stasis-bLSM/test/check_logtable.cpp

277 lines
6.4 KiB
C++
Raw Normal View History

#include <string>
#include <vector>
#include <iostream>
#include <sstream>
#include "logstore.h"
#include "datapage.cpp"
#include "logiterators.cpp"
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <pthread.h>
#include <sys/time.h>
#include <time.h>
#undef begin
#undef end
//template class DataPage<datatuple>;
template class treeIterator<datatuple>;
bool mycmp(const std::string & k1,const std::string & k2)
{
//for char* ending with \0
return strcmp(k1.c_str(),k2.c_str()) < 0;
//for int32_t
//printf("%d\t%d\n",(*((int32_t*)k1)) ,(*((int32_t*)k2)));
//return (*((int32_t*)k1)) <= (*((int32_t*)k2));
}
//must be given a sorted array
void removeduplicates(std::vector<std::string> &arr)
{
for(int i=arr.size()-1; i>0; i--)
{
if(! (mycmp(arr[i], arr[i-1]) || mycmp(arr[i-1], arr[i])))
arr.erase(arr.begin()+i);
}
}
void preprandstr(int count, std::vector<std::string> &arr, int avg_len=50, bool duplicates_allowed=false)
{
for ( int j=0; j<count; j++)
{
int str_len = (rand()%(avg_len*2)) + 3;
char *rc = (char*)malloc(str_len);
for(int i=0; i<str_len-1; i++)
rc[i] = rand()%10+48;
rc[str_len-1]='\0';
std::string str(rc);
//make sure there is no duplicate key
if(!duplicates_allowed)
{
bool dup = false;
for(int i=0; i<j; i++)
if(! (mycmp(arr[i], str) || mycmp(str, arr[i])))
{
dup=true;
break;
}
if(dup)
{
j--;
continue;
}
}
//printf("keylen-%d\t%d\t%s\n", str_len, str.length(),rc);
free(rc);
arr.push_back(str);
}
}
void insertProbeIter(int NUM_ENTRIES)
{
srand(1000);
unlink("storefile.txt");
unlink("logfile.txt");
sync();
bufferManagerNonBlockingSlowHandleType = IO_HANDLE_PFILE;
Tinit();
int xid = Tbegin();
logtable ltable;
int pcount = 5;
ltable.set_fixed_page_count(pcount);
recordid table_root = ltable.allocTable(xid);
Tcommit(xid);
xid = Tbegin();
logtree *lt = ltable.get_tree_c1();
recordid tree_root = lt->get_root_rec();
std::vector<std::string> data_arr;
std::vector<std::string> key_arr;
preprandstr(NUM_ENTRIES, data_arr, 5*4096, true);
preprandstr(NUM_ENTRIES+200, key_arr, 50, true);//well i can handle upto 200
std::sort(key_arr.begin(), key_arr.end(), &mycmp);
removeduplicates(key_arr);
if(key_arr.size() > NUM_ENTRIES)
key_arr.erase(key_arr.begin()+NUM_ENTRIES, key_arr.end());
NUM_ENTRIES=key_arr.size();
if(data_arr.size() > NUM_ENTRIES)
data_arr.erase(data_arr.begin()+NUM_ENTRIES, data_arr.end());
printf("Stage 1: Writing %d keys\n", NUM_ENTRIES);
int dpages = 0;
int npages = 0;
DataPage<datatuple> *dp=0;
int64_t datasize = 0;
std::vector<pageid_t> dsp;
for(int i = 0; i < NUM_ENTRIES; i++)
{
//prepare the key
datatuple newtuple;
uint32_t keylen = key_arr[i].length()+1;
newtuple.keylen = &keylen;
newtuple.key = (datatuple::key_t) malloc(keylen);
for(int j=0; j<keylen-1; j++)
newtuple.key[j] = key_arr[i][j];
newtuple.key[keylen-1]='\0';
//prepare the data
uint32_t datalen = data_arr[i].length()+1;
newtuple.datalen = &datalen;
newtuple.data = (datatuple::data_t) malloc(datalen);
for(int j=0; j<datalen-1; j++)
newtuple.data[j] = data_arr[i][j];
newtuple.data[datalen-1]='\0';
// printf("key: \t, keylen: %u\ndata: datalen: %u\n",
//newtuple.key,
// *newtuple.keylen,
//newtuple.data,
// *newtuple.datalen);
datasize += newtuple.byte_length();
if(dp == NULL)
{
dp = ltable.insertTuple(xid, newtuple, ltable.get_dpstate1(), lt);
dpages++;
dsp.push_back(dp->get_start_pid());
}
else
{
if(!dp->append(xid, newtuple))
{
npages += dp->get_page_count();
delete dp;
dp = ltable.insertTuple(xid, newtuple, ltable.get_dpstate1(), lt);
dpages++;
dsp.push_back(dp->get_start_pid());
}
}
free(newtuple.key);
free(newtuple.data);
}
printf("\nTREE STRUCTURE\n");
lt->print_tree(xid);
printf("Total data set length: %d\n", datasize);
printf("Storage utilization: %.2f\n", (datasize+.0) / (PAGE_SIZE * npages));
printf("Number of datapages: %d\n", dpages);
printf("Writes complete.\n");
Tcommit(xid);
xid = Tbegin();
printf("Stage 2: Sequentially reading %d tuples\n", NUM_ENTRIES);
int tuplenum = 0;
treeIterator<datatuple> tree_itr(tree_root);
datatuple *dt=0;
while( (dt=tree_itr.getnext()) != NULL)
{
assert(*(dt->keylen) == key_arr[tuplenum].length()+1);
assert(*(dt->datalen) == data_arr[tuplenum].length()+1);
tuplenum++;
free(dt->keylen);
free(dt);
dt = 0;
}
assert(tuplenum == key_arr.size());
printf("Sequential Reads completed.\n");
int rrsize=key_arr.size() / 3;
printf("Stage 3: Randomly reading %d tuples by key\n", rrsize);
for(int i=0; i<rrsize; i++)
{
//randomly pick a key
int ri = rand()%key_arr.size();
//get the key
uint32_t keylen = key_arr[ri].length()+1;
datatuple::key_t rkey = (datatuple::key_t) malloc(keylen);
for(int j=0; j<keylen-1; j++)
rkey[j] = key_arr[ri][j];
rkey[keylen-1]='\0';
//find the key with the given tuple
datatuple *dt = ltable.findTuple(xid, rkey, keylen, lt);
assert(dt!=0);
assert(*(dt->keylen) == key_arr[ri].length()+1);
assert(*(dt->datalen) == data_arr[ri].length()+1);
free(dt->keylen);
free(dt);
dt = 0;
}
printf("Random Reads completed.\n");
Tcommit(xid);
Tdeinit();
}
/** @test
*/
int main()
{
insertProbeIter(15000);
return 0;
}