stasis-bLSM/merger.cpp

743 lines
24 KiB
C++
Raw Normal View History

#include <math.h>
#include "merger.h"
#include "logiterators.cpp"
#include "datapage.h"
//pageid_t merge_scheduler::C0_MEM_SIZE = 1000 * 1000 * 1000;
//template <> struct merger_args<rbtree_t>;
//template <> struct merger_args<logtree>;
inline DataPage<datatuple>*
insertTuple(int xid, DataPage<datatuple> *dp, datatuple *t,
logtable *ltable,
logtree * ltree,
recordid & dpstate,
int64_t &dpages, int64_t &npages);
int merge_scheduler::addlogtable(logtable *ltable)
{
struct logtable_mergedata * mdata = new logtable_mergedata;
// initialize merge data
mdata->header_lock = initlock();
mdata->rbtree_mut = new pthread_mutex_t;
pthread_mutex_init(mdata->rbtree_mut,0);
mdata->old_c0 = new rbtree_ptr_t;
*mdata->old_c0 = 0;
mdata->input_needed = new bool(false);
mdata->input_ready_cond = new pthread_cond_t;
pthread_cond_init(mdata->input_ready_cond,0);
mdata->input_needed_cond = new pthread_cond_t;
pthread_cond_init(mdata->input_needed_cond,0);
mdata->input_size = new int64_t(100);
mdata->diskmerge_args = new merger_args<logtree>;
mdata->memmerge_args = new merger_args<rbtree_t>;
mergedata.push_back(std::make_pair(ltable, mdata));
return mergedata.size()-1;
}
merge_scheduler::~merge_scheduler()
{
for(size_t i=0; i<mergedata.size(); i++)
{
logtable *ltable = mergedata[i].first;
logtable_mergedata *mdata = mergedata[i].second;
//delete the mergedata fields
deletelock(mdata->header_lock);
delete mdata->rbtree_mut;
delete mdata->old_c0;
delete mdata->input_needed;
delete mdata->input_ready_cond;
delete mdata->input_needed_cond;
delete mdata->input_size;
//delete the merge thread structure variables
delete (recordid*) mdata->memmerge_args->pageAllocState;
delete (recordid*) mdata->memmerge_args->oldAllocState;
delete mdata->memmerge_args->still_open;
delete (recordid*) mdata->diskmerge_args->pageAllocState;
delete (recordid*) mdata->diskmerge_args->oldAllocState;
pthread_cond_destroy(mdata->diskmerge_args->in_block_needed_cond);
delete mdata->diskmerge_args->in_block_needed_cond;
delete mdata->diskmerge_args->in_block_needed;
pthread_cond_destroy(mdata->diskmerge_args->out_block_needed_cond);
delete mdata->diskmerge_args->out_block_needed_cond;
delete mdata->diskmerge_args->out_block_needed;
pthread_cond_destroy(mdata->diskmerge_args->in_block_ready_cond);
delete mdata->diskmerge_args->in_block_ready_cond;
pthread_cond_destroy(mdata->diskmerge_args->out_block_ready_cond);
delete mdata->diskmerge_args->out_block_ready_cond;
delete mdata->diskmerge_args->my_tree_size;
delete mdata->diskmerge_args;
delete mdata->memmerge_args;
}
mergedata.clear();
}
void merge_scheduler::shutdown()
{
//signal shutdown
for(size_t i=0; i<mergedata.size(); i++)
{
logtable *ltable = mergedata[i].first;
logtable_mergedata *mdata = mergedata[i].second;
//flush the in memory table to write any tuples still in memory
ltable->flushTable();
pthread_mutex_lock(mdata->rbtree_mut);
*(mdata->memmerge_args->still_open)=false;
pthread_cond_signal(mdata->input_ready_cond);
//*(mdata->diskmerge_args->still_open)=false;//same pointer so no need
pthread_mutex_unlock(mdata->rbtree_mut);
}
for(size_t i=0; i<mergedata.size(); i++)
{
logtable_mergedata *mdata = mergedata[i].second;
pthread_join(mdata->memmerge_thread,0);
pthread_join(mdata->diskmerge_thread,0);
}
}
void merge_scheduler::startlogtable(int index, int64_t MAX_C0_SIZE)
{
logtable * ltable = mergedata[index].first;
struct logtable_mergedata *mdata = mergedata[index].second;
pthread_cond_t * block1_needed_cond = new pthread_cond_t;
pthread_cond_init(block1_needed_cond,0);
pthread_cond_t * block2_needed_cond = new pthread_cond_t;
pthread_cond_init(block2_needed_cond,0);
pthread_cond_t * block1_ready_cond = new pthread_cond_t;
pthread_cond_init(block1_ready_cond,0);
pthread_cond_t * block2_ready_cond = new pthread_cond_t;
pthread_cond_init(block2_ready_cond,0);
bool *block1_needed = new bool(false);
bool *block2_needed = new bool(false);
bool *system_running = new bool(true);
//wait to merge the next block until we have merged block FUDGE times.
static const int FUDGE = 1;
static double R = MIN_R;
int64_t * block1_size = new int64_t;
*block1_size = FUDGE * ((int)R) * (*(mdata->input_size));
//initialize rb-tree
ltable->set_tree_c0(new rbtree_t);
//disk merger args
recordid * ridp = new recordid;
*ridp = ltable->get_tree_c2()->get_tree_state(); //h.bigTreeAllocState;
recordid * oldridp = new recordid;
*oldridp = NULLRID;
ltable->max_c0_size = MAX_C0_SIZE;
logtree ** block1_scratch = new logtree*;
*block1_scratch=0;
//recordid * allocer_scratch = new recordid;
RegionAllocConf_t *allocer_scratch = new RegionAllocConf_t;
struct merger_args<logtree> diskmerge_args= {
ltable,
1, //worker id
logtree::alloc_region_rid, //pageAlloc
ridp, // pageAllocState
oldridp, // oldAllocState
mdata->rbtree_mut, //block_ready_mutex
block1_needed_cond, //in_block_needed_cond
block1_needed, //in_block_needed
block2_needed_cond, //out_block_needed_cond
block2_needed, //out_block_needed
block1_ready_cond, //in_block_ready_cond
block2_ready_cond, //out_block_ready_cond
system_running, //still_open i.e. system running
block1_size, //mytree_size ?
0, //out_tree_size, biggest component computes its size directly.
0, //max_tree_size No max size for biggest component
&R, //r_i
block1_scratch, //in-tree
allocer_scratch, //in_tree_allocer
0, //out_tree
0, //out_tree_allocer
ltable->get_tree_c2()->get_root_rec(), // my_tree
ltable->get_table_rec() //tree
};
*mdata->diskmerge_args = diskmerge_args;
DEBUG("Tree C2 is %lld\n", (long long)ltable->get_tree_c2()->get_root_rec().page);
//memory merger args
ridp = new recordid;
*ridp = ltable->get_tree_c1()->get_tree_state();
oldridp = new recordid;
*oldridp = NULLRID;
DEBUG("Tree C1 is %lld\n", (long long)ltable->get_tree_c1()->get_root_rec().page);
struct merger_args<rbtree_t> memmerge_args =
{
ltable,
2,
logtree::alloc_region_rid, //pageAlloc
ridp, // pageAllocState
oldridp, // oldAllocState
mdata->rbtree_mut, //block_ready_mutex
mdata->input_needed_cond,
mdata->input_needed,
block1_needed_cond,
block1_needed,
mdata->input_ready_cond,
block1_ready_cond,
system_running,
mdata->input_size,
block1_size,
(int64_t)(R * R * MAX_C0_SIZE),
&R,
mdata->old_c0,
0,
block1_scratch,
allocer_scratch,
ltable->get_tree_c1()->get_root_rec(),
ltable->get_table_rec() //tree
};
*mdata->memmerge_args = memmerge_args;
void * (*diskmerger)(void*) = diskMergeThread;
void * (*memmerger)(void*) = memMergeThread;
pthread_create(&mdata->diskmerge_thread, 0, diskmerger, mdata->diskmerge_args);
pthread_create(&mdata->memmerge_thread, 0, memmerger, mdata->memmerge_args);
}
//TODO: flush the data pages
// deallocate/free their region
// create new data region for new data pages
void* memMergeThread(void*arg)
{
int xid;// = Tbegin();
merger_args<rbtree_t> * a = (merger_args<rbtree_t>*)(arg);
assert(a->my_tree.size != -1);
logtable * ltable = a->ltable;
int merge_count =0;
// pthread_mutex_lock(a->block_ready_mut);
while(true)
{
writelock(ltable->mergedata->header_lock,0);
int done = 0;
// get a new input for merge
while(!*(a->in_tree))
{
pthread_mutex_lock(a->block_ready_mut);
*a->in_block_needed = true;
//pthread_cond_signal(a->in_block_needed_cond);
pthread_cond_broadcast(a->in_block_needed_cond);
if(!*(a->still_open)){
done = 1;
pthread_mutex_unlock(a->block_ready_mut);
break;
}
printf("mmt:\twaiting for block ready cond\n");
unlock(ltable->mergedata->header_lock);
pthread_cond_wait(a->in_block_ready_cond, a->block_ready_mut);
pthread_mutex_unlock(a->block_ready_mut);
writelock(ltable->mergedata->header_lock,0);
printf("mmt:\tblock ready\n");
}
*a->in_block_needed = false;
if(done==1)
{
pthread_mutex_lock(a->block_ready_mut);
pthread_cond_signal(a->out_block_ready_cond);
pthread_mutex_unlock(a->block_ready_mut);
unlock(ltable->mergedata->header_lock);
break;
}
if((*a->in_tree)->size()==0) //input empty, this can only happen during shutdown
{
delete *a->in_tree;
*a->in_tree = 0;
unlock(ltable->mergedata->header_lock);
continue;
}
uint64_t insertedTuples=0;
int64_t mergedPages=0;
assert(a->my_tree.size != -1);
//create the iterators
treeIterator<datatuple> *itrA = new treeIterator<datatuple>(a->my_tree);
memTreeIterator<rbtree_t, datatuple> *itrB =
new memTreeIterator<rbtree_t, datatuple>(*a->in_tree);
//Tcommit(xid);
xid = Tbegin();
//create a new tree
logtree * scratch_tree = new logtree;
recordid scratch_root = scratch_tree->create(xid);
//save the old dp state values
RegionAllocConf_t olddp_state;
Tread(xid, ltable->get_dpstate1(), &olddp_state);
//reinitialize the dp state
Tset(xid, ltable->get_dpstate1(), &logtable::DATAPAGE_REGION_ALLOC_STATIC_INITIALIZER);
//pthread_mutex_unlock(a->block_ready_mut);
unlock(ltable->mergedata->header_lock);
//: do the merge
printf("mmt:\tMerging:\n");
int64_t npages = 0;
mergedPages = merge_iterators<typeof(*itrA),typeof(*itrB)>(xid, itrA, itrB, ltable, scratch_tree, npages, false);
delete itrA;
delete itrB;
//force write the new region to disk
recordid scratch_alloc_state = scratch_tree->get_tree_state();
//TlsmForce(xid,scratch_root,logtree::force_region_rid, &scratch_alloc_state);
// XXX When called by merger_check (at least), we hold a pin on a page that should be forced. This causes stasis to abort() the process.
logtree::force_region_rid(xid, &scratch_alloc_state);
//force write the new datapages
DataPage<datatuple>::force_region_rid(xid, &ltable->get_dpstate1());
//writes complete
//now automically replace the old c1 with new c1
//pthread_mutex_lock(a->block_ready_mut);
writelock(ltable->mergedata->header_lock,0);
merge_count++;
*a->my_tree_size = mergedPages;
printf("mmt:\tmerge_count %d #pages written %lld\n", merge_count, npages);
delete ltable->get_tree_c1();
ltable->set_tree_c1(scratch_tree);
logtable::table_header h;
void * oldAllocState = a->pageAllocState;
Tread(xid, a->tree, &h);
h.c1_root = scratch_root;
h.c1_state = scratch_alloc_state;
//note we already updated the dpstate before the merge
printf("mmt:\tUpdated C1's position on disk to %lld\n",scratch_root.page);
Tset(xid, a->tree, &h);
//Tcommit(xid);
//xid = Tbegin();
// free old my_tree here
//TODO: check
logtree::free_region_rid(xid, a->my_tree, logtree::dealloc_region_rid, oldAllocState);
//TlsmFree(xid,a->my_tree->r_,logtree::dealloc_region_rid,oldAllocState);
//TODO: check
//free the old data pages
DataPage<datatuple>::dealloc_region_rid(xid, &olddp_state);
Tcommit(xid);
//xid = Tbegin();
//TODO: this is simplistic for now
//signal the other merger if necessary
double target_R = *(a->r_i);
double new_c1_size = npages * PAGE_SIZE;
assert(target_R >= MIN_R);
if( (new_c1_size / ltable->max_c0_size > target_R) ||
(a->max_size && new_c1_size > a->max_size ) )
{
printf("mmt:\tsignaling C2 for merge\n");
printf("mmt:\tnew_c1_size %.2f\tMAX_C0_SIZE %lld\ta->max_size %lld\t targetr %.2f \n", new_c1_size,
ltable->max_c0_size, a->max_size, target_R);
// XXX need to report backpressure here!
while(*a->out_tree) {
pthread_mutex_lock(a->block_ready_mut);
unlock(ltable->mergedata->header_lock);
pthread_cond_wait(a->out_block_needed_cond, a->block_ready_mut);
pthread_mutex_unlock(a->block_ready_mut);
writelock(ltable->mergedata->header_lock,0);
}
*a->out_tree = scratch_tree;
xid = Tbegin();
Tread(xid, ltable->get_dpstate1(), a->out_tree_allocer);
pthread_cond_signal(a->out_block_ready_cond);
logtree *empty_tree = new logtree;
empty_tree->create(xid);
*(recordid*)(a->pageAllocState) = empty_tree->get_tree_state();
a->my_tree = empty_tree->get_root_rec();
ltable->set_tree_c1(empty_tree);
logtable::table_header h;
Tread(xid, a->tree, &h);
h.c1_root = empty_tree->get_root_rec(); //update root
h.c1_state = empty_tree->get_tree_state(); //update index alloc state
printf("mmt:\tUpdated C1's position on disk to %lld\n",empty_tree->get_root_rec().page);
Tset(xid, a->tree, &h);
//update datapage alloc state
Tset(xid, ltable->get_dpstate1(), &logtable::DATAPAGE_REGION_ALLOC_STATIC_INITIALIZER);
Tcommit(xid);
//xid = Tbegin();
}
else //not signaling the C2 for merge yet
{
printf("mmt:\tnot signaling C2 for merge\n");
*(recordid*)a->pageAllocState = scratch_alloc_state;
a->my_tree = scratch_root;
}
rbtree_ptr_t deltree = *a->in_tree;
*a->in_tree = 0;
//Tcommit(xid);
unlock(ltable->mergedata->header_lock);
//TODO: get the freeing outside of the lock
//// ----------- Free in_tree
logtable::tearDownTree(deltree);
//deltree = 0;
}
//pthread_mutex_unlock(a->block_ready_mut);
return 0;
}
void *diskMergeThread(void*arg)
{
int xid;// = Tbegin();
merger_args<logtree> * a = (merger_args<logtree>*)(arg);
assert(a->my_tree.size != -1);
logtable * ltable = a->ltable;
int merge_count =0;
//pthread_mutex_lock(a->block_ready_mut);
while(true)
{
writelock(ltable->mergedata->header_lock,0);
int done = 0;
// get a new input for merge
while(!*(a->in_tree))
{
pthread_mutex_lock(a->block_ready_mut);
*a->in_block_needed = true;
pthread_cond_signal(a->in_block_needed_cond);
if(!*(a->still_open)){
done = 1;
pthread_mutex_unlock(a->block_ready_mut);
break;
}
printf("dmt:\twaiting for block ready cond\n");
unlock(ltable->mergedata->header_lock);
pthread_cond_wait(a->in_block_ready_cond, a->block_ready_mut);
pthread_mutex_unlock(a->block_ready_mut);
printf("dmt:\tblock ready\n");
writelock(ltable->mergedata->header_lock,0);
}
*a->in_block_needed = false;
if(done==1)
{
pthread_cond_signal(a->out_block_ready_cond);
unlock(ltable->mergedata->header_lock);
break;
}
uint64_t insertedTuples=0;
int64_t mergedPages=0;
assert(a->my_tree.size != -1);
//create the iterators
treeIterator<datatuple> *itrA = new treeIterator<datatuple>(a->my_tree);
treeIterator<datatuple> *itrB =
new treeIterator<datatuple>((*a->in_tree)->get_root_rec());
//Tcommit(xid);
xid = Tbegin();
//create a new tree
logtree * scratch_tree = new logtree;
recordid scratch_root = scratch_tree->create(xid);
//save the old dp state values
RegionAllocConf_t olddp_state;
Tread(xid, ltable->get_dpstate2(), &olddp_state);
//reinitialize the dp state
//TODO: maybe you want larger regions for the second tree?
Tset(xid, ltable->get_dpstate2(), &logtable::DATAPAGE_REGION_ALLOC_STATIC_INITIALIZER);
//pthread_mutex_unlock(a->block_ready_mut);
unlock(ltable->mergedata->header_lock);
//do the merge
printf("dmt:\tMerging:\n");
int64_t npages = 0;
mergedPages = merge_iterators<typeof(*itrA),typeof(*itrB)>(xid, itrA, itrB, ltable, scratch_tree, npages, true);
delete itrA;
delete itrB;
//force write the new region to disk
recordid scratch_alloc_state = scratch_tree->get_tree_state();
//TODO:
//TlsmForce(xid,scratch_root,logtree::force_region_rid, &scratch_alloc_state);
logtree::force_region_rid(xid, &scratch_alloc_state);
//force write the new datapages
DataPage<datatuple>::force_region_rid(xid, &ltable->get_dpstate2());
//writes complete
//now automically replace the old c2 with new c2
//pthread_mutex_lock(a->block_ready_mut);
writelock(ltable->mergedata->header_lock,0);
merge_count++;
*a->my_tree_size = mergedPages;
//update the current optimal R value
*(a->r_i) = std::max(MIN_R, sqrt( (npages * 1.0) / (ltable->max_c0_size/PAGE_SIZE) ) );
printf("dmt:\tmerge_count %d\t#written pages: %lld\n optimal r %.2f", merge_count, npages, *(a->r_i));
delete ltable->get_tree_c2();
ltable->set_tree_c2(scratch_tree);
logtable::table_header h;
void * oldAllocState = a->pageAllocState;
Tread(xid, a->tree, &h);
h.c2_root = scratch_root;
h.c2_state = scratch_alloc_state;
//note we already updated the dpstate before the merge
printf("dmt:\tUpdated C2's position on disk to %lld\n",scratch_root.page);
Tset(xid, a->tree, &h);
// free old my_tree here
//TODO: check
logtree::free_region_rid(xid, a->my_tree, logtree::dealloc_region_rid, oldAllocState);
//TlsmFree(xid,a->my_tree->r_,logtree::dealloc_region_rid,oldAllocState);
//TODO: check
//free the old data pages
DataPage<datatuple>::dealloc_region_rid(xid, &olddp_state);
*(recordid*)a->pageAllocState = scratch_alloc_state;
a->my_tree = scratch_root;
//// ----------- Free in_tree
//TODO: check
logtree::free_region_rid(xid, (*a->in_tree)->get_root_rec(),
logtree::dealloc_region_rid,
&((*a->in_tree)->get_tree_state()));
//TlsmFree(xid,a->my_tree->r_,logtree::dealloc_region_rid,oldAllocState);
//TODO: check
//free the old data pages
DataPage<datatuple>::dealloc_region_rid(xid, a->in_tree_allocer);//TODO:
Tcommit(xid);
//xid = Tbegin();
//Tcommit(xid);
delete *a->in_tree;
*a->in_tree = 0;
unlock(ltable->mergedata->header_lock);
}
//pthread_mutex_unlock(a->block_ready_mut);
return 0;
}
template <class ITA, class ITB>
int64_t merge_iterators(int xid,
ITA *itrA, //iterator on c1 or c2
ITB *itrB, //iterator on c0 or c1, respectively
logtable *ltable,
logtree *scratch_tree,
int64_t &npages,
bool dropDeletes // should be true iff this is biggest component
)
{
int64_t dpages = 0;
int64_t ntuples = 0;
DataPage<datatuple> *dp = 0;
datatuple *t1 = itrA->getnext();
datatuple *t2 = 0;
while( (t2=itrB->getnext()) != 0)
{
DEBUG("tuple\t%lld: keylen %d datalen %d\n",
ntuples, *(t2->keylen),*(t2->datalen) );
while(t1 != 0 && datatuple::compare(t1->key(), t2->key()) < 0) // t1 is less than t2
{
//insert t1
dp = insertTuple(xid, dp, t1, ltable, scratch_tree,
ltable->get_dpstate2(),
dpages, npages);
datatuple::freetuple(t1);
ntuples++;
//advance itrA
t1 = itrA->getnext();
}
if(t1 != 0 && datatuple::compare(t1->key(), t2->key()) == 0)
{
datatuple *mtuple = ltable->gettuplemerger()->merge(t1,t2);
//insert merged tuple, drop deletes
if(dropDeletes && !mtuple->isDelete())
dp = insertTuple(xid, dp, mtuple, ltable, scratch_tree, ltable->get_dpstate2(),
dpages, npages);
datatuple::freetuple(t1);
t1 = itrA->getnext(); //advance itrA
datatuple::freetuple(mtuple);
}
else
{
//insert t2
dp = insertTuple(xid, dp, t2, ltable, scratch_tree, ltable->get_dpstate2(),
dpages, npages);
// cannot free any tuples here; they may still be read through a lookup
}
datatuple::freetuple(t2);
ntuples++;
}
while(t1 != 0) // t1 is less than t2
{
dp = insertTuple(xid, dp, t1, ltable, scratch_tree, ltable->get_dpstate2(),
dpages, npages);
datatuple::freetuple(t1);
ntuples++;
//advance itrA
t1 = itrA->getnext();
}
if(dp!=NULL)
delete dp;
DEBUG("dpages: %d\tnpages: %d\tntuples: %d\n", dpages, npages, ntuples);
return dpages;
}
inline DataPage<datatuple>*
insertTuple(int xid, DataPage<datatuple> *dp, datatuple *t,
logtable *ltable,
logtree * ltree,
recordid & dpstate,
int64_t &dpages, int64_t &npages)
{
if(dp==0)
{
dp = ltable->insertTuple(xid, t, dpstate, ltree);
dpages++;
}
else if(!dp->append(xid, t))
{
npages += dp->get_page_count();
delete dp;
dp = ltable->insertTuple(xid, t, dpstate, ltree);
dpages++;
}
return dp;
}