stasis-bLSM/logstore.cpp

692 lines
20 KiB
C++
Raw Normal View History

#include "logstore.h"
#include "merger.h"
#include <stasis/transactional.h>
#include <stasis/bufferManager.h>
#include <stasis/bufferManager/bufferHash.h>
#include <stasis/logger/logger2.h>
#include <stasis/logger/logHandle.h>
#include <stasis/logger/filePool.h>
#include "mergeStats.h"
#undef try
#undef end
static inline double tv_to_double(struct timeval tv)
{
return static_cast<double>(tv.tv_sec) +
(static_cast<double>(tv.tv_usec) / 1000000.0);
}
/////////////////////////////////////////////////////////////////
// LOG TABLE IMPLEMENTATION
/////////////////////////////////////////////////////////////////
template<class TUPLE>
logtable<TUPLE>::logtable(int log_mode, pageid_t max_c0_size, pageid_t internal_region_size, pageid_t datapage_region_size, pageid_t datapage_size)
{
recovering = true;
this->max_c0_size = max_c0_size;
this->mean_c0_run_length = max_c0_size;
this->num_c0_mergers = 0;
r_val = 3.0; // MIN_R
tree_c0 = NULL;
tree_c0_mergeable = NULL;
c0_is_merging = false;
tree_c1_prime = NULL;
tree_c1 = NULL;
tree_c1_mergeable = NULL;
tree_c2 = NULL;
// This bool is purely for external code.
this->accepting_new_requests = true;
this->shutting_down_ = false;
c0_flushing = false;
c1_flushing = false;
current_timestamp = 0;
expiry = 0;
this->merge_mgr = 0;
tmerger = new tuplemerger(&replace_merger);
header_mut = rwlc_initlock();
pthread_mutex_init(&rb_mut, 0);
pthread_cond_init(&c0_needed, 0);
pthread_cond_init(&c0_ready, 0);
pthread_cond_init(&c1_needed, 0);
pthread_cond_init(&c1_ready, 0);
epoch = 0;
this->internal_region_size = internal_region_size;
this->datapage_region_size = datapage_region_size;
this->datapage_size = datapage_size;
this->log_mode = log_mode;
this->batch_size = 0;
log_file = stasis_log_file_pool_open("lsm_log",
stasis_log_file_mode,
stasis_log_file_permissions);
}
template<class TUPLE>
logtable<TUPLE>::~logtable()
{
delete merge_mgr; // shuts down pretty print thread.
if(tree_c1 != NULL)
delete tree_c1;
if(tree_c2 != NULL)
delete tree_c2;
if(tree_c0 != NULL)
{
memTreeComponent<datatuple>::tearDownTree(tree_c0);
}
log_file->close(log_file);
pthread_mutex_destroy(&rb_mut);
rwlc_deletelock(header_mut);
pthread_cond_destroy(&c0_needed);
pthread_cond_destroy(&c0_ready);
pthread_cond_destroy(&c1_needed);
pthread_cond_destroy(&c1_ready);
delete tmerger;
}
template<class TUPLE>
void logtable<TUPLE>::init_stasis() {
DataPage<datatuple>::register_stasis_page_impl();
stasis_buffer_manager_hint_writes_are_sequential = 1;
Tinit();
}
template<class TUPLE>
void logtable<TUPLE>::deinit_stasis() { Tdeinit(); }
template<class TUPLE>
recordid logtable<TUPLE>::allocTable(int xid)
{
table_rec = Talloc(xid, sizeof(tbl_header));
mergeStats * stats = 0;
//create the big tree
tree_c2 = new diskTreeComponent(xid, internal_region_size, datapage_region_size, datapage_size, stats, 10);
//create the small tree
tree_c1 = new diskTreeComponent(xid, internal_region_size, datapage_region_size, datapage_size, stats, 10);
merge_mgr = new mergeManager(this);
merge_mgr->set_c0_size(max_c0_size);
merge_mgr->new_merge(0);
tree_c0 = new memTreeComponent<datatuple>::rbtree_t;
tbl_header.merge_manager = merge_mgr->talloc(xid);
tbl_header.log_trunc = 0;
update_persistent_header(xid);
return table_rec;
}
template<class TUPLE>
void logtable<TUPLE>::openTable(int xid, recordid rid) {
table_rec = rid;
Tread(xid, table_rec, &tbl_header);
tree_c2 = new diskTreeComponent(xid, tbl_header.c2_root, tbl_header.c2_state, tbl_header.c2_dp_state, 0);
tree_c1 = new diskTreeComponent(xid, tbl_header.c1_root, tbl_header.c1_state, tbl_header.c1_dp_state, 0);
tree_c0 = new memTreeComponent<datatuple>::rbtree_t;
merge_mgr = new mergeManager(this, xid, tbl_header.merge_manager);
merge_mgr->set_c0_size(max_c0_size);
merge_mgr->new_merge(0);
}
template<class TUPLE>
void logtable<TUPLE>::logUpdate(datatuple * tup) {
byte * buf = tup->to_bytes();
LogEntry * e = stasis_log_write_update(log_file, 0, INVALID_PAGE, 0/*Page**/, 0/*op*/, buf, tup->byte_length());
log_file->write_entry_done(log_file,e);
free(buf);
}
template<class TUPLE>
void logtable<TUPLE>::replayLog() {
lsn_t start = tbl_header.log_trunc;
LogHandle * lh = start ? getLSNHandle(log_file, start) : getLogHandle(log_file);
const LogEntry * e;
while((e = nextInLog(lh))) {
switch(e->type) {
case UPDATELOG: {
datatuple * tup = datatuple::from_bytes((byte*)stasis_log_entry_update_args_cptr(e));
insertTuple(tup);
datatuple::freetuple(tup);
} break;
case INTERNALLOG: { } break;
default: assert(e->type == UPDATELOG); abort();
}
}
freeLogHandle(lh);
recovering = false;
printf("\nLog replay complete.\n");
}
template<class TUPLE>
lsn_t logtable<TUPLE>::get_log_offset() {
if(recovering || !log_mode) { return INVALID_LSN; }
return log_file->next_available_lsn(log_file);
}
template<class TUPLE>
void logtable<TUPLE>::truncate_log() {
if(recovering) {
printf("Not truncating log until recovery is complete.\n");
} else {
if(tbl_header.log_trunc) {
printf("truncating log to %lld\n", tbl_header.log_trunc);
log_file->truncate(log_file, tbl_header.log_trunc);
}
}
}
template<class TUPLE>
void logtable<TUPLE>::update_persistent_header(int xid, lsn_t trunc_lsn) {
tbl_header.c2_root = tree_c2->get_root_rid();
tbl_header.c2_dp_state = tree_c2->get_datapage_allocator_rid();
tbl_header.c2_state = tree_c2->get_internal_node_allocator_rid();
tbl_header.c1_root = tree_c1->get_root_rid();
tbl_header.c1_dp_state = tree_c1->get_datapage_allocator_rid();
tbl_header.c1_state = tree_c1->get_internal_node_allocator_rid();
merge_mgr->marshal(xid, tbl_header.merge_manager);
if(trunc_lsn != INVALID_LSN) {
printf("\nsetting log truncation point to %lld\n", trunc_lsn);
tbl_header.log_trunc = trunc_lsn;
}
Tset(xid, table_rec, &tbl_header);
}
template<class TUPLE>
void logtable<TUPLE>::flushTable()
{
struct timeval start_tv, stop_tv;
double start, stop;
static double last_start;
static bool first = 1;
static int merge_count = 0;
gettimeofday(&start_tv,0);
start = tv_to_double(start_tv);
c0_flushing = true;
bool blocked = false;
int expmcount = merge_count;
//this waits for the previous merger of the mem-tree
//hopefullly this wont happen
while(get_c0_is_merging()) {
rwlc_cond_wait(&c0_needed, header_mut);
blocked = true;
if(expmcount != merge_count) {
return;
}
}
set_c0_is_merging(true);
merge_mgr->get_merge_stats(0)->handed_off_tree();
merge_mgr->new_merge(0);
gettimeofday(&stop_tv,0);
stop = tv_to_double(stop_tv);
pthread_cond_signal(&c0_ready);
DEBUG("Signaled c0-c1 merge thread\n");
merge_count ++;
merge_mgr->get_merge_stats(0)->starting_merge();
if(blocked && stop - start > 1.0) {
if(first)
{
printf("\nBlocked writes for %f sec\n", stop-start);
first = 0;
}
else
{
printf("\nBlocked writes for %f sec (serviced writes for %f sec)\n",
stop-start, start-last_start);
}
last_start = stop;
} else {
DEBUG("signaled c0-c1 merge\n");
}
c0_flushing = false;
}
template<class TUPLE>
datatuple * logtable<TUPLE>::findTuple(int xid, const datatuple::key_t key, size_t keySize)
{
//prepare a search tuple
datatuple *search_tuple = datatuple::create(key, keySize);
pthread_mutex_lock(&rb_mut);
datatuple *ret_tuple=0;
//step 1: look in tree_c0
memTreeComponent<datatuple>::rbtree_t::iterator rbitr = get_tree_c0()->find(search_tuple);
if(rbitr != get_tree_c0()->end())
{
DEBUG("tree_c0 size %d\n", get_tree_c0()->size());
ret_tuple = (*rbitr)->create_copy();
}
pthread_mutex_unlock(&rb_mut);
rwlc_readlock(header_mut); // XXX: FIXME with optimisitic concurrency control. Has to be before rb_mut, or we could merge the tuple with itself due to an intervening merge
bool done = false;
//step: 2 look into first in tree if exists (a first level merge going on)
if(get_tree_c0_mergeable() != 0)
{
DEBUG("old mem tree not null %d\n", (*(mergedata->old_c0))->size());
rbitr = get_tree_c0_mergeable()->find(search_tuple);
if(rbitr != get_tree_c0_mergeable()->end())
{
datatuple *tuple = *rbitr;
if(tuple->isDelete()) //tuple deleted
done = true; //return ret_tuple
else if(ret_tuple != 0) //merge the two
{
datatuple *mtuple = tmerger->merge(tuple, ret_tuple); //merge the two
datatuple::freetuple(ret_tuple); //free tuple from current tree
ret_tuple = mtuple; //set return tuple to merge result
}
else //key first found in old mem tree
{
ret_tuple = tuple->create_copy();
}
//we cannot free tuple from old-tree 'cos it is not a copy
}
}
//step 2.5: check new c1 if exists
if(!done && get_tree_c1_prime() != 0)
{
DEBUG("old c1 tree not null\n");
datatuple *tuple_oc1 = get_tree_c1_prime()->findTuple(xid, key, keySize);
if(tuple_oc1 != NULL)
{
bool use_copy = false;
if(tuple_oc1->isDelete())
done = true;
else if(ret_tuple != 0) //merge the two
{
datatuple *mtuple = tmerger->merge(tuple_oc1, ret_tuple); //merge the two
datatuple::freetuple(ret_tuple); //free tuple from before
ret_tuple = mtuple; //set return tuple to merge result
}
else //found for the first time
{
use_copy = true;
ret_tuple = tuple_oc1;
}
if(!use_copy)
{
datatuple::freetuple(tuple_oc1); //free tuple from tree old c1
}
}
}
//step 3: check c1
if(!done)
{
datatuple *tuple_c1 = get_tree_c1()->findTuple(xid, key, keySize);
if(tuple_c1 != NULL)
{
bool use_copy = false;
if(tuple_c1->isDelete()) //tuple deleted
done = true;
else if(ret_tuple != 0) //merge the two
{
datatuple *mtuple = tmerger->merge(tuple_c1, ret_tuple); //merge the two
datatuple::freetuple(ret_tuple); //free tuple from before
ret_tuple = mtuple; //set return tuple to merge result
}
else //found for the first time
{
use_copy = true;
ret_tuple = tuple_c1;
}
if(!use_copy)
{
datatuple::freetuple(tuple_c1); //free tuple from tree c1
}
}
}
//step 4: check old c1 if exists
if(!done && get_tree_c1_mergeable() != 0)
{
DEBUG("old c1 tree not null\n");
datatuple *tuple_oc1 = get_tree_c1_mergeable()->findTuple(xid, key, keySize);
if(tuple_oc1 != NULL)
{
bool use_copy = false;
if(tuple_oc1->isDelete())
done = true;
else if(ret_tuple != 0) //merge the two
{
datatuple *mtuple = tmerger->merge(tuple_oc1, ret_tuple); //merge the two
datatuple::freetuple(ret_tuple); //free tuple from before
ret_tuple = mtuple; //set return tuple to merge result
}
else //found for the first time
{
use_copy = true;
ret_tuple = tuple_oc1;
}
if(!use_copy)
{
datatuple::freetuple(tuple_oc1); //free tuple from tree old c1
}
}
}
//step 5: check c2
if(!done)
{
DEBUG("Not in old first disk tree\n");
datatuple *tuple_c2 = get_tree_c2()->findTuple(xid, key, keySize);
if(tuple_c2 != NULL)
{
bool use_copy = false;
if(tuple_c2->isDelete())
done = true;
else if(ret_tuple != 0)
{
datatuple *mtuple = tmerger->merge(tuple_c2, ret_tuple); //merge the two
datatuple::freetuple(ret_tuple); //free tuple from before
ret_tuple = mtuple; //set return tuple to merge result
}
else //found for the first time
{
use_copy = true;
ret_tuple = tuple_c2;
}
if(!use_copy)
{
datatuple::freetuple(tuple_c2); //free tuple from tree c2
}
}
}
rwlc_unlock(header_mut);
datatuple::freetuple(search_tuple);
return ret_tuple;
}
/*
* returns the first record found with the matching key
* (not to be used together with diffs)
**/
template<class TUPLE>
datatuple * logtable<TUPLE>::findTuple_first(int xid, datatuple::key_t key, size_t keySize)
{
//prepare a search tuple
datatuple * search_tuple = datatuple::create(key, keySize);
datatuple *ret_tuple=0;
//step 1: look in tree_c0
pthread_mutex_lock(&rb_mut);
memTreeComponent<datatuple>::rbtree_t::iterator rbitr = get_tree_c0()->find(search_tuple);
if(rbitr != get_tree_c0()->end())
{
DEBUG("tree_c0 size %d\n", tree_c0->size());
ret_tuple = (*rbitr)->create_copy();
pthread_mutex_unlock(&rb_mut);
}
else
{
DEBUG("Not in mem tree %d\n", tree_c0->size());
pthread_mutex_unlock(&rb_mut);
rwlc_readlock(header_mut); // XXX FIXME WITH OCC!!
//step: 2 look into first in tree if exists (a first level merge going on)
if(get_tree_c0_mergeable() != NULL)
{
DEBUG("old mem tree not null %d\n", (*(mergedata->old_c0))->size());
rbitr = get_tree_c0_mergeable()->find(search_tuple);
if(rbitr != get_tree_c0_mergeable()->end())
{
ret_tuple = (*rbitr)->create_copy();
}
}
if(ret_tuple == 0)
{
DEBUG("Not in first disk tree\n");
//step 4: check in progress c1 if exists
if( get_tree_c1_prime() != 0)
{
DEBUG("old c1 tree not null\n");
ret_tuple = get_tree_c1_prime()->findTuple(xid, key, keySize);
}
}
if(ret_tuple == 0)
{
DEBUG("Not in old mem tree\n");
//step 3: check c1
ret_tuple = get_tree_c1()->findTuple(xid, key, keySize);
}
if(ret_tuple == 0)
{
DEBUG("Not in first disk tree\n");
//step 4: check old c1 if exists
if( get_tree_c1_mergeable() != 0)
{
DEBUG("old c1 tree not null\n");
ret_tuple = get_tree_c1_mergeable()->findTuple(xid, key, keySize);
}
}
if(ret_tuple == 0)
{
DEBUG("Not in old first disk tree\n");
//step 5: check c2
ret_tuple = get_tree_c2()->findTuple(xid, key, keySize);
}
rwlc_unlock(header_mut);
}
datatuple::freetuple(search_tuple);
return ret_tuple;
}
template<class TUPLE>
datatuple * logtable<TUPLE>::insertTupleHelper(datatuple *tuple)
{
bool need_free = true;
if(!tuple->isDelete() && expiry != 0) {
// XXX hack for paper experiment
current_timestamp++;
size_t ts_sz = sizeof(int64_t);
int64_t ts = current_timestamp;
int64_t kl = tuple->strippedkeylen();
byte * newkey = (byte*)malloc(kl + 1 + ts_sz);
memcpy(newkey, tuple->strippedkey(), kl);
newkey[kl] = 0;
memcpy(newkey+kl+1, &ts, ts_sz);
tuple = datatuple::create(newkey, kl+ 1+ ts_sz, tuple->data(), tuple->datalen());
free(newkey);
need_free = true;
} //find the previous tuple with same key in the memtree if exists
memTreeComponent<datatuple>::rbtree_t::iterator rbitr = tree_c0->find(tuple);
datatuple * t = 0;
datatuple * pre_t = 0;
if(rbitr != tree_c0->end())
{
pre_t = *rbitr;
//do the merging
datatuple *new_t = tmerger->merge(pre_t, tuple);
merge_mgr->get_merge_stats(0)->merged_tuples(new_t, tuple, pre_t);
t = new_t;
tree_c0->erase(pre_t); //remove the previous tuple
tree_c0->insert(new_t); //insert the new tuple
}
else //no tuple with same key exists in mem-tree
{
t = tuple->create_copy();
//insert tuple into the rbtree
tree_c0->insert(t);
}
if(need_free) { TUPLE::freetuple(tuple); }
return pre_t;
}
template<class TUPLE>
void logtable<TUPLE>::insertManyTuples(datatuple ** tuples, int tuple_count) {
for(int i = 0; i < tuple_count; i++) {
merge_mgr->read_tuple_from_small_component(0, tuples[i]);
}
if(log_mode && !recovering) {
for(int i = 0; i < tuple_count; i++) {
logUpdate(tuples[i]);
}
batch_size ++;
if(batch_size >= log_mode) {
log_file->force_tail(log_file, LOG_FORCE_COMMIT);
batch_size = 0;
}
}
pthread_mutex_lock(&rb_mut);
int num_old_tups = 0;
pageid_t sum_old_tup_lens = 0;
for(int i = 0; i < tuple_count; i++) {
datatuple * old_tup = insertTupleHelper(tuples[i]);
if(old_tup) {
num_old_tups++;
sum_old_tup_lens += old_tup->byte_length();
datatuple::freetuple(old_tup);
}
}
pthread_mutex_unlock(&rb_mut);
merge_mgr->read_tuple_from_large_component(0, num_old_tups, sum_old_tup_lens);
}
template<class TUPLE>
void logtable<TUPLE>::insertTuple(datatuple *tuple)
{
if(log_mode && !recovering) {
logUpdate(tuple);
batch_size++;
if(batch_size >= log_mode) {
log_file->force_tail(log_file, LOG_FORCE_COMMIT);
batch_size = 0;
}
}
//lock the red-black tree
merge_mgr->read_tuple_from_small_component(0, tuple); // has to be before rb_mut, since it calls tick with block = true, and that releases header_mut.
datatuple * pre_t = 0; // this is a pointer to any data tuples that we'll be deleting below. We need to update the merge_mgr statistics with it, but have to do so outside of the rb_mut region.
pthread_mutex_lock(&rb_mut);
pre_t = insertTupleHelper(tuple);
pthread_mutex_unlock(&rb_mut);
if(pre_t) {
// needs to be here; calls update_progress, which sometimes grabs mutexes..
merge_mgr->read_tuple_from_large_component(0, pre_t); // was interspersed with the erase, insert above...
datatuple::freetuple(pre_t); //free the previous tuple
}
DEBUG("tree size %d tuples %lld bytes.\n", tsize, tree_bytes);
}
template<class TUPLE>
bool logtable<TUPLE>::testAndSetTuple(datatuple *tuple, datatuple *tuple2)
{
bool succ = false;
static pthread_mutex_t test_and_set_mut = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_lock(&test_and_set_mut);
datatuple * exists = findTuple_first(-1, tuple2 ? tuple2->rawkey() : tuple->rawkey(), tuple2 ? tuple2->rawkeylen() : tuple->rawkeylen());
if(!tuple2 || tuple2->isDelete()) {
if(!exists || exists->isDelete()) {
succ = true;
} else {
succ = false;
}
} else {
if(tuple2->datalen() == exists->datalen() && !memcmp(tuple2->data(), exists->data(), tuple2->datalen())) {
succ = true;
} else {
succ = false;
}
}
if(exists) datatuple::freetuple(exists);
if(succ) insertTuple(tuple);
pthread_mutex_unlock(&test_and_set_mut);
return succ;
}
template<class TUPLE>
void logtable<TUPLE>::registerIterator(iterator * it) {
its.push_back(it);
}
template<class TUPLE>
void logtable<TUPLE>::forgetIterator(iterator * it) {
for(unsigned int i = 0; i < its.size(); i++) {
if(its[i] == it) {
its.erase(its.begin()+i);
break;
}
}
}
template<class TUPLE>
void logtable<TUPLE>::bump_epoch() {
epoch++;
for(unsigned int i = 0; i < its.size(); i++) {
its[i]->invalidate();
}
}
template class logtable<datatuple>;