis.

The write-ahead logging algorithm we use is based upon

ARIES, but has been modified for extensibility and flexibil-
ity. Because comprehensive discussions of write-ahead log-
ging protocols and ARIES are available elsewhere [9, 14], we
focus on those details that are most important for flexibility,
and provide a concrete example in Section 4.

3.1 Operations

A transaction consists of an arbitrary combination of actions,
that is protected according to the ACID properties mentioned
above. Typically, the information necessary to REDO and
UNDO each action is stored in the log. We refine this concept
and explicitly discussoperations, which must be atomically
applicable to the page file.

Lemon is essentially a framework for transactional pages:
each page is independent and can be recovered independently.
For now, we simply assume that operations do not span pages.
Since single pages are written to disk atomically, we have a
simple atomic primitive on which to build. In Section 4.3, we
explain how to handle operations that span multiple pages.

One unique aspect of Lemon, which is not true for ARIES,
is thatnormal operations are defined in terms of REDO and
UNDO functions. There is no way to modify the page except
via the REDO function.3 This has the nice property that the
REDO code is known to work, since the original operation was
the exact same “redo”. In general, the Lemon philosophy is
that you define operations in terms of their REDO/UNDO be-
havior, and then build a user-friendlywrapperinterface around
them (Figure 1). The value of Lemon is that it provides a
skeleton that invokes the REDO/UNDO functions at theright
time, despite concurrency, crashes, media failures, and aborted
transactions. Also unlike ARIES, Lemon refines the concept
of the wrapper interface, making it possible to reschedule op-
erations according to an application-level policy (Section 8).

3.2 Isolation

We allow transactions to be interleaved, allowing concurrent
access to application data and exploiting opportunities for
hardware parallelism. Therefore, each action must assume that
the data upon which it relies may contain uncommitted infor-
mation that might be undone due to a crash or an abort.

Therefore, in order to implement an operation we must also
implement synchronization mechanisms that isolate the effects
of transactions from each other. We use the termlatching to
refer to synchronization mechanisms that protect the physical
consistency of Lemon’s internal data structures and the data
store. We saylockingwhen we refer to mechanisms that pro-
vide some level of isolation among transactions. For locking,
due to the variety of locking protocols available and degrees of

3Actually, even this can be overridden, but doing so complicates recovery
semantics, and only should be done as a last resort. Currently, this is only done
to implement the Juicer flush() and update() operations described in Section 7.

3

isolation available, we leave it to the application via the mock
manager API (Section 4.1).

Lemon operations that allow concurrent requests must pro-
vide a latching implementation that is guaranteed not to dead-
lock. These implementations need not ensure consistency of
application data. Instead, they must maintain the consistency
of any underlying data structures. Generally, latches do not
persist across calls performed by high-level code, as that could
lead to deadlock.

3.3 Log Manager

All actions performed by a committed transaction must be re-
stored in the case of a crash, and all actions performed by
aborted transactions must be undone. In order to arrange for
this to happen at recovery, operations must produce log entries
that contain all information necessary for REDO and UNDO.

An important concept in ARIES is the “log sequence num-
ber” or LSN. An LSN is essentially a virtual time stamp that
goes on every page; it marks the last log entry that is reflected
on the page and implies thatall previous log entriesare also re-
flected. Given the LSN, Lemon calculates where to start play-
ing back the log to bring the page up to date. The LSN is stored
in the page that it refers to so that it is always written to disk
atomically with the data on the page.

ARIES (and thus Lemon) allows pages to bestolen, i.e.
written back to disk while they still contain uncommitted data.
It is tempting to disallow this, but to do so increases the need
for buffer memory (to hold all dirty pages). Worse, as we al-
low multiple transactions to run concurrently on the same page
(but not typically the same item), it may be that a given page
alwayscontains some uncommitted data and thus can never be
written back. To handle stolen pages, we log UNDO records
that we can use to undo the uncommitted changes in case we
crash. Lemon ensures that the UNDO record is durable in the
log before the page is written to disk and that the page LSN
reflects this log entry.

Similarly, we do notforce pages out to disk when a trans-
action commits, as this limits performance. Instead, we log
REDO records that we can use to redo the operation in case
the committed version never makes it to disk. Lemon ensures
that the REDO entry is durable in the log before the transac-
tion commits. REDO entries are physical changes to a single
page (“page-oriented redo”), and thus must be redone in order.

3.4 Recovery

We use the same basic recovery strategy as ARIES, which con-
sists of three phases:analysis, redoandundo. The first, anal-
ysis, is implemented by Lemon, but will not be discussed in
this paper. The second, redo, ensures that each REDO entry
is applied to its corresponding page exactly once. The third
phase, undo, rolls back any transactions that were active when

the crash occurred, as though the application manually aborted
them with the “abort” function call.

After the analysis phase, the on-disk version of the page file
is in the same state it was in when Lemon crashed. This means
that some subset of the page updates performed during normal
operation have made it to disk, and that the log contains full
redo and undo information for the version of each page present
in the page file.4 Because we make no further assumptions
regarding the order in which pages were propagated to disk,
redo must assume that any data structures, lookup tables, etc.
that span more than a single page are in an inconsistent state.

This implies that the REDO information for each operation
in the log must contain the physical address (page number) of
the information that it modifies, and the portion of the opera-
tion executed by a single REDO log entry must only rely upon
the contents of that page.

Once redo completes, we have essentially repeated history:
replaying all REDO entries to ensure that the page file is in a
physically consistent state. However, we also replayed updates
from transactions that should be aborted, as they were still in
progress at the time of the crash. The final stage of recov-
ery is the undo phase, which simply aborts all uncommitted
transactions. Since the page file is physically consistent, the
transactions may be aborted exactly as they would be during
normal operation.

One of the nice properties of ARIES, which is supported by
Lemon, is that we can handle media failures very gracefully:
lost disk blocks or even whole files can be recovered given an
old version and the log. Because pages can be recovered inde-
pendently from each other, there is no need to stop transactions
to make a snapshot for archiving: any fuzzy snapshot is fine.

4 Flexible, Extensible Transactions

As long as operation implementations obey the atomicity con-
straints outlined above and correctly manipulate on-disk data
structures, the write-ahead logging protocol will provide cor-
rect ACID transactional semantics, and high performance,
concurrent and scalable access to application data. This sug-
gests a natural partitioning of transactional storage mecha-
nisms into two parts (Figure 1).

The lower layer implements the write-ahead logging com-
ponent, including a buffer pool, logger, and (optionally) a lock
manager. The complexity of the write-ahead logging compo-
nent lies in determining exactly when the UNDO and REDO
operations should be applied, when pages may be flushed to
disk, log truncation, logging optimizations, and a large num-
ber of other data-independent extensions and optimizations.
This layer is the core of Lemon.

The upper layer, which can be authored by the application
developer, provides the actual data structure implementations,

4Although this discussion assumes that the entire log is present, it also
works with a truncated log and an archive copy.

4

Read-only
Access Methods

Wrapper
Function(s)

Operation
Implementation

Recovery/
Abort

Log Manager

Page File

Tupdate()

page updates

invoke REDO log entries

undo/redo
 requests

write log

read memory

Op(data)

Tread()

Tset()

App-specific extensions

Figure 1: Lemon architecture. The shaded region covers ex-
tensions which we call operations. Arrows point in the direction
of application data flow. Note that writes to the page file and log
are protected by the Tupdate() call, and that wrapper functions
may be built upon each other. Operation implementations are
automatically invoked by the transactional library. Not shown
are a set of convenience functions that make it easy to write
high level operations and wrappers.

policies regarding page layout, and the implementation of any
application-specific operations. As long as each layer provides
well defined interfaces, the application, operation implemen-
tation, and write-ahead logging component can be indepen-
dently extended and improved.

We have implemented a number of simple, high perfor-
mance and general-purpose data structures. These are used
by our sample applications and as building blocks for new
data structures. Example data structures include two distinct
linked-list implementations, and a growable array. Surpris-
ingly, even these simple operations have important perfor-
mance characteristics that are not available from existing sys-
tems. The remainder of this section is devoted to a description
of the various primitives that Lemon provides to application
developers.

4.1 Lock Manager

Lemon provides a default page-level lock manager that per-
forms deadlock detection, although we expect many appli-
cations to make use of deadlock-avoidance schemes, which
are already prevalent in multithreaded application develop-
ment. The lock manager is flexible enough to also provide
index locks for hashtable implementations and more com-
plex locking protocols such as hierarchical two-phase lock-
ing [8, 16]. The lock manager API is divided into callback
functions that are made during normal operation and recovery,
and into generic lock manager implementations that may be
used with Lemon and its index implementations.

However, applications that make use of a lock manager must
handle deadlocked transactions that have been aborted by the
lock manager. This is easy if all of the state is managed by
Lemon, but other state such as thread stacks must be handled
by the application, much like exception handling. Lemon cur-
rently uses a custom wrapper around the pthread cancellation
mechanism to provide partial stack unwinding and pthread’s

thread cancellation mechanism. Applications may use this er-
ror handling technique, or write simple wrappers to handle er-
rors with the error handling scheme of their choice.

Conversely, many applications do not require such a general
scheme. If deadlock avoidance (“normal” thread synchroniza-
tion) can be used, the application does not have to abort partial
transactions, repeat work, or deal with the corner cases that
aborted transactions create.

4.2 Flexible Logging and Page Layouts

Lemon supports three types of logging, and allows applica-
tions to createcustom log entriesof each type.

Physical logging is the practice of logging physical (byte-
level) updates and the physical (page-number) addresses to
which they are applied.

Physiological logging extends this idea, and is generally
used for Lemon’s REDO entries. The physical address (page
number) is stored, along with the arguments of an arbitrary
function that is associated with the log entry.

This is used to implement many primitives, includingslot-
ted pages, which use an on-page level of indirection to allow
records to be rearranged within the page; instead of using the
page offset, REDO operations use the index to locate the data
within the page. This allows data within a single page to be re-
arranged easily, producing contiguous regions of free space.
Since the log entry is associated with an arbitrary function
more sophisticated log entries can be implemented. In turn,
this can improve performance by conserving log space, or be
used to match recovery to application semantics.

Lemon also uses this mechanism to support fourpage lay-
outs: raw-page, which is just an array of bytes,fixed-page, a
record-oriented page with fixed-length records,slotted-page,
which supports variable-sized records, andversioned-page, a
slotted-page with a separate version number for each record
(Section 7.1).

Logical logging uses a higher-level key to specify the
UNDO/REDO. Since these higher-level keys may affect mul-
tiple pages, they are prohibited for REDO functions, since our
REDO is specific to a single page. However, logical logging
does make sense for UNDO, since we can assume that the
pages are physically consistent when we apply an UNDO. We
thus use logical logging to undo operations that span multiple
pages, as shown in the next section.

4.3 Nested Top Actions

The operations presented so far work fine for a single page,
since each update is atomic. For updates that span multiple
pages there are two basic options: full isolation or nested top
actions. By full isolation, we mean that no other transactions
see the in-progress updates, which can be trivially achieved
with a big lock around the whole structure. Usually the appli-
cation must enforce such a locking policy or decide to use a

5

lock manager and deal with deadlock. Given isolation, Lemon
needs nothing else to make multi-page updates transactional:
although many pages might be modified they will commit or
abort as a group and be recovered accordingly.

However, this level of isolation disallows all concurrency
among transactions that use the same data structure. ARIES
introduced the notion of nested top actions to address this
problem. For example, consider what would happen if one
transaction,A, rearranged the layout of a data structure, a sec-
ond transaction,B, added a value to the rearranged structure,
and then the first transaction aborted. (Note that the structure
is not isolated.) While applying physical undo information to
the altered data structure,A would UNDO its writes without
considering the modifications made byB, which is likely to
cause corruption. Therefore,B would have to be aborted as
well (cascading aborts).

With nested top actions, ARIES defines the structural
changes as a mini-transaction. This means that the struc-
tural change “commits” even if the containing transaction (A)
aborts, which ensures thatB’s update remains valid.

Lemon supports nested atomic actions as the preferred way
to build high-performance data structures. In particular, an op-
eration that spans pages can be made atomic by simply wrap-
ping it in a nested top action and obtaining appropriate latches
at runtime. This approach reduces development of atomic page
spanning operations to something very similar to conventional
multithreaded development that uses mutexes for synchroniza-
tion. In particular, we have found a simple recipe for con-
verting a non-concurrent data structure into a concurrent one,
which involves three steps:

1. Wrap a mutex around each operation. If this is done with
care, it may be possible to use finer grained mutexes.

2. Define a logical UNDO for each operation (rather than
just using a set of page-level UNDOs). For example, this
is easy for a hashtable; e.g. the UNDO for aninsert is
remove.

3. For mutating operations (not read-only), add a “begin
nested top action” right after the mutex acquisition, and
a “commit nested top action” right before the mutex is
released.

This recipe ensures that operations that might span multiple
pages atomically apply and commit any structural changes and
thus avoids cascading aborts. If the transaction that encloses
the operations aborts, the logical undo willcompensatefor its
effects, but leave its structural changes intact. Because this
recipe does not ensure transactional consistency and is largely
orthogonal to the use of a lock manager, we call this class of
concurrency controllatchingthroughout this paper.

We have found the recipe to be easy to follow and very ef-
fective, and we use it everywhere our concurrent data struc-
tures may make structural changes, such as growing a hash
table or array.

4.4 Adding Log Operations

Given this background, we now cover adding new operations.
Lemon is designed to allow application developers to easily
add new data representations and data structures by defining
new operations. There are a number of invariants that these
operations must obey:

1. Pages should only be updated inside of a REDO or
UNDO function.

2. An update to a page atomically updates the LSN by pin-
ning the page.

3. If the data read by the wrapper function must match the
state of the page that the REDO function sees, then the
wrapper should latch the relevant data.

4. REDO operations use page numbers and possibly record
numbers while UNDO operations use these or logical
names/keys.

5. Use nested top actions (and logical UNDO) or “big locks”
(which reduce concurrency) for multi-page updates.

An Example: Increment/Decrement
A common optimization for TPC benchmarks is to provide

hand-built operations that support adding/subtracting from an
account. Such operations improve concurrency since they can
be reordered and can be easily made into nested top actions
(since the logical UNDO is trivial). Here we show how incre-
ment/decrement map onto Lemon operations.

First, we define the operation-specific part of the log record:

typedef struct { int amount } inc_dec_t;

Here is the increment operation; decrement is analogous:

// p is the bufferPool’s current copy of the page.
int operateIncrement(int xid, Page* p, lsn_t lsn,

recordid rid, const void *d) {
inc_dec_t * arg = (inc_dec_t)d;
int i;

latchRecord(p, rid);
readRecord(xid, p, rid, &i); // read current value
i += arg->amount;

// write new value and update the LSN
writeRecord(xid, p, lsn, rid, &i);
unlatchRecord(p, rid);
return 0; // no error

}

Next, we register the operation:

// first set up the normal case
ops[OP_INCREMENT].implementation= &operateIncrement;
ops[OP_INCREMENT].argumentSize = sizeof(inc_dec_t);

6

// set the REDO to be the same as normal operation
// Sometimes useful to have them differ
ops[OP_INCREMENT].redoOperation = OP_INCREMENT;

// set UNDO to be the inverse
ops[OP_INCREMENT].undoOperation = OP_DECREMENT;

Finally, here is the wrapper that uses the operation, which
is identified viaOP_INCREMENT; applications use the wrapper
rather than the operation, as it tends to be cleaner.

int Tincrement(int xid, recordid rid, int amount) {
// rec will be serialized to the log.
inc_dec_t rec;
rec.amount = amount;

// write a log entry, then execute it
Tupdate(xid, rid, &rec, OP_INCREMENT);

// return the incremented value
int new_value;
// wrappers can call other wrappers
Tread(xid, rid, &new_value);
return new_value;

}

With some examination it is possible to show that this ex-
ample meets the invariants. In addition, because the REDO
code is used for normal operation, most bugs are easy to find
with conventional testing strategies. However, as we will see
in Section 7, even these invariants can be stretched by sophis-
ticated developers.

4.5 Summary

In this section we walked through some of the more impor-
tant parts of the Lemon API, including the lock manager,
nested top actions and log operations. The majority of the
recovery algorithm’s complexity is hidden from developers.
We argue that Lemon’s novel approach toward the encapsu-
lation of transactional primitives makes it easy for developers
to use these mechanisms to enhance application performance
and simplify software design.

5 Experimental setup

The following sections describe the design and implementa-
tion of non-trivial functionality using Lemon, and use Berke-
ley DB for comparison. We chose Berkeley DB because,
among commonly used systems, it provides transactional stor-
age that is most similar to Lemon, and it was designed for
high performance and high concurrency. For all tests, the two
libraries provide the same transactional semantics.

All benchmarks were run on an Intel Xeon 2.8 GHz with
1GB of RAM and a 10K RPM SCSI drive, formatted with

reiserfs.5 All results correspond to the mean of multiple runs
with a 95% confidence interval with a half-width of 5%.

We used Berkeley DB 4.2.52 as it existed in Debian
Linux’s testing branch during March of 2005, with the flags
DB_TXN_SYNC, and DB_THREAD enabled. These flags
were chosen to match Berkeley DB’s configuration to Lemon’s
as closely as possible. In cases where Berkeley DB imple-
ments a feature that is not provided by Lemon, we enable the
feature if it improves Berkeley DB’s performance.

Optimizations to Berkeley DB that we performed in-
cluded disabling the lock manager, though we still use “Free
Threaded” handles for all tests. This yielded a significant in-
crease in performance because it removed the possibility of
transaction deadlock, abort, and repetition. However, after in-
troducing this optimization, highly concurrent Berkeley DB
benchmarks became unstable, suggesting either a bug or mis-
use of the feature. We believe that this problem would only
improve Berkeley DB’s performance in our benchmarks, so
we disabled the lock manager for all tests. Without this op-
timization, Berkeley DB’s performance for Figure 4 strictly
decreases with increased concurrency due to contention and
deadlock recovery. We increased Berkeley DB’s buffer cache
and log buffer sizes to match Lemon’s default sizes.

Finally, we would like to point out that we expended a con-
siderable effort tuning Berkeley DB, and that our efforts sig-
nificantly improved Berkeley DB’s performance on these tests.
Although further tuning by Berkeley DB experts might im-
prove Berkeley DB’s numbers, we think that we have produced
a reasonably fair comparison, and have reproduced the overall
results on multiple machines and file systems.

6 Linear Hash Table

Lemon provides a clean abstraction of transactional pages, al-
lowing for many different types of customization. In general,
when a monolithic system is replaced with a layered approach
there is always some concern that levels of indirection and ab-
straction will degrade performance. So, before moving on to
describe some optimizations that Lemon allows, we evaluate
the performance of a simple linear hash table that has been im-
plemented as an extension to Lemon. We also take the oppor-
tunity to describe an optimized variant of the hash table and
describe how Lemon’s flexible page and log formats enable
interesting optimizations. We also argue that Lemon makes it
easy to produce concurrent data structure implementations.

We decided to implement alinear hash table [12]. Linear
hash tables are able to increase the number of buckets incre-
mentally at runtime. Imagine that we want to double the size
of a hash table of size 2n and that we use some hash function

5We found that the relative performance of Berkeley DB and Lemon is
highly sensitive to filesystem choice, and we plan to investigate the reasons
why the performance of Lemon under ext3 is degraded. However, the results
relating to the Lemon optimizations are consistent across filesystem types.

7

Page 1 Page 2

Figure 2:Structure of locality preserving (page-oriented) linked
lists. By keeping sub-lists within one page, Lemon improves
locality and simplifies most list operations to a single log entry.

hn(x) = h(x)mod2n. Choosehn+1(x) = h(x)mod2n+1 as the
hash function for the new table. Conceptually, we are simply
prepending a random bit to the old value of the hash function,
so all lower-order bits remain the same.

At this point, we could simply block all concurrent access
and iterate over the entire hash table, reinserting values ac-
cording to the new hash function. However, we know that the
contents of each bucket,m, will be split between bucketmand
bucketm+ 2n. Therefore, if we keep track of the last bucket
that was split then we can split a few buckets at a time, resizing
the hash table without introducing long pauses [12].

In order to implement this scheme we need two building
blocks. We need a map from bucket number to bucket contents
(lists), and we need to handle bucket overflow.

6.1 The Bucket Map

The simplest bucket map would simply use a fixed-length
transactional array. However, since we want the size of the
table to grow, we should not assume that it fits in a contiguous
range of pages. Instead, we build on top of Lemon’s transac-
tional ArrayList data structure (inspired by the Java class).

The ArrayList provides the appearance of large growable
array by breaking the array into a tuple of contiguous page
intervals that partition the array. Since we expect relatively
few partitions (one per enlargement typically), this leads to an
efficient map. We use a single “header” page to store the list
of intervals and their sizes.

For space efficiency, the array elements themselves are
stored using the fixed-length record page layout. Thus, we use
the header page to find the right interval, and then index into it
to get the(page,slot) address. Once we have this address, the
REDO/UNDO entries are trivial: they simply log the before or
after image of that record.

6.2 Bucket List

Given the map, which locates the bucket, we need a transac-
tional linked list for the contents of the bucket. The trivial
implementation would just link variable-size records together,
where each record contains a(key,value) pair and thenext
pointer, which is just a(page,slot) address.

However, in order to achieve good locality, we instead im-
plement apage-orientedtransactional linked list, shown in
Figure 2. The basic idea is to place adjacent elements of the
list on the same page: thus we use a list of lists. The main list
links pages together, while the smaller lists reside within one
page. Lemon’s slotted pages allow the smaller lists to support
variable-size values, and allow list reordering and value resiz-
ing with a single log entry (since everything is on one page).

In addition, all of the entries within a page may be traversed
without unpinning and repinning the page in memory, provid-
ing very fast traversal over lists that have good locality. This
optimization would not be possible if it were not for the low-
level interfaces provided by the buffer manager. In particular,
we need to control space allocation, and be able to read and
write multiple records with a single call to pin and unpin. Due
to this data structure’s nice locality properties and good per-
formance for short lists, it can also be used on its own.

6.3 Concurrency

Given the structures described above, the implementation of
a linear hash table is straightforward. A linear hash function
is used to map keys to buckets, insertions and deletions are
handled by the ArrayList implementation, and the table can
be extended lazily by transactionally removing items from one
bucket and adding them to another.

The underlying transactional data structures and a single
lock around the hashtable are all that are needed to complete
the linear hash table implementation. Unfortunately, as we
mentioned in Section 4.3, things become a bit more complex
if we allow interleaved transactions. The solution for the de-
fault hashtable is simply to follow the recipe for Nested Top
Actions, and latch the entire table for each operation. We also
explore a version with finer-grain latching below.

This completes our description of Lemon’s default
hashtable implementation. Implementing transactional sup-
port and concurrency for this data structure is straightforward;
the only complications are a) defining a logical UNDO, and b)
using the bucket list to handle variable-length records. Lemon
hides the hard parts of transactions.

6.4 The Optimized Hashtable

Our optimized hashtable implementation is optimized for log
bandwidth, only stores fixed-length entries, and exploits a
more aggressive version of nested top actions.

Instead of using nested top actions, the optimized imple-
mentation applies updates in a carefully chosen order that min-
imizes the extent to which the on disk representation of the
hash table can be corrupted. This is essentially “soft updates”
applied to a multi-page update [6]. Before beginning the up-
date, it writes an UNDO entry that will first check and restore
the consistency of the hashtable during recovery, and then in-
voke the inverse of the operation that needs to be undone. This

8

0

5

10

15

20

25

30

35

40

45

0 50000 100000 150000 200000 250000

Insertions

Se
co
nd
s

Berkeley DB
Lemon
Lemon-Opt

Figure 3:This test measures the raw performance of the data
structures provided by Lemon and Berkeley DB. Since the test
is run as a single transaction, overheads due to synchronous
I/O and logging are minimized.

recovery scheme does not require record-level UNDO infor-
mation, and thus avoids before-image log entries, which saves
log bandwidth and improves performance.

Also, since this implementation does not need to support
variable-size entries, it stores the first entry of each bucket in
the ArrayList that represents the bucket list, reducing the num-
ber of buffer manager calls that must be made. Finally, this im-
plementation caches the header information in memory, rather
than getting it from the buffer manager on each request.

The most important component of Lemon for this optimiza-
tion is Lemon’s flexible recovery and logging scheme. For
brevity we only mention that this hashtable implementation
uses bucket-granularity latching; fine-grain latching is rela-
tively easy in this case since all operations only affect a few
buckets, and buckets have a natural ordering.

6.5 Performance

We ran a number of benchmarks on the two hashtable imple-
mentations mentioned above, and used Berkeley DB for com-
parison. The first test (Figure 3) measures the throughput of a
single long-running transaction that loads a synthetic data set
into the library.

Both of Lemon’s hashtable implementations perform well,
but the optimized implementation is clearly faster. This is not
surprising as it issues fewer buffer manager requests and writes
fewer log entries than the straightforward implementation.

The second test (Figure 4) measures the two libraries’ abil-
ity to exploit concurrent transactions to reduce logging over-
head. Both systems can service concurrent calls to commit
with a single synchronous I/O.6 Even when using the unopti-
mized hash table implementation, Lemon scales very well with
higher concurrency, delivering over 6000 transactions per sec-

6The multi-threading benchmarks presented here were performed using an
ext3 file system, as high thread concurrency caused Berkeley DB and Lemon
to behave unpredictably when reiserfs was used. However, Lemon’s multi-
threaded throughput was significantly better than Berkeley DB’s with both
filesystems.

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700 800

Concurrent Requests

Tr
an

sa
ct

io
ns

/S
ec

on
d

Berkeley DB
Lemon

Figure 4:The logging mechanisms of Lemon and Berkeley DB
are able to combine multiple calls to commit() into a single disk
force, increasing throughput as the number of concurrent trans-
actions grows. We were unable to get Berkeley DB to work
correctly with more than 50 threads (see text).

ond.7 Lemon had about double the throughput of Berkeley DB
(up to 50 threads).

Finally, we developed a simple load generator which spawns
a pool of threads that generate a fixed number of requests per
second. We then measured response latency, and found that
Berkeley DB and Lemon behave similarly.

In summary, there are a number of primitives that are nec-
essary to implement custom, high-concurrency transactional
data structures. In order to implement and optimize the
hashtable we used a number of low-level APIs that are not sup-
ported by other systems. We needed to customize page layouts
to implement ArrayList. The page-oriented list addresses and
allocates data with respect to pages in order to preserve lo-
cality. The hashtable implementation is built upon these two
data structures, and needs to generate custom log entries, de-
fine custom latching/locking semantics, and make use of, or
even customize, nested top actions.

The fact that our straightforward hashtable is competitive
with Berkeley DB shows that simple Lemon implementations
of transactional data structures can compete with compara-
ble, highly tuned, general-purpose implementations. Simi-
larly, this example shows that Lemon’s flexibility enables opti-
mizations that can significantly outperform existing solutions.

This finding suggests that it is appropriate for application
developers to build custom transactional storage mechanisms
when application performance is important. Because we are
advocating the use of application-provided transactional stor-
age primitives, we only use the straightforward hashtable im-
plementation during our other benchmarks.

We have shown that Lemon’s implementation provides
primitives that perform well enough to allow application-
specific extensions to compete with highly tuned general pur-
pose systems. The next two sections validate the practicality

7This test was run without lock managers, so the transactions obeyed the
A,C, and D ACID properties. Since each transaction performed exactly one
hashtable write they obeyed I (isolation) in a trivial sense.

9

of such mechanisms by applying them to applications that suf-
fer from long-standing performance problems with traditional
databases and transactional libraries.

7 Object Serialization

Object serialization performance is extremely important in
modern web application systems such as Enterprise Java
Beans. Object serialization is also a convenient way of adding
persistent storage to an existing application without managing
an explicit file format or low-level I/O interfaces.

A simple object serialization scheme would bulk-write and
bulk-read sets of application objects to an OS file. These sim-
ple schemes suffer from high read and write latency, and do not
handle small updates well. More sophisticated schemes store
each object in a separate, randomly accessible record, such as a
database or Berkeley DB record. These schemes allow for fast
single-object reads and writes, and are typically the solutions
used by application servers.

However, one drawback of many such schemes is that any
update requires a full serialization of the entire object. In some
application scenarios this can be extremely inefficient as it may
be the case that only a single field from a large complex object
has been modified.

Furthermore, most of these schemes “double cache” object
data. Typically, the application maintains a set of in-memory
objects in their unserialized form, so they can be accessed with
low latency. The backing store also maintains a separate in-
memory buffer pool with the serialized versions of some ob-
jects, as a cache of the on-disk data representation. Accesses
to objects that are only present in the serialized buffer pool
incur significant latency, as they must be unmarshalled (dese-
rialized) before the application may access them. There may
even be a third copy of this data resident in the filesystem
buffer cache, accesses to which incur latency of both system
call overhead and the unmarshalling cost.

To maximize performance, we want to maximize the size
of the in-memory object cache. However, naively constrain-
ing the size of the data store’s buffer pool causes performance
degradation. Most transactional layers (including ARIES)
must read a page into memory to service a write request to
the page; if the buffer pool is too small, these operations trig-
ger potentially random disk I/O. This removes the primary ad-
vantage of write-ahead logging, which is to ensure application
data durability with mostly sequential disk I/O.

In summary, this system architecture (though commonly de-
ployed [10, 22]) is fundamentally flawed. In order to access
objects quickly, the application must keep its working set in
cache. Yet in order to efficiently service write requests, the
transactional layer must store a copy of serialized objects in
memory or resort to random I/O. Thus, any given working set
size requires roughly double the system memory to achieve
good performance.

7.1 Lemon Optimizations

Lemon’s architecture allows us to apply two interesting opti-
mizations to object serialization. First, since Lemon supports
custom log entries, it is trivial to have it store deltas to the log
instead of writing the entire object during an update.

The second optimization is a bit more sophisticated, but still
easy to implement in Lemon. This optimization allows us to
drastically limit the size of the Lemon buffer cache, and still
achieve good performance. We do not believe that existing
relational database systems or Berkeley DB could support this
optimization.

The basic idea of this optimization is to postpone expensive
operations that update the page file for frequently modified ob-
jects, relying on some support from the application’s object
cache to maintain transactional semantics.

To implement this, we added two custom Lemon operations.
The“update()” operation is called when an object is modi-
fied and still exists in the object cache. This causes a log entry
to be written, but does not update the page file. The fact that
the modified object still resides in the object cache guaran-
tees that the (now stale) records will not be read from the page
file. The“flush()” operation is called whenever a modified
object is evicted from the cache. This operation updates the
object in the buffer pool (and therefore the page file), likely
incurring the cost of both a diskread to pull in the page, and
a write to evict another page from the relatively small buffer
pool. However, since popular objects tend to remain in the ob-
ject cache, multiple update modifications will incur relatively
inexpensive log additions, and are only coalesced into a single
modification to the page file when the object is flushed.

Lemon provides several options to handle UNDO records in
the context of object serialization. The first is to use a single
transaction for each object modification, avoiding the cost of
generating or logging any UNDO records. The second option
is to assume that the application will provide a custom UNDO
for the delta, which increases the size of the log entry gener-
ated by each update, but still avoids the need to read or update
the page file.

The third option is to relax the atomicity requirements for
a set of object updates and again avoid generating any UNDO
records. This assumes that the application cannot abort indi-
vidual updates, and is willing to accept that some prefix of
logged but uncommitted updates may be applied to the page
file after recovery. These “transactions” would still be durable
after commit(), as it would force the log to disk. For the bench-
marks below, we use this approach, as it is the most aggres-
sive and is not supported by any other general-purpose trans-
actional storage system (that we know of).

7.2 Recovery and Log Truncation

An observant reader may have noticed a subtle problem with
this scheme. More than one object may reside on a page, and

10

we do not constrain the order in which the cache calls flush()
to evict objects. Recall that the version of the LSN on the page
implies that all updatesup toand including the page LSN have
been applied. Nothing stops our current scheme from breaking
this invariant.

This is where we use the versioned-record page layout.
This layout adds a “record sequence number” (RSN) for each
record, which subsumes the page LSN. Instead of the invari-
ant that the page LSN implies that all earlierpageupdates have
been applied, we enforce that all previousrecordupdates have
been applied. One way to think about this optimization is that
it removes the head-of-line blocking implied by the page LSN
so that unrelated updates remain independent.

Recovery works essentially the same as before, except that
we need to use RSNs to calculate the earliest allowed point for
log truncation (so as to not lose an older record update). In
practice, we also periodically flush the object cache to move
the truncation point forward, but this is not required.

7.3 Evaluation

We implemented a Lemon plugin for Juicer, a C++ object seri-
alization library that can use various object serialization back-
ends. We set up an experiment in which objects are randomly
retrieved from the cache according to a hot-set distribution8

and then have certain fields modified and updated into the data
store. For all experiments, the number of objects is fixed at
5,000, the hot set is set to 10% of the objects, the object cache
is set to double the size of the hot set, we update 100 objects
per transaction, and all experiments were run with identical
random seeds for all configurations.

The first graph in Figure 5 shows the update rate as we
vary the fraction of the object that is modified by each up-
date for Berkeley DB, unmodified Lemon, Lemon with the up-
date/flush optimization, and Lemon with both the update/flush
optimization and delta- based log records. The graph confirms
that the savings in log bandwidth and buffer pool overhead by
both Lemon optimizations outweighs the overhead of the op-
erations, especially when only a small fraction of the object
is modified. In the most extreme case, when only one inte-
ger field from a 1KB object is modified, the fully optimized
Lemon corresponds to a 2x speedup over the simple version.

In all cases, the update rate for MySQL9 is slower than
Berkeley DB, which is slower than any of the Lemon variants.
This performance difference is in line with those observed in
Section 6. We also see the increased overhead due to the SQL
processing for the MySQL implementation, although we note

8In an example hot-set distribution, 10% of the objects (the hot set size)
are selected 90% of the time (the hot set probability).

9We ran MySQL using InnoDB for the table engine, as it is the fastest en-
gine that provides similar durability to Lemon. For this test, we also linked
directly with the libmysqld daemon library, bypassing the RPC layer. In ex-
periments that used the RPC layer, test completion times were orders of mag-
nitude slower.

that a SQL variant of the delta-based optimization also pro-
vides performance benefits.

In the second graph, we constrained the Lemon buffer pool
size to be a small fraction of the size of the object cache, and
bypass the filesystem buffer cache via the O_DIRECT option.
The goal of this experiment is to focus on the benefits of the
update/flush optimization in a simulated scenario of memory
pressure. From this graph, we see that as the percentage of
requests that are serviced by the cache increases, the perfor-
mance of the optimized Lemon dramatically increases. This
result supports the hypothesis of the optimization, and shows
that by leveraging the object cache, we can reduce the load on
the page file and therefore the size of the buffer pool.

The operations required for these two optimizations re-
quired a mere 150 lines of C code, including whitespace, com-
ments and boilerplate function registrations. Although the rea-
soning required to ensure the correctness of this code is com-
plex, the simplicity of the implementation is encouraging.

In addition to the hashtable, which is required by Juicer’s
API, this section made use of custom log formats and seman-
tics to reduce log bandwidth and page file usage. Berkeley
DB supports a similar partial update mechanism, but it only
supports range updates and does not map naturally to Juicer’s
data model. In contrast, our Lemon extension simply makes
upcalls into the object serialization layer during recovery to
ensure that the compact, object-specific deltas that Juicer pro-
duces are correctly applied. The custom log format, when
combined with direct access to the page file and buffer pool,
drastically reduces disk and memory usage for write intensive
loads. Versioned records provide more control over durability
for records on a page, which allows Lemon to decouple object
updates from page updates.

8 Graph Traversal

Database servers (and most transactional storage systems) are
not designed to handle large graph structures well. Typically,
each edge traversal will involve an index lookup, and worse,
since most systems do not provide information about the phys-
ical layout of the data that they store, it is not straightforward
to implement graph algorithms in a way that exploits on disk
locality. In this section, we describe an efficient representation
of graph data using Lemon’s primitives, and present an opti-
mization that introduces locality into random disk requests by
reordering invocations of wrapper functions.

8.1 Data Representation

For simplicity, we represent graph nodes as fixed-length
records. The ArrayList from our linear hash table implemen-
tation (Section 6) provides access to an array of such records
with performance that is competitive with native recordid ac-
cesses, so we use an ArrayList to store the records. We could

11

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80 90 100
Percentage of Object that Changed

U
pd

at
es

/S
ec

on
d

Lemon+delta
Lemon+update/flush
Lemon
Berkeley DB
MySQL

0

50

100

150

200

250

300

0 20 40 60 80 100

Percent in Hot Set

U
pd

at
es

/S
ec

on
d

Lemon

Lemon+update/flush

Figure 5: Lemon optimizations for object serialization. The first graph shows the effect of the two Lemon optimizations as
a function of the portion of the object that is being modified. The second graph focuses on the benefits of the update/flush
optimization in cases of system memory pressure.

have opted for a slightly more efficient representation by im-
plementing a fixed-length array structure, but doing so seems
to be overkill for our purposes. The nodes themselves are
stored as an array of integers of length one greater than their
out-degree. The extraint is used to hold information about
the node; in our case, it is set to a constant during traversal.

We implement a “naive” graph traversal algorithm that uses
depth-first search to find all nodes that are reachable from node
zero. This algorithm (predictably) consumes a large amount of
memory, as it places almost the entire graph on its stack.

For the purposes of this section, which focuses on page ac-
cess locality, we ignore the amount of memory utilization used
to store stacks and work lists, as they can vary greatly from ap-
plication to application, but we note that the memory utiliza-
tion of the simple depth-first search algorithm is certainly no
better than the algorithm presented in the next section.

For simplicity, we do not apply any of the optimizations in
Section 7. This allows our performance comparison to mea-
sure only the optimization presented here.

8.2 Request Reordering for Locality

General graph structures may have no intrinsic locality. If such
a graph is too large to fit into memory, basic graph operations
such as edge traversal become very expensive, which makes
many algorithms over these structures intractable in practice.
In this section, we describe how Lemon’s primitives provide
a natural way to introduce physical locality into a sequence of
such requests. These primitives are general and support a wide
class of optimizations.

Lemon’s wrapper functions translate high-level (logical) ap-
plication requests into lower level (physiological) log entries.
These physiological log entries generally include a logical
UNDO (Section 4.3) that invokes the logical inverse of the ap-
plication request. Since the logical inverse of most application
requests is another application request, we canreuseour oper-
ations and wrappers to implement a purely logical log.

P
ar

tit
io

n
by

 P
ag

e

operations

Page set A

worker
thread

Set B

Page set K

Figure 6:Because pages are independent, we can reorder re-
quests among different pages. Using a log demultiplexer, we
partition requests into independent queues, which can be han-
dled in any order, improving locality and merging opportunities.

For our graph traversal algorithm we use alog demulti-
plexer, shown in Figure 6, to route entries from a single log
into many sub-logs according to page number. This is easy
to do with the ArrayList representation that we chose for our
graph, since it provides a function that maps from array index
to a(page,slot,size) triple.

The logical log allows us to insert log entries that are inde-
pendent of the physical location of their data. However, we are
interested in exploiting the commutativity of the graph traver-
sal operation, and saving the logical offset would not provide
us with any obvious benefit. Therefore, we use page numbers
for partitioning.

We considered a number of demultiplexing policies and
present two particularly interesting ones here. The first divides
the page file up into equally sized contiguous regions, which
enables locality. The second takes the hash of the page’s offset
in the file, which enables load balancing.

Requests are continuously consumed by a process that emp-
ties each of the demultiplexer’s output queues one at a time.
Instead of following graph edges immediately, the targets of
edges leaving each node are simply pushed into the demulti-

12

0 20 40 60 80

3

6

9

O
ut

 D
eg

re
e

Seconds

Lemon
Lemon+reorder

Figure 7:oo7 benchmark style graph traversal. The optimiza-
tion performs well due to the presence of non-local nodes.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Percent in Hot Set

Se
co

nd
s

9
9-reorder
3
3-reorder

Figure 8:Hot set based graph traversal for random graphs with
out-degrees of 3 and 9. Here we see that the multiplexer helps
when the graph has poor locality. However, in the cases where
depth first search performs well, the reordering is inexpensive.

plexer’s input queue. The number of output queues is cho-
sen so that each queue addresses a subset of the page file that
can fit into cache, ensuring locality. When the demultiplexer’s
queues contain no more entries, the traversal is complete.

Although this algorithm may seem complex, it is essentially
just a queue-based breadth-first search implementation, except
that the queue reorders requests in a way that attempts to es-
tablish and maintain disk locality. This kind of log manipula-
tion is very powerful, and could also be used for parallelism
with load balancing (using a hash of the page number) and
log-merging optimizations such as those in LRVM [20].

8.3 Performance Evaluation

We loosely base the graphs for this test on the graphs used
by the oo7 benchmark [4]. For the test, we hard code the
out-degree of graph nodes to 3, 6 and 9 and use a directed
graph. The oo7 benchmark constructs graphs by first connect-
ing nodes together into a ring. It then randomly adds edges be-
tween the nodes until the desired out-degree is obtained. This
structure ensures graph connectivity. If the nodes are laid out
in ring order on disk, it also ensures that one edge from each
node has good locality while the others generally have poor
locality. Figure 7 presents these results; we can see that the re-
quest reordering algorithm helps performance. We re-ran the

test without the ring edges, and (in line with our next set of
results) found that reordering helped there as well.

In order to get a better feel for the effect of graph locality
on the two traversal algorithms we extend the idea of a hot set
to graph generation. Each node has a distinct hot set which in-
cludes the 10% of the nodes that are closest to it in ring order.
The remaining nodes are in the cold set. We use random edges
instead of ring edges for this test. Figure 8 suggests that re-
quest reordering only helps when the graph has poor locality.
This makes sense, as a depth-first search of a graph with good
locality will also have good locality. Therefore, processing a
request via the queue-based demultiplexer is more expensive
then making a recursive function call.

We considered applying some of the optimizations dis-
cussed earlier in the paper to our graph traversal algorithm,
but opted to dedicate this section to request reordering.

9 Future work

We have described a new approach toward developing applica-
tions using generic transactional storage primitives. This ap-
proach raises a number of important questions which fall out-
side the scope of its initial design and implementation.

We believe that development tools could be used to improve
the quality and performance of our implementation and ex-
tensions written by other developers. Well-known static anal-
ysis techniques could be used to verify that operations hold
locks (and initiate nested top actions) where appropriate, and
to ensure compliance with Lemon’s API. We also hope to
re-use the infrastructure that implements such checks to de-
tect opportunities for optimization. Our benchmarking section
shows that our simple default hashtable implementation is 3
to 4 times slower than our optimized implementation. Us-
ing static checking and high-level automated code optimiza-
tion techniques may allow us to narrow or close this gap, and
enhance the performance and reliability of application-specific
extensions.

We would like to extend our work into distributed system
development and believe that Lemon’s implementation antic-
ipates many of the issues that we will face in distributed do-
mains. By adding networking support to our logical log inter-
face, we should be able to demultiplex and replicate log en-
tries to sets of nodes easily. Single node optimizations such
as the demand-based log reordering primitive should be di-
rectly applicable to multi-node systems.10. Also, we believe
that logical, host independent logs may be a good fit for appli-
cations that make use of streaming data or that need to perform
transformations on application requests before they are mate-
rialized in a transactional data store.

10For example, our (local, and non-redundant) log demultiplexer provides
semantics similar to the Map-Reduce [5] distributed programming primitive,
but exploits hard disk and buffer pool locality instead of the parallelism inher-
ent in large networks of computer systems.

13

We also hope to provide a library of transactional data struc-
tures with functionality that is comparable to standard pro-
gramming language libraries such as Java’s Collection API or
portions of C++’s STL. Our linked list implementations, Ar-
rayList and hashtable represent an initial attempt to implement
this functionality. We are unaware of any transactional system
that provides such a broad range of data structure implementa-
tions. We may also be able to provide the same APIs for both
in-memory and transactional data structures.

Finally, due to the large amount of prior work in this area,
we have found that there are a large number of optimizations
and features that could be applied to Lemon. It is our intention
to produce a usable system from our research prototype. To
this end, we have already released Lemon as an open-source
library, and intend to produce a stable release once we are con-
fident that the implementation is correct and reliable.

10 Conclusion

We believe that transactions have much to offer system devel-
opers, but that there is a need to enable transactions for wider
range of systems than just databases. We built Lemon and
showed how its framework simplifies the creation of trans-
actional data structures that have excellent performance and
flexibility, including arrays, hash tables, persistent objects, and
graphs. Lemon provides a wide range of transactional seman-
tics, all the way up to complete ACID transactions with high
concurrency, archiving and media recovery. We also demon-
strated that the low-level APIs enable many optimizations, in-
cluding optimizations for deltas, locality, reordering, and dura-
bility. We have released Lemon as open source and believe it
makes it easy to benefit from the power of transactions.

References

[1] Agrawal, et al.Concurrency Control Performance Modeling:
Alternatives and Implications. TODS 12(4): (1987) 609-654

[2] Carey, Michael J., DeWitt, David J., Naughton, Jeffrey F.The
OO7 Benchmark.SIGMOD (1993)

[3] E. F. Codd,A Relational Model of Data for Large Shared Data
Banks.CACM 13(6) p. 377-387 (1970)

[4] Jeffrey Dean and Sanjay Ghemawat.Simplified Data Process-
ing on Large Clusters.OSDI (2004)

[5] Greg Ganger.Soft Updates: A Solution to the Metadata Update
Problem in File SystemsACM Transactions (2000)

[6] David K. Gifford, P. Jouvelot, Mark A. Sheldon, and Jr. James
W. O’Toole. Semantic file systems. Proceedings of the Thir-
teenth ACM Symposium on Operating Systems Principles,
(1991) p. 16-25.

[7] Gray, J. and Reuter, A.Transaction Processing: Concepts and
Techniques. Morgan Kaufmann (1993) San Mateo, CA

[8] Jim Gray, Raymond A. Lorie, and Gianfranco R. Putzulo.
Granularity of locks and degrees of consistency in a shared
database. In 1st International Conference on VLDB, Septem-
ber 1975. Reprinted in Readings in Database Systems, 3rd ed.

[9] Gribble, Steven D., Brewer, Eric A., Hellerstein, Joseph M.,
Culler, David.Scalable, Distributed Data Structures for Inter-
net Service Construction.OSDI (2000)

[9] Haerder & Reuter "Principles of Transaction-Oriented
Database Recovery."Computing Surveys 15(4) (1983)

[10] Hibernate,http://www.hibernate.org/

[11] Lamb, et al.,The ObjectStore System.CACM 34(10) (1991)

[12] Litwin, W., Linear Hashing: A New Tool for File and Table
Addressing. Proc. 6th VLDB, Montreal, Canada, (Oct. 1980)

[13] Mohan, et al.,ARIES: A Transaction Recovery Method Sup-
porting Fine-Granularity Locking and Partial Rollbacks Using
Write-Ahead Logging.TODS 17(1) (1992) p. 94-162

[14] Mohan, Lindsay & Obermarck,Transaction Management in
the R* Distributed Database Management SystemTODS 11(4)
(1986) p. 378-396

[15] Mohan, Levine.ARIES/IM: an efficient and high concurrency
index management method using write-ahead loggingInterna-
tional Converence on Management of Data, SIGMOD (1992)
p. 371-380

[16] MySQL, http://www.mysql.com/

[17] Reiser, Hans T.ReiserFS 4http://www.namesys.com/

[18] M. Seltzer, M. Olsen.LIBTP: Portable, Modular Transactions
for UNIX. Proceedings of the 1992 Winter Usenix (1992)

[19] Satyanarayanan, M., Mashburn, H. H., Kumar, P., Steere, D.
C., AND Kistler, J. J.Lightweight Recoverable Virtual Mem-
ory. ACM Transactions on Computer Systems 12, 1 (Februrary
1994) p. 33-57. Corrigendum: May 1994, Vol. 12, No. 2, pp.
165-172.

[20] Stonebraker.Inclusion of New Types in Relational Data Base.
ICDE (1986)

[21] Stonebraker and Kemnitz.The POSTGRES Next-Generation
Database Management System.CACM (1991)

14

