/* * mergeManager.cpp * * Created on: May 19, 2010 * Author: sears */ #include "mergeManager.h" #include "mergeStats.h" #include "logstore.h" #include "math.h" #include "time.h" #include #undef try #undef end mergeStats* mergeManager:: get_merge_stats(int mergeLevel) { if (mergeLevel == 0) { return c0; } else if (mergeLevel == 1) { return c1; } else if(mergeLevel == 2) { return c2; } else { abort(); } } mergeManager::~mergeManager() { still_running = false; pthread_cond_signal(&pp_cond); pthread_join(pp_thread, 0); pthread_cond_destroy(&pp_cond); delete c0; delete c1; delete c2; } void mergeManager::new_merge(int mergeLevel) { mergeStats * s = get_merge_stats(mergeLevel); if(s->merge_level == 0) { // target_size was set during startup } else if(s->merge_level == 1) { assert(c0->target_size); c1->target_size = (pageid_t)(*ltable->R() * (double)ltable->mean_c0_run_length); assert(c1->target_size); s->new_merge2(); } else if(s->merge_level == 2) { // target_size is infinity... s->new_merge2(); } else { abort(); } } void mergeManager::set_c0_size(int64_t size) { assert(size); c0->target_size = size; } void mergeManager::update_progress(mergeStats * s, int delta) { s->delta += delta; if((!delta) || s->delta > UPDATE_PROGRESS_DELTA) { rwlc_writelock(ltable->header_mut); if(delta) { s->delta = 0; if(!s->need_tick) { s->need_tick = 1; } } if(s->merge_level == 2) { if(s->active) { s->in_progress = ((double)(s->bytes_in_large + s->bytes_in_small)) / (double)(get_merge_stats(s->merge_level-1)->mergeable_size + s->base_size); } else { s->in_progress = 0; } } else if(s->merge_level == 1) { // C0-C1 merge (c0 is continuously growing...) if(s->active) { s->in_progress = ((double)(s->bytes_in_large+s->bytes_in_small)) / (double)(s->base_size+ltable->mean_c0_run_length); } else { s->in_progress = 0; } } s->out_progress = ((double)s->get_current_size()) / ((s->merge_level == 0 ) ? (double)ltable->mean_c0_run_length : (double)s->target_size); if(c2->active && c1->mergeable_size) { c1_c2_delta = c1->out_progress - c2->in_progress; } else { c1_c2_delta = -0.02; // We try to keep this number between -0.05 and -0.01. } #if EXTENDED_STATS struct timeval now; gettimeofday(&now, 0); double stats_elapsed_delta = tv_to_double(&now) - ts_to_double(&s->stats_last_tick); if(stats_elapsed_delta < 0.0000001) { stats_elapsed_delta = 0.0000001; } s->stats_lifetime_elapsed += stats_elapsed_delta; s->stats_lifetime_consumed += s->stats_bytes_in_small_delta; double stats_tau = 60.0; // number of seconds to look back for window computation. (this is the expected mean residence time in an exponential decay model, so the units are not so intuitive...) double stats_decay = exp((0.0-stats_elapsed_delta)/stats_tau); double_to_ts(&s->stats_last_tick, tv_to_double(&now)); double stats_window_bps = ((double)s->stats_bytes_in_small_delta) / (double)stats_elapsed_delta; s->stats_bps = (1.0-stats_decay) * stats_window_bps + stats_decay * s->stats_bps; s->stats_bytes_in_small_delta = 0; #endif rwlc_unlock(ltable->header_mut); } } /** * This function is invoked periodically by the merge threads. It updates mergeManager's statistics, and applies * backpressure as necessary. * * Here is the backpressure algorithm. * * We want to maintain these two invariants: * - for each byte consumed by the app->c0 threads, a byte is consumed by the c0->c1 merge thread. * - for each byte consumed by the c0->c1 thread, the c1->c2 thread consumes a byte * * More concretely (and taking into account varying values of R): * capacity(C_i) - current_size(C_i) >= size(C_i_mergeable) - bytes_consumed_by_next_merger * * where: * capacity c0 = c0_queue_size * capacity c1 = c1_queue_size * * current_size(c_i) = sum(bytes_out_delta) - sum(bytes_in_large_delta) * * bytes_consumed_by_merger = sum(stats_bytes_in_small_delta) */ void mergeManager::tick(mergeStats * s) { if(s->merge_level == 1) { // apply backpressure based on merge progress. if(s->need_tick) { s->need_tick = 0; // Only apply back pressure if next thread is not waiting on us. rwlc_readlock(ltable->header_mut); if(c1->mergeable_size && c2->active) { if(c1_c2_delta > -0.01) { DEBUG("Input is too far ahead. Delta is %f\n", c1_c2_delta); double delta = c1_c2_delta; rwlc_unlock(ltable->header_mut); delta += 0.01; // delta > 0; double slp = 0.001 + delta; struct timespec sleeptime; DEBUG("\ndisk sleeping %0.6f tree_megabytes %0.3f\n", slp, ((double)ltable->tree_bytes)/(1024.0*1024.0)); double_to_ts(&sleeptime,slp); nanosleep(&sleeptime, 0); update_progress(s, 0); s->need_tick = 1; } else { rwlc_unlock(ltable->header_mut); } } else { rwlc_unlock(ltable->header_mut); } } } else if(s->merge_level == 0) { // Simple backpressure algorithm based on how full C0 is. pageid_t cur_c0_sz; // Is C0 bigger than is allowed? while((cur_c0_sz = s->get_current_size()) > ltable->max_c0_size) { // can't use s->current_size, since this is the thread that maintains that number... printf("\nMEMORY OVERRUN!!!! SLEEP!!!!\n"); struct timespec ts; double_to_ts(&ts, 0.1); nanosleep(&ts, 0); } // Linear backpressure model s->out_progress = ((double)cur_c0_sz)/((double)ltable->max_c0_size); double delta = ((double)cur_c0_sz)/(0.9*(double)ltable->max_c0_size); // 0 <= delta <= 1.111... delta -= 1.0; if(delta > 0.00005) { double slp = 0.001 + 5.0 * delta; //0.0015 < slp < 1.112111.. DEBUG("\nmem sleeping %0.6f tree_megabytes %0.3f\n", slp, ((double)ltable->tree_bytes)/(1024.0*1024.0)); struct timespec sleeptime; double_to_ts(&sleeptime, slp); DEBUG("%d Sleep C %f\n", s->merge_level, slp); nanosleep(&sleeptime, 0); } } } void mergeManager::read_tuple_from_small_component(int merge_level, datatuple * tup) { if(tup) { mergeStats * s = get_merge_stats(merge_level); #if EXTENDED_STATS (s->stats_num_tuples_in_small)++; (s->stats_bytes_in_small_delta) += tup->byte_length(); #endif (s->bytes_in_small) += tup->byte_length(); update_progress(s, tup->byte_length()); tick(s); } } void mergeManager::read_tuple_from_large_component(int merge_level, int tuple_count, pageid_t byte_len) { if(tuple_count) { mergeStats * s = get_merge_stats(merge_level); #if EXTENDED_STATS s->stats_num_tuples_in_large += tuple_count; #endif s->bytes_in_large += byte_len; update_progress(s, byte_len); } } void mergeManager::wrote_tuple(int merge_level, datatuple * tup) { mergeStats * s = get_merge_stats(merge_level); #if EXTENDED_STATS (s->stats_num_tuples_out)++; #endif (s->bytes_out) += tup->byte_length(); } void mergeManager::finished_merge(int merge_level) { update_progress(get_merge_stats(merge_level), 0); get_merge_stats(merge_level)->active = false; if(merge_level != 0) { get_merge_stats(merge_level - 1)->mergeable_size = 0; update_progress(get_merge_stats(merge_level-1), 0); } #if EXTENDED_STATS gettimeofday(&get_merge_stats(merge_level)->stats_done, 0); #endif update_progress(get_merge_stats(merge_level), 0); } void * mergeManager::pretty_print_thread() { pthread_mutex_t dummy_mut; pthread_mutex_init(&dummy_mut, 0); while(still_running) { struct timeval tv; gettimeofday(&tv, 0); struct timespec ts; double_to_ts(&ts, tv_to_double(&tv)+1.01); pthread_cond_timedwait(&pp_cond, &dummy_mut, &ts); if(ltable) { rwlc_readlock(ltable->header_mut); pretty_print(stdout); rwlc_unlock(ltable->header_mut); } } printf("\n"); return 0; } void * merge_manager_pretty_print_thread(void * arg) { mergeManager * m = (mergeManager*)arg; return m->pretty_print_thread(); } double mergeManager::c1_c2_progress_delta() { return c1_c2_delta; } void mergeManager::init_helper(void) { struct timeval tv; c1_c2_delta = -0.02; // XXX move this magic number somewhere. It's also in update_progress. gettimeofday(&tv, 0); #if EXTENDED_STATS double_to_ts(&c0->stats_last_tick, tv_to_double(&tv)); double_to_ts(&c1->stats_last_tick, tv_to_double(&tv)); double_to_ts(&c2->stats_last_tick, tv_to_double(&tv)); #endif still_running = true; pthread_cond_init(&pp_cond, 0); pthread_create(&pp_thread, 0, merge_manager_pretty_print_thread, (void*)this); } mergeManager::mergeManager(logtable *ltable): UPDATE_PROGRESS_PERIOD(0.005), ltable(ltable) { c0 = new mergeStats(0, ltable ? ltable->max_c0_size : 10000000); c1 = new mergeStats(1, (int64_t)(ltable ? ((double)(ltable->max_c0_size) * *ltable->R()) : 100000000.0) ); c2 = new mergeStats(2, 0); init_helper(); } mergeManager::mergeManager(logtable *ltable, int xid, recordid rid): UPDATE_PROGRESS_PERIOD(0.005), ltable(ltable) { marshalled_header h; Tread(xid, rid, &h); c0 = new mergeStats(xid, h.c0); c1 = new mergeStats(xid, h.c1); c2 = new mergeStats(xid, h.c2); init_helper(); } recordid mergeManager::talloc(int xid) { marshalled_header h; recordid ret = Talloc(xid, sizeof(h)); h.c0 = c0->talloc(xid); h.c1 = c1->talloc(xid); h.c2 = c2->talloc(xid); Tset(xid, ret, &h); return ret; } void mergeManager::marshal(int xid, recordid rid) { marshalled_header h; Tread(xid, rid, &h); c0->marshal(xid, h.c0); c1->marshal(xid, h.c1); c2->marshal(xid, h.c2); } void mergeManager::pretty_print(FILE * out) { #if EXTENDED_STATS logtable * lt = (logtable*)ltable; bool have_c0 = false; bool have_c0m = false; bool have_c1 = false; bool have_c1m = false; bool have_c2 = false; if(lt) { have_c0 = NULL != lt->get_tree_c0(); have_c0m = NULL != lt->get_tree_c0_mergeable(); have_c1 = NULL != lt->get_tree_c1(); have_c1m = NULL != lt->get_tree_c1_mergeable() ; have_c2 = NULL != lt->get_tree_c2(); } pageid_t mb = 1024 * 1024; fprintf(out,"[merge progress MB/s window (lifetime)]: app [%s %6lldMB tot %6lldMB cur ~ %3.0f%%/%3.0f%% %6.1fsec %4.1f (%4.1f)] %s %s [%s %3.0f%% ~ %3.0f%% %4.1f (%4.1f)] %s %s [%s %3.0f%% %4.1f (%4.1f)] %s ", c0->active ? "RUN" : "---", (long long)(c0->stats_lifetime_consumed / mb), (long long)(c0->get_current_size() / mb), 100.0 * c0->out_progress, 100.0 * ((double)c0->get_current_size())/(double)ltable->max_c0_size, c0->stats_lifetime_elapsed, c0->stats_bps/((double)mb), c0->stats_lifetime_consumed/(((double)mb)*c0->stats_lifetime_elapsed), have_c0 ? "C0" : "..", have_c0m ? "C0'" : "...", c1->active ? "RUN" : "---", 100.0 * c1->in_progress, 100.0 * c1->out_progress, c1->stats_bps/((double)mb), c1->stats_lifetime_consumed/(((double)mb)*c1->stats_lifetime_elapsed), have_c1 ? "C1" : "..", have_c1m ? "C1'" : "...", c2->active ? "RUN" : "---", 100.0 * c2->in_progress, c2->stats_bps/((double)mb), c2->stats_lifetime_consumed/(((double)mb)*c2->stats_lifetime_elapsed), have_c2 ? "C2" : ".."); #endif //#define PP_SIZES #ifdef PP_SIZES { pageid_t mb = 1024 * 1024; fprintf(out, "[target cur base in_small in_large, out, mergeable] C0 %4lld %4lld %4lld %4lld %4lld %4lld %4lld ", c0->target_size/mb, c0->current_size/mb, c0->base_size/mb, c0->bytes_in_small/mb, c0->bytes_in_large/mb, c0->bytes_out/mb, c0->mergeable_size/mb); fprintf(out, "C1 %4lld %4lld %4lld %4lld %4lld %4lld %4lld ", c1->target_size/mb, c1->current_size/mb, c1->base_size/mb, c1->bytes_in_small/mb, c1->bytes_in_large/mb, c1->bytes_out/mb, c1->mergeable_size/mb); fprintf(out, "C2 ---- %4lld %4lld %4lld %4lld %4lld %4lld ", /*----*/ c2->current_size/mb, c2->base_size/mb, c2->bytes_in_small/mb, c2->bytes_in_large/mb, c2->bytes_out/mb, c2->mergeable_size/mb); } #endif // fprintf(out, "Throttle: %6.1f%% (cur) %6.1f%% (overall) ", 100.0*(last_throttle_seconds/(last_elapsed_seconds)), 100.0*(throttle_seconds/(elapsed_seconds))); // fprintf(out, "C0 size %4lld resident %4lld ", // 2*c0_queueSize/mb, // (c0->bytes_out - c0->bytes_in_large)/mb); // fprintf(out, "C1 size %4lld resident %4lld\r", // 2*c1_queueSize/mb, // (c1->bytes_out - c1->bytes_in_large)/mb); // fprintf(out, "C2 size %4lld\r", // 2*c2_queueSize/mb); // fprintf(out, "C1 MB/s (eff; active) %6.1f C2 MB/s %6.1f\r", // ((double)c1_totalConsumed)/((double)c1_totalWorktime), // ((double)c2_totalConsumed)/((double)c2_totalWorktime)); fflush(out); #if 0 // XXX would like to bring this back somehow... assert((!c1->active) || (c1->in_progress >= -0.01 && c1->in_progress < 1.02)); assert((!c2->active) || (c2->in_progress >= -0.01 && c2->in_progress < 1.10)); #endif fprintf(out, "\r"); }