stasis-bLSM/mergeStats.h

339 lines
13 KiB
C
Raw Normal View History

/*
* mergeStats.h
*
* Created on: Apr 27, 2010
* Author: sears
*/
#ifndef MERGESTATS_H_
#define MERGESTATS_H_
#include <stasis/common.h>
class mergeManager {
private:
double tv_to_double(struct timeval * tv) {
return (double)tv->tv_sec + ((double)tv->tv_usec)/1000000.0;
}
double ts_to_double(struct timespec * ts) {
return (double)ts->tv_sec + ((double)ts->tv_nsec)/1000000000.0;
}
void double_to_ts(struct timespec *ts, double time) {
ts->tv_sec = (time_t)(time);
ts->tv_nsec = (long)((time - (double)ts->tv_sec) * 1000000000.0);
}
public:
mergeManager() :
c0_queueSize(0),
c1_queueSize(0),
c2_queueSize(0),
c0_totalConsumed(0),
c0_totalCollapsed(0),
c0_totalWorktime(0),
c1_totalConsumed(0),
c1_totalCollapsed(0),
c1_totalWorktime(0),
c2_totalConsumed(0),
c2_totalCollapsed(0),
c2_totalWorktime(0),
c0(new mergeStats(this, 0)),
c1(new mergeStats(this, 1)),
c2(new mergeStats(this, 2)) {
pthread_mutex_init(&mut, 0);
pthread_mutex_init(&throttle_mut, 0);
pthread_mutex_init(&dummy_throttle_mut, 0);
pthread_cond_init(&dummy_throttle_cond, 0);
struct timeval tv;
gettimeofday(&tv, 0);
double_to_ts(&last_throttle, tv_to_double(&tv));
}
~mergeManager() {
pthread_mutex_destroy(&mut);
}
class mergeStats;
void new_merge(mergeStats * s) {
pthread_mutex_lock(&mut);
if(s->merge_count) {
if(s->merge_level == 0) {
// queueSize was set during startup
} else if(s->merge_level == 1) {
c1_queueSize = c1_queueSize > s->bytes_out ? c1_queueSize : s->bytes_out;
} else if(s->merge_level == 2) {
c2_queueSize = s->bytes_in_small;
} else { abort(); }
pretty_print(stdout);
}
pthread_mutex_unlock(&mut);
}
void set_c0_size(int64_t size) {
c0_queueSize = size;
}
void tick(mergeStats * s, bool done = false) {
if(s->merge_level == 0) {
pthread_mutex_lock(&throttle_mut);
// throttle?
if(s->bytes_in_small_delta > c0_queueSize / 100) {
struct timeval now;
gettimeofday(&now, 0);
double elapsed_delta = tv_to_double(&now) - ts_to_double(&last_throttle);
pageid_t bytes_written_delta = (s->bytes_in_small_delta - s->bytes_collapsed_delta);
double min_throughput = 100 * 1024; // don't throttle below 100 kilobytes / sec
double c0_badness = (double)((c0_totalConsumed + bytes_written_delta - c1_totalConsumed) - c0_queueSize)/ (double)c0_queueSize;
if(c0_badness > 0) {
double target_throughput = min_throughput / (c0_badness * c0_badness);
//double raw_throughput = ((double)bytes_written_delta)/elapsed_delta;
double target_elapsed = ((double)bytes_written_delta)/target_throughput;
printf("Worked %6.1f (target %6.1f)\n", elapsed_delta, target_elapsed);
if(target_elapsed > elapsed_delta) {
struct timespec sleep_until;
double_to_ts(&sleep_until, ts_to_double(&last_throttle) + target_elapsed);
fprintf(stdout, "Throttling for %6.1f seconds\n", target_elapsed - (double)elapsed_delta);
pthread_mutex_lock(&dummy_throttle_mut);
pthread_cond_timedwait(&dummy_throttle_cond, &dummy_throttle_mut, &sleep_until);
pthread_mutex_unlock(&dummy_throttle_mut);
memcpy(&last_throttle, &sleep_until, sizeof(sleep_until));
} else {
double_to_ts(&last_throttle, tv_to_double(&now));
}
} else {
printf("badness is negative\n");
double_to_ts(&last_throttle, tv_to_double(&now));
}
}
}
if(done || s->bytes_in_small_delta > c0_queueSize / 100) {
struct timeval now;
gettimeofday(&now,0);
unsigned long long elapsed = long_tv(now) - long_tv(s->last);
pthread_mutex_lock(&mut);
if(s->merge_level == 0) {
c0_totalConsumed += s->bytes_in_small_delta;
c0_totalWorktime += elapsed;
c0_totalCollapsed += s->bytes_collapsed_delta;
} else if(s->merge_level == 1) {
c1_totalConsumed += s->bytes_in_small_delta;
c1_totalWorktime += elapsed;
c1_totalCollapsed += s->bytes_collapsed_delta;
} else if(s->merge_level == 2) {
c2_totalConsumed += s->bytes_in_small_delta;
c2_totalWorktime += elapsed;
c2_totalCollapsed += s->bytes_collapsed_delta;
} else { abort(); }
pthread_mutex_unlock(&mut);
s->bytes_in_small_delta = 0;
s->bytes_collapsed_delta = 0;
memcpy(&s->last, &now, sizeof(now));
pretty_print(stdout);
}
if(s->merge_level == 0) {
pthread_mutex_unlock(&throttle_mut);
}
}
uint64_t long_tv(struct timeval& tv) {
return (1000000ULL * (uint64_t)tv.tv_sec) + ((uint64_t)tv.tv_usec);
}
void pretty_print(FILE * out) {
pageid_t mb = 1024 * 1024;
fprintf(out,"%s %s %s ", c0->active ? "RUN" : "---", c1->active ? "RUN" : "---", c2->active ? "RUN" : "---");
fprintf(out, "C0 size %lld collapsed %lld resident %lld ",
2*c0_queueSize/mb,
c0_totalCollapsed/mb,
(c0_totalConsumed - (c0_totalCollapsed + c1_totalConsumed))/mb);
fprintf(out, "C1 size %lld collapsed %lld resident %lld ",
2*c1_queueSize/mb,
c1_totalCollapsed/mb,
(c1_totalConsumed - (c1_totalCollapsed + c2_totalConsumed))/mb);
fprintf(out, "C2 size %lld collapsed %lld ",
2*c2_queueSize/mb, c2_totalCollapsed/mb);
fprintf(out, "C1 MB/s (eff; active) %6.1f C2 MB/s %6.1f\n",
((double)c1_totalConsumed)/((double)c1_totalWorktime),
((double)c2_totalConsumed)/((double)c2_totalWorktime));
}
class mergeStats {
public:
mergeStats(mergeManager* merge_mgr, int merge_level) :
merge_mgr(merge_mgr),
merge_level(merge_level),
merge_count(0),
bytes_out(0),
num_tuples_out(0),
num_datapages_out(0),
bytes_in_small(0),
bytes_in_small_delta(0),
bytes_collapsed(0),
bytes_collapsed_delta(0),
num_tuples_in_small(0),
bytes_in_large(0),
num_tuples_in_large(0),
active(false) {
gettimeofday(&sleep,0);
gettimeofday(&last,0);
}
void new_merge() {
merge_mgr->new_merge(this);
merge_count++;
bytes_out = 0;
num_tuples_out = 0;
num_datapages_out = 0;
bytes_in_small = 0;
bytes_in_small_delta = 0;
bytes_collapsed = 0;
bytes_collapsed_delta = 0;
num_tuples_in_small = 0;
bytes_in_large = 0;
num_tuples_in_large = 0;
gettimeofday(&sleep,0);
}
void starting_merge() {
active = true;
gettimeofday(&start, 0);
gettimeofday(&last, 0);
}
void finished_merge() {
active = false;
merge_mgr->tick(this, true);
gettimeofday(&done, 0);
}
void read_tuple_from_large_component(datatuple * tup) {
if(tup) {
num_tuples_in_large++;
bytes_in_large += tup->byte_length();
}
}
void read_tuple_from_small_component(datatuple * tup) {
if(tup) {
num_tuples_in_small++;
bytes_in_small_delta += tup->byte_length();
bytes_in_small += tup->byte_length();
merge_mgr->tick(this);
}
}
void merged_tuples(datatuple * merged, datatuple * small, datatuple * large) {
pageid_t d = (merged->byte_length() - (small->byte_length() + large->byte_length()));
bytes_collapsed += d;
bytes_collapsed_delta += d;
}
void wrote_tuple(datatuple * tup) {
num_tuples_out++;
bytes_out_tuples += tup->byte_length();
}
void wrote_datapage(DataPage<datatuple> *dp) {
num_datapages_out++;
bytes_out += (PAGE_SIZE * dp->get_page_count());
}
// TODO: merger.cpp probably shouldn't compute R from this.
pageid_t output_size() {
return bytes_out;
}
protected:
mergeManager* merge_mgr;
int merge_level; // 1 => C0->C1, 2 => C1->C2
pageid_t merge_count; // This is the merge_count'th merge
struct timeval sleep; // When did we go to sleep waiting for input?
struct timeval start; // When did we wake up and start merging? (at steady state with max throughput, this should be equal to sleep)
struct timeval done; // When did we finish merging?
struct timeval last;
double float_tv(struct timeval& tv) {
return ((double)tv.tv_sec) + ((double)tv.tv_usec) / 1000000.0;
}
friend class mergeManager;
pageid_t bytes_out; // How many bytes did we write (including internal tree nodes)?
pageid_t bytes_out_tuples; // How many bytes worth of tuples did we write?
pageid_t num_tuples_out; // How many tuples did we write?
pageid_t num_datapages_out; // How many datapages?
pageid_t bytes_in_small; // How many bytes from the small input tree (for C0, we ignore tree overheads)?
pageid_t bytes_in_small_delta; // How many bytes from the small input tree during this tick (for C0, we ignore tree overheads)?
pageid_t bytes_collapsed; // How many bytes disappeared due to tuple merges?
pageid_t bytes_collapsed_delta;
pageid_t num_tuples_in_small; // Tuples from the small input?
pageid_t bytes_in_large; // Bytes from the large input?
pageid_t num_tuples_in_large; // Tuples from large input?
bool active;
public:
void pretty_print(FILE* fd) {
double sleep_time = float_tv(start) - float_tv(sleep);
double work_time = float_tv(done) - float_tv(start);
double total_time = sleep_time + work_time;
double mb_out = ((double)bytes_out) /(1024.0*1024.0);
double mb_ins = ((double)bytes_in_small) /(1024.0*1024.0);
double mb_inl = ((double)bytes_in_large) /(1024.0*1024.0);
double kt_out = ((double)num_tuples_out) /(1024.0);
double kt_ins= ((double)num_tuples_in_small) /(1024.0);
double kt_inl = ((double)num_tuples_in_large) /(1024.0);
double mb_hdd = mb_out + mb_inl + (merge_level == 1 ? 0.0 : mb_ins);
double kt_hdd = kt_out + kt_inl + (merge_level == 1 ? 0.0 : kt_ins);
fprintf(fd,
"=====================================================================\n"
"Thread %d merge %lld: sleep %6.2f sec, run %6.2f sec\n"
" megabytes kTuples datapages MB/s (real) kTup/s (real)\n"
"Wrote %7lld %7lld %9lld" " %6.1f %6.1f" " %8.1f %8.1f" "\n"
"Read (small) %7lld %7lld - " " %6.1f %6.1f" " %8.1f %8.1f" "\n"
"Read (large) %7lld %7lld - " " %6.1f %6.1f" " %8.1f %8.1f" "\n"
"Disk %7lld %7lld - " " %6.1f %6.1f" " %8.1f %8.1f" "\n"
".....................................................................\n"
"avg tuple len: %6.2fkb\n"
"effective throughput: (mb/s ; nsec/byte): (%.2f; %.2f) active" "\n"
" (%.2f; %.2f) wallclock" "\n"
".....................................................................\n"
,
merge_level, merge_count,
sleep_time,
work_time,
(long long)mb_out, (long long)kt_out, num_datapages_out, mb_out / work_time, mb_out / total_time, kt_out / work_time, kt_out / total_time,
(long long)mb_ins, (long long)kt_ins, mb_ins / work_time, mb_ins / total_time, kt_ins / work_time, kt_ins / total_time,
(long long)mb_inl, (long long)kt_inl, mb_inl / work_time, mb_inl / total_time, kt_inl / work_time, kt_inl / total_time,
(long long)mb_hdd, (long long)kt_hdd, mb_hdd / work_time, mb_hdd / total_time, kt_hdd / work_time, kt_hdd / total_time,
mb_out / kt_out,
mb_ins / work_time, 1000.0 * work_time / mb_ins, mb_ins / total_time, 1000.0 * total_time / mb_ins
);
}
};
mergeStats* newMergeStats(int mergeLevel) {
if (mergeLevel == 0) {
return c0;
} else if (mergeLevel == 1) {
return c1;
} else if(mergeLevel == 2) {
return c2;
} else {
abort();
}
}
private:
pthread_mutex_t mut;
pageid_t c0_queueSize;
pageid_t c1_queueSize; // How many bytes must c0-c1 consume before trying to swap over to an empty c1? ( = current target c1 size)
pageid_t c2_queueSize; // How many bytes must c1-c2 consume before there is room for a new empty c1? ( = previous c1 size)
pageid_t c0_totalConsumed;
pageid_t c0_totalCollapsed;
pageid_t c0_totalWorktime;
pageid_t c1_totalConsumed; // What is long-term effective throughput of merger #1? (Excluding blocked times)
pageid_t c1_totalCollapsed;
pageid_t c1_totalWorktime;
pageid_t c2_totalConsumed; // What is long term effective throughput of merger #2? (Excluding blocked times)
pageid_t c2_totalCollapsed;
pageid_t c2_totalWorktime;
mergeStats * c0;
mergeStats * c1;
mergeStats * c2;
struct timespec last_throttle;
pthread_mutex_t throttle_mut;
pthread_mutex_t dummy_throttle_mut;
pthread_cond_t dummy_throttle_cond;
};
#endif /* MERGESTATS_H_ */