#ifndef _SIMPLE_DATA_PAGE_H_ #define _SIMPLE_DATA_PAGE_H_ #include #include #include //#define CHECK_FOR_SCRIBBLING template class DataPage { public: class RecordIterator { public: RecordIterator(DataPage *dp) : read_offset_(0), dp(dp) { } RecordIterator(const RecordIterator &rhs) : read_offset_(rhs.read_offset_), dp(rhs.dp) {} void operator=(const RecordIterator &rhs) { this->read_offset_ = rhs.read_offset_; this->dp = rhs.dp; } //returns the next tuple and also advances the iterator TUPLE *getnext(); //advance the iterator by count tuples, i.e. skip over count tuples // void advance(int xid, int count=1); off_t read_offset_; DataPage *dp; }; class RegionAllocator { public: // Open an existing region allocator. RegionAllocator(int xid, recordid rid) : rid_(rid), nextPage_(INVALID_PAGE), endOfRegion_(INVALID_PAGE) { Tread(xid, rid, &header_); regionCount_ = TarrayListLength(xid, header_.region_list); } // Create a new region allocator. RegionAllocator(int xid, recordid rid, pageid_t region_length) : rid_(rid), nextPage_(0), endOfRegion_(0), regionCount_(0) { assert(TrecordSize(xid, rid) == sizeof(header_)); header_.region_list = TarrayListAlloc(xid, 1, 2, sizeof(pageid_t)); header_.region_length = region_length; Tset(xid, rid_, &header_); } // XXX handle disk full? pageid_t alloc_extent(int xid, pageid_t extent_length) { assert(nextPage_ != INVALID_PAGE); pageid_t ret = nextPage_; nextPage_ += extent_length; if(nextPage_ >= endOfRegion_) { ret = TregionAlloc(xid, header_.region_length, 42); // XXX assign a region allocator id TarrayListExtend(xid, header_.region_list, 1); recordid rid = header_.region_list; rid.slot = regionCount_; Tset(xid, rid, &ret); assert(extent_length <= header_.region_length); // XXX could handle this case if we wanted to. Would remove this error case, and not be hard. nextPage_ = ret + extent_length; endOfRegion_ = ret + header_.region_length; regionCount_++; assert(regionCount_ == TarrayListLength(xid, header_.region_list)); } return ret; } bool grow_extent(pageid_t extension_length) { assert(nextPage_ != INVALID_PAGE); nextPage_ += extension_length; return(nextPage_ < endOfRegion_); } void force_regions(int xid) { assert(nextPage_ != INVALID_PAGE); pageid_t regionCount = TarrayListLength(xid, header_.region_list); for(recordid list_entry = header_.region_list; list_entry.slot < regionCount; list_entry.slot++) { pageid_t pid; Tread(xid, list_entry, &pid); TregionForce(xid, pid); } Tset(xid, rid_, &header_); } void dealloc_regions(int xid) { pageid_t regionCount = TarrayListLength(xid, header_.region_list); printf("{%lld %lld %lld}\n", header_.region_list.page, (long long)header_.region_list.slot, (long long)header_.region_list.size); for(recordid list_entry = header_.region_list; list_entry.slot < regionCount; list_entry.slot++) { pageid_t pid; Tread(xid, list_entry, &pid); #ifndef CHECK_FOR_SCRIBBLING // Don't actually free the page if we'll be checking that pages are used exactly once below. TregionDealloc(xid, pid); #endif } } void done() { nextPage_ = INVALID_PAGE; endOfRegion_ = INVALID_PAGE; } private: typedef struct { recordid region_list; pageid_t region_length; } persistent_state; const recordid rid_; pageid_t nextPage_; pageid_t endOfRegion_; pageid_t regionCount_; persistent_state header_; public: static const size_t header_size = sizeof(persistent_state); }; public: //to be used when reading an existing data page from disk DataPage( int xid, pageid_t pid ); //to be used to create new data pages DataPage( int xid, pageid_t page_count, RegionAllocator* alloc); ~DataPage() { if(write_offset_ != -1) { len_t dat_len = 0; // write terminating zero. write_data((const byte*)&dat_len, sizeof(dat_len), false); // if writing the zero fails, later reads will fail as well, and assume EOF. } } bool append(TUPLE const * dat); bool recordRead(typename TUPLE::key_t key, size_t keySize, TUPLE ** buf); inline uint16_t recordCount(); RecordIterator begin(){return RecordIterator(this);} pageid_t get_start_pid(){return first_page_;} int get_page_count(){return page_count_;} static void register_stasis_page_impl(); private: // static pageid_t dp_alloc_region(int xid, void *conf, pageid_t count); void initialize(); private: static const uint16_t DATA_PAGE_HEADER_SIZE = sizeof(int32_t); static const uint16_t DATA_PAGE_SIZE = USABLE_SIZE_OF_PAGE - DATA_PAGE_HEADER_SIZE; typedef uint32_t len_t; static inline int32_t* is_another_page_ptr(Page *p) { return stasis_page_int32_ptr_from_start(p,0); } static inline byte * data_at_offset_ptr(Page *p, slotid_t offset) { return ((byte*)(is_another_page_ptr(p)+1))+offset; } static inline len_t * length_at_offset_ptr(Page *p, slotid_t offset) { return (len_t*)data_at_offset_ptr(p,offset); } inline recordid calc_chunk_from_offset(off_t offset) { recordid ret; ret.page = first_page_ + offset / DATA_PAGE_SIZE; ret.slot = offset % DATA_PAGE_SIZE; ret.size = DATA_PAGE_SIZE - ret.slot; assert(ret.size); return ret; } size_t write_bytes(const byte * buf, size_t remaining); size_t read_bytes(byte * buf, off_t offset, size_t remaining); bool write_data(const byte * buf, size_t len, bool init_next = true); bool read_data(byte * buf, off_t offset, size_t len); bool initialize_next_page(); int xid_; pageid_t page_count_; const pageid_t initial_page_count_; RegionAllocator *alloc_; const pageid_t first_page_; off_t write_offset_; // points to the next free byte (ignoring page boundaries) }; #endif