#include #include "merger.h" #include #undef try #undef end static void* memMerge_thr(void* arg) { return ((merge_scheduler*)arg)->memMergeThread(); } static void* diskMerge_thr(void* arg) { return ((merge_scheduler*)arg)->diskMergeThread(); } merge_scheduler::merge_scheduler(logtable *ltable) : ltable_(ltable), MIN_R(3.0) { } merge_scheduler::~merge_scheduler() { } void merge_scheduler::shutdown() { ltable_->stop(); pthread_join(mem_merge_thread_, 0); pthread_join(disk_merge_thread_, 0); } void merge_scheduler::start() { pthread_create(&mem_merge_thread_, 0, memMerge_thr, this); pthread_create(&disk_merge_thread_, 0, diskMerge_thr, this); } bool insert_filter(logtable * ltable, datatuple * t, bool dropDeletes) { if(t->isDelete()) { if(dropDeletes || ! ltable->mightBeAfterMemMerge(t)) { return false; } } if(!ltable->expiry) { return true; } if(t->timestamp() < ltable->current_timestamp - ltable->expiry) { return false; } return true; } template void merge_iterators(int xid, diskTreeComponent * forceMe, ITA *itrA, ITB *itrB, logtable *ltable, diskTreeComponent *scratch_tree, mergeStats * stats, bool dropDeletes); /** * Merge algorithm: Outsider's view *
  1: while(1)
  2:    wait for c0_mergable
  3:    begin
  4:    merge c0_mergable and c1 into c1'  # Blocks; tree must be consistent at this point
  5:    force c1'                          # Blocks
  6:    if c1' is too big      # Blocks; tree must be consistent at this point.
  7:       c1_mergable = c1'
  8:       c1 = new_empty
8.5:       delete old c1_mergeable  # Happens in other thread (not here)
  9:    else
 10:       c1 = c1'
 11:    c0_mergeable = NULL
 11.5:    delete old c0_mergeable
 12:    delete old c1
 13:    commit
  
Merge algorithm: actual order: 1 2 3 4 5 6 12 11.5 11 [7 8 (9) 10] 13 */ void * merge_scheduler::memMergeThread() { int xid; assert(ltable_->get_tree_c1()); int merge_count =0; mergeStats * stats = ltable_->merge_mgr->get_merge_stats(1); while(true) // 1 { rwlc_writelock(ltable_->header_mut); ltable_->merge_mgr->new_merge(1); int done = 0; // 2: wait for c0_mergable // the merge iterator will wait until c0 is big enough for us to proceed. if(!ltable_->is_still_running()) { done = 1; } if(done==1) { pthread_cond_signal(<able_->c1_ready); // no block is ready. this allows the other thread to wake up, and see that we're shutting down. rwlc_unlock(ltable_->header_mut); break; } stats->starting_merge(); lsn_t merge_start = ltable_->get_log_offset(); printf("\nstarting memory merge. log offset is %lld\n", merge_start); // 3: Begin transaction xid = Tbegin(); // 4: Merge //create the iterators diskTreeComponent::iterator *itrA = ltable_->get_tree_c1()->open_iterator(); const int64_t min_bloom_target = ltable_->max_c0_size; //create a new tree diskTreeComponent * c1_prime = new diskTreeComponent(xid, ltable_->internal_region_size, ltable_->datapage_region_size, ltable_->datapage_size, stats, (stats->target_size < min_bloom_target ? min_bloom_target : stats->target_size) / 100); ltable_->set_tree_c1_prime(c1_prime); rwlc_unlock(ltable_->header_mut); // needs to be past the rwlc_unlock... memTreeComponent::batchedRevalidatingIterator *itrB = new memTreeComponent::batchedRevalidatingIterator(ltable_->get_tree_c0(), ltable_->merge_mgr, ltable_->max_c0_size, <able_->c0_flushing, 100, <able_->rb_mut); //: do the merge DEBUG("mmt:\tMerging:\n"); merge_iterators(xid, c1_prime, itrA, itrB, ltable_, c1_prime, stats, false); delete itrA; delete itrB; // 5: force c1' //force write the new tree to disk c1_prime->force(xid); rwlc_writelock(ltable_->header_mut); merge_count++; DEBUG("mmt:\tmerge_count %lld #bytes written %lld\n", stats.stats_merge_count, stats.output_size()); // Immediately clean out c0 mergeable so that writers may continue. // first, we need to move the c1' into c1. // 12: delete old c1 ltable_->get_tree_c1()->dealloc(xid); delete ltable_->get_tree_c1(); // 10: c1 = c1' ltable_->set_tree_c1(c1_prime); ltable_->set_tree_c1_prime(0); ltable_->set_c0_is_merging(false); double new_c1_size = stats->output_size(); pthread_cond_signal(<able_->c0_needed); ltable_->update_persistent_header(xid, merge_start); Tcommit(xid); ltable_->truncate_log(); //TODO: this is simplistic for now //6: if c1' is too big, signal the other merger // XXX move this to mergeManager, and make bytes_in_small be protected. if(stats->bytes_in_small) { // update c0 effective size. double frac = 1.0/(double)merge_count; ltable_->num_c0_mergers = merge_count; ltable_->mean_c0_run_length= (int64_t) ( ((double)ltable_->mean_c0_run_length)*(1-frac) + ((double)stats->bytes_in_small*frac)); //ltable_->merge_mgr->get_merge_stats(0)->target_size = ltable_->mean_c0_run_length; } printf("\nMerge done. R = %f MemSize = %lld Mean = %lld, This = %lld, Count = %d factor %3.3fcur%3.3favg\n", *ltable_->R(), (long long)ltable_->max_c0_size, (long long int)ltable_->mean_c0_run_length, stats->bytes_in_small, merge_count, ((double)stats->bytes_in_small) / (double)ltable_->max_c0_size, ((double)ltable_->mean_c0_run_length) / (double)ltable_->max_c0_size); assert(*ltable_->R() >= MIN_R); // XXX don't hardcode 1.05, which will break for R > ~20. bool signal_c2 = (1.05 * new_c1_size / ltable_->mean_c0_run_length > *ltable_->R()); DEBUG("\nc1 size %f R %f\n", new_c1_size, *ltable_->R()); if( signal_c2 ) { DEBUG("mmt:\tsignaling C2 for merge\n"); DEBUG("mmt:\tnew_c1_size %.2f\tMAX_C0_SIZE %lld\ta->max_size %lld\t targetr %.2f \n", new_c1_size, ltable_->max_c0_size, a->max_size, target_R); // XXX need to report backpressure here! while(ltable_->get_tree_c1_mergeable()) { ltable_->c1_flushing = true; rwlc_cond_wait(<able_->c1_needed, ltable_->header_mut); ltable_->c1_flushing = false; } xid = Tbegin(); // we just set c1 = c1'. Want to move c1 -> c1 mergeable, clean out c1. // 7: and perhaps c1_mergeable ltable_->set_tree_c1_mergeable(ltable_->get_tree_c1()); // c1_prime == c1. stats->handed_off_tree(); // 8: c1 = new empty. ltable_->set_tree_c1(new diskTreeComponent(xid, ltable_->internal_region_size, ltable_->datapage_region_size, ltable_->datapage_size, stats, 10)); pthread_cond_signal(<able_->c1_ready); ltable_->update_persistent_header(xid); Tcommit(xid); } // DEBUG("mmt:\tUpdated C1's position on disk to %lld\n",ltable_->get_tree_c1()->get_root_rec().page); // 13 rwlc_unlock(ltable_->header_mut); ltable_->merge_mgr->finished_merge(1); // stats->pretty_print(stdout); //TODO: get the freeing outside of the lock } return 0; } void * merge_scheduler::diskMergeThread() { int xid; assert(ltable_->get_tree_c2()); int merge_count =0; mergeStats * stats = ltable_->merge_mgr->get_merge_stats(2); while(true) { // 2: wait for input rwlc_writelock(ltable_->header_mut); ltable_->merge_mgr->new_merge(2); int done = 0; // get a new input for merge while(!ltable_->get_tree_c1_mergeable()) { pthread_cond_signal(<able_->c1_needed); if(!ltable_->is_still_running()){ done = 1; break; } DEBUG("dmt:\twaiting for block ready cond\n"); rwlc_cond_wait(<able_->c1_ready, ltable_->header_mut); DEBUG("dmt:\tblock ready\n"); } if(done==1) { rwlc_unlock(ltable_->header_mut); break; } stats->starting_merge(); // 3: begin xid = Tbegin(); // 4: do the merge. //create the iterators diskTreeComponent::iterator *itrA = ltable_->get_tree_c2()->open_iterator(); diskTreeComponent::iterator *itrB = ltable_->get_tree_c1_mergeable()->open_iterator(ltable_->merge_mgr, 0.05, <able_->c1_flushing); //create a new tree diskTreeComponent * c2_prime = new diskTreeComponent(xid, ltable_->internal_region_size, ltable_->datapage_region_size, ltable_->datapage_size, stats, (uint64_t)(ltable_->max_c0_size * *ltable_->R() + stats->base_size)/ 1000); // diskTreeComponent * c2_prime = new diskTreeComponent(xid, ltable_->internal_region_size, ltable_->datapage_region_size, ltable_->datapage_size, stats); rwlc_unlock(ltable_->header_mut); //do the merge DEBUG("dmt:\tMerging:\n"); merge_iterators(xid, c2_prime, itrA, itrB, ltable_, c2_prime, stats, true); delete itrA; delete itrB; //5: force write the new region to disk c2_prime->force(xid); // (skip 6, 7, 8, 8.5, 9)) rwlc_writelock(ltable_->header_mut); //12 ltable_->get_tree_c2()->dealloc(xid); delete ltable_->get_tree_c2(); //11.5 ltable_->get_tree_c1_mergeable()->dealloc(xid); //11 delete ltable_->get_tree_c1_mergeable(); ltable_->set_tree_c1_mergeable(0); //writes complete //now atomically replace the old c2 with new c2 //pthread_mutex_lock(a->block_ready_mut); merge_count++; //update the current optimal R value *(ltable_->R()) = std::max(MIN_R, sqrt( ((double)stats->output_size()) / ((double)ltable_->mean_c0_run_length) ) ); DEBUG("\nR = %f\n", *(ltable_->R())); DEBUG("dmt:\tmerge_count %lld\t#written bytes: %lld\n optimal r %.2f", stats.stats_merge_count, stats.output_size(), *(a->r_i)); // 10: C2 is never too big ltable_->set_tree_c2(c2_prime); stats->handed_off_tree(); DEBUG("dmt:\tUpdated C2's position on disk to %lld\n",(long long)-1); // 13 ltable_->update_persistent_header(xid); Tcommit(xid); rwlc_unlock(ltable_->header_mut); // stats->pretty_print(stdout); ltable_->merge_mgr->finished_merge(2); } return 0; } static void periodically_force(int xid, int *i, diskTreeComponent * forceMe, stasis_log_t * log) { if(false && *i > mergeManager::FORCE_INTERVAL) { if(forceMe) forceMe->force(xid); log->force_tail(log, LOG_FORCE_WAL); *i = 0; } } static int garbage_collect(logtable * ltable_, datatuple ** garbage, int garbage_len, int next_garbage, bool force = false) { if(next_garbage == garbage_len || force) { pthread_mutex_lock(<able_->rb_mut); for(int i = 0; i < next_garbage; i++) { datatuple * t2tmp = NULL; { memTreeComponent::rbtree_t::iterator rbitr = ltable_->get_tree_c0()->find(garbage[i]); if(rbitr != ltable_->get_tree_c0()->end()) { t2tmp = *rbitr; if((t2tmp->datalen() == garbage[i]->datalen()) && !memcmp(t2tmp->data(), garbage[i]->data(), garbage[i]->datalen())) { // they match, delete t2tmp } else { t2tmp = NULL; } } } // close rbitr before touching the tree. if(t2tmp) { ltable_->get_tree_c0()->erase(garbage[i]); //ltable_->merge_mgr->get_merge_stats(0)->current_size -= garbage[i]->byte_length(); datatuple::freetuple(t2tmp); } datatuple::freetuple(garbage[i]); } pthread_mutex_unlock(<able_->rb_mut); return 0; } else { return next_garbage; } } template void merge_iterators(int xid, diskTreeComponent * forceMe, ITA *itrA, //iterator on c1 or c2 ITB *itrB, //iterator on c0 or c1, respectively logtable *ltable, diskTreeComponent *scratch_tree, mergeStats * stats, bool dropDeletes // should be true iff this is biggest component ) { stasis_log_t * log = (stasis_log_t*)stasis_log(); datatuple *t1 = itrA->next_callerFrees(); ltable->merge_mgr->read_tuple_from_large_component(stats->merge_level, t1); datatuple *t2 = 0; int garbage_len = 100; int next_garbage = 0; datatuple ** garbage = (datatuple**)malloc(sizeof(garbage[0]) * garbage_len); int i = 0; while( (t2=itrB->next_callerFrees()) != 0) { ltable->merge_mgr->read_tuple_from_small_component(stats->merge_level, t2); DEBUG("tuple\t%lld: keylen %d datalen %d\n", ntuples, *(t2->keylen),*(t2->datalen) ); while(t1 != 0 && datatuple::compare(t1->rawkey(), t1->rawkeylen(), t2->rawkey(), t2->rawkeylen()) < 0) // t1 is less than t2 { //insert t1 if(insert_filter(ltable, t1, dropDeletes)) { scratch_tree->insertTuple(xid, t1); i+=t1->byte_length(); ltable->merge_mgr->wrote_tuple(stats->merge_level, t1); } datatuple::freetuple(t1); //advance itrA t1 = itrA->next_callerFrees(); ltable->merge_mgr->read_tuple_from_large_component(stats->merge_level, t1); periodically_force(xid, &i, forceMe, log); } if(t1 != 0 && datatuple::compare(t1->strippedkey(), t1->strippedkeylen(), t2->strippedkey(), t2->strippedkeylen()) == 0) { datatuple *mtuple = ltable->gettuplemerger()->merge(t1,t2); stats->merged_tuples(mtuple, t2, t1); // this looks backwards, but is right. //insert merged tuple, drop deletes if(insert_filter(ltable, mtuple, dropDeletes)) { scratch_tree->insertTuple(xid, mtuple); i+=mtuple->byte_length(); ltable->merge_mgr->wrote_tuple(stats->merge_level, mtuple); } datatuple::freetuple(t1); t1 = itrA->next_callerFrees(); //advance itrA ltable->merge_mgr->read_tuple_from_large_component(stats->merge_level, t1); datatuple::freetuple(mtuple); periodically_force(xid, &i, forceMe, log); } else { //insert t2 if(insert_filter(ltable, t2, dropDeletes)) { scratch_tree->insertTuple(xid, t2); i+=t2->byte_length(); ltable->merge_mgr->wrote_tuple(stats->merge_level, t2); } periodically_force(xid, &i, forceMe, log); // cannot free any tuples here; they may still be read through a lookup } if(stats->merge_level == 1) { // We consume tuples from c0 as we read them, so update its stats here. ltable->merge_mgr->wrote_tuple(0, t2); next_garbage = garbage_collect(ltable, garbage, garbage_len, next_garbage); garbage[next_garbage] = t2; next_garbage++; } if(stats->merge_level != 1) { datatuple::freetuple(t2); } } while(t1 != 0) {// t2 is empty, but t1 still has stuff in it. if(insert_filter(ltable, t1, dropDeletes)) { scratch_tree->insertTuple(xid, t1); ltable->merge_mgr->wrote_tuple(stats->merge_level, t1); i += t1->byte_length(); } datatuple::freetuple(t1); //advance itrA t1 = itrA->next_callerFrees(); ltable->merge_mgr->read_tuple_from_large_component(stats->merge_level, t1); periodically_force(xid, &i, forceMe, log); } DEBUG("dpages: %d\tnpages: %d\tntuples: %d\n", dpages, npages, ntuples); next_garbage = garbage_collect(ltable, garbage, garbage_len, next_garbage, true); free(garbage); scratch_tree->writes_done(); }