#include "logserver.h" #include "datatuple.h" #include "merger.h" #include "logstore.h" #include "network.h" #include #include #include #include #include #include #include #include #undef begin #undef end #undef try void *serverLoop(void *args); void logserver::startserver(logtable *ltable) { sys_alive = true; this->ltable = ltable; selcond = new pthread_cond_t; pthread_cond_init(selcond, 0); //initialize threads for(size_t i=0; ith_handle = new pthread_t; struct pthread_data *worker_data = new pthread_data; worker_th->data = worker_data; worker_data->idleth_queue = &idleth_queue; worker_data->ready_queue = &ready_queue; worker_data->work_queue = &work_queue; #ifdef STATS_ENABLED worker_data->num_reqs = 0; #endif worker_data->qlock = qlock; worker_data->selcond = selcond; worker_data->th_cond = new pthread_cond_t; pthread_cond_init(worker_data->th_cond,0); worker_data->th_mut = new pthread_mutex_t; pthread_mutex_init(worker_data->th_mut,0); worker_data->workitem = new int; *(worker_data->workitem) = -1; worker_data->ltable = ltable; worker_data->sys_alive = &sys_alive; pthread_create(worker_th->th_handle, 0, thread_work_fn, worker_th); idleth_queue.push(*worker_th); } //start server socket sdata = new serverth_data; sdata->server_socket = &serversocket; sdata->server_port = server_port; sdata->idleth_queue = &idleth_queue; sdata->ready_queue = &ready_queue; sdata->selcond = selcond; sdata->qlock = qlock; pthread_create(&server_thread, 0, serverLoop, sdata); //start monitoring loop eventLoop(); } void logserver::stopserver() { //close the server socket //stops receiving data on the server socket shutdown(serversocket, 0); //wait for all threads to be idle while(idleth_queue.size() != nthreads) sleep(1); #ifdef STATS_ENABLED printf("\n\nSTATISTICS\n"); std::map num_reqsc; std::map work_timec; #endif //set the system running flag to false sys_alive = false; for(size_t i=0; idata->th_mut); pthread_cond_signal(idle_th->data->th_cond); pthread_mutex_unlock(idle_th->data->th_mut); //wait for it to join pthread_join(*(idle_th->th_handle), 0); //free the thread variables pthread_cond_destroy(idle_th->data->th_cond); #ifdef STATS_ENABLED if(i == 0) { tot_threadwork_time = 0; num_reqs = 0; } tot_threadwork_time += idle_th->data->work_time; num_reqs += idle_th->data->num_reqs; printf("thread %d: work_time %.3f\t#calls %d\tavg req process time:\t%.3f\n", i, idle_th->data->work_time, idle_th->data->num_reqs, (( idle_th->data->num_reqs == 0 ) ? 0 : idle_th->data->work_time / idle_th->data->num_reqs) ); for(std::map::const_iterator itr = idle_th->data->num_reqsc.begin(); itr != idle_th->data->num_reqsc.end(); itr++) { std::string ckey = (*itr).first; printf("\t%s\t%d\t%.3f\t%.3f\n", ckey.c_str(), (*itr).second, idle_th->data->work_timec[ckey], idle_th->data->work_timec[ckey] / (*itr).second); if(num_reqsc.find(ckey) == num_reqsc.end()){ num_reqsc[ckey] = 0; work_timec[ckey] = 0; } num_reqsc[ckey] += (*itr).second; work_timec[ckey] += idle_th->data->work_timec[ckey]; } #endif delete idle_th->data->th_cond; delete idle_th->data->th_mut; delete idle_th->data->workitem; delete idle_th->data; delete idle_th->th_handle; } th_list.clear(); #ifdef STATS_ENABLED printf("\n\nAggregated Stats:\n"); for(std::map::const_iterator itr = num_reqsc.begin(); itr != num_reqsc.end(); itr++) { std::string ckey = (*itr).first; printf("\t%s\t%d\t%.3f\t%.3f\n", ckey.c_str(), (*itr).second, work_timec[ckey], work_timec[ckey] / (*itr).second); } tot_time = (stop_tv.tv_sec - start_tv.tv_sec) * 1000 + (stop_tv.tv_usec / 1000 - start_tv.tv_usec / 1000); printf("\ntot time:\t%f\n",tot_time); printf("tot work time:\t%f\n", tot_threadwork_time); printf("load avg:\t%f\n", tot_threadwork_time / tot_time); printf("tot num reqs\t%d\n", num_reqs); if(num_reqs!= 0) { printf("tot work time / num reqs:\t%.3f\n", tot_threadwork_time / num_reqs); printf("tot time / num reqs:\t%.3f\n", tot_time / num_reqs ); } #endif return; } void logserver::eventLoop() { fd_set readfs; std::vector sel_list; int maxfd; struct timespec ts; while(true) { //clear readset FD_ZERO(&readfs); maxfd = -1; ts.tv_nsec = 250000; //nanosec ts.tv_sec = 0; //update select set pthread_mutex_lock(qlock); if(sel_list.size() == 0) { while(ready_queue.size() == 0) pthread_cond_wait(selcond, qlock); } //new connections + processed conns are in ready_queue //add them to select list while(ready_queue.size() > 0) { sel_list.push_back(ready_queue.front()); ready_queue.pop(); } pthread_mutex_unlock(qlock); //ready select set for(std::vector::const_iterator itr=sel_list.begin(); itr != sel_list.end(); itr++) { if(maxfd < *itr) maxfd = *itr; FD_SET(*itr, &readfs); } //select events int sel_res = select(maxfd+1, &readfs, NULL, NULL, NULL);// &Timeout); #ifdef STATS_ENABLED if(num_selcalls == 0) gettimeofday(&start_tv, 0); num_selevents += sel_res; num_selcalls++; #endif pthread_mutex_lock(qlock); for(size_t i=0; i 0) //assign the job to an indle thread { pthread_item idle_th = idleth_queue.front(); idleth_queue.pop(); //wake up the thread to do work pthread_mutex_lock(idle_th.data->th_mut); //set the job of the idle thread *(idle_th.data->workitem) = currsock; pthread_cond_signal(idle_th.data->th_cond); pthread_mutex_unlock(idle_th.data->th_mut); } else { //insert the given element to the work queue work_queue.push(currsock); } //remove from the sel_list sel_list.erase(sel_list.begin()+i); i--; } } pthread_mutex_unlock(qlock); #ifdef STATS_ENABLED gettimeofday(&stop_tv, 0); #endif } } void *serverLoop(void *args) { serverth_data *sdata = (serverth_data*)args; int sockfd; //socket descriptor struct sockaddr_in serv_addr; struct sockaddr_in cli_addr; int newsockfd; //newly created socklen_t clilen = sizeof(cli_addr); //open a socket sockfd = socket(AF_INET, SOCK_STREAM, 0); if (sockfd < 0) { printf("ERROR opening socket\n"); return 0; } bzero((char *) &serv_addr, sizeof(serv_addr)); serv_addr.sin_family = AF_INET; serv_addr.sin_addr.s_addr = htonl(INADDR_ANY); serv_addr.sin_port = htons(sdata->server_port); if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) { printf("ERROR on binding.\n"); return 0; } //start listening on the server socket //second arg is the max number of connections waiting in queue if(listen(sockfd,SOMAXCONN)==-1) { printf("ERROR on listen.\n"); return 0; } printf("LSM Server listening...\n"); *(sdata->server_socket) = sockfd; int flag, result; while(true) { newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr, &clilen); if (newsockfd < 0) { printf("ERROR on accept.\n"); return 0; // we probably want to continue instead of return here (when not debugging) } flag = 1; result = setsockopt(newsockfd, /* socket affected */ IPPROTO_TCP, /* set option at TCP level */ TCP_NODELAY, /* name of option */ (char *) &flag, /* the cast is historical cruft */ sizeof(int)); /* length of option value */ if (result < 0) { printf("ERROR on setting socket option TCP_NODELAY.\n"); return 0; } char clientip[20]; inet_ntop(AF_INET, (void*) &(cli_addr.sin_addr), clientip, 20); printf("Connection from:\t%s\n", clientip); pthread_mutex_lock(sdata->qlock); //insert the given element to the ready queue sdata->ready_queue->push(newsockfd); if(sdata->ready_queue->size() == 1) //signal the event loop pthread_cond_signal(sdata->selcond); pthread_mutex_unlock(sdata->qlock); } } static void network_disconnect(pthread_item * item, bool iserror) { pthread_mutex_lock(item->data->qlock); if(iserror) { printf("network error. conn closed. (%d, %d, %d)\n", errno, *(item->data->workitem), item->data->work_queue->size()); } else { printf("client done. conn closed. (%d, %d)\n", *(item->data->workitem), item->data->work_queue->size()); } close(*(item->data->workitem)); if(item->data->work_queue->size() > 0) { int new_work = item->data->work_queue->front(); item->data->work_queue->pop(); *(item->data->workitem) = new_work; } else { //set work to -1 *(item->data->workitem) = -1; //add self to idle queue item->data->idleth_queue->push(*item); } pthread_mutex_unlock(item->data->qlock); } void * thread_work_fn( void * args) { pthread_item * item = (pthread_item *) args; pthread_mutex_lock(item->data->th_mut); while(true) { while(*(item->data->workitem) == -1) { if(!*(item->data->sys_alive)) break; pthread_cond_wait(item->data->th_cond, item->data->th_mut); //wait for job } #ifdef STATS_ENABLED gettimeofday(& (item->data->start_tv), 0); std::ostringstream ostr; ostr << *(item->data->workitem) << "_"; #endif if(!*(item->data->sys_alive)) { break; } //step 1: read the opcode network_op_t opcode = readopfromsocket(*(item->data->workitem), LOGSTORE_CLIENT_REQUEST); if(opcode == LOGSTORE_CONN_CLOSED_ERROR) { opcode = OP_DONE; printf("Obsolescent client closed connection uncleanly\n"); } if( opcode == OP_DONE || (opiserror(opcode))) //close the conn on failure { network_disconnect(item, opiserror(opcode)); continue; } int err = 0; //step 2: read the first tuple from client datatuple *tuple, *tuple2; if(!err) { tuple = readtuplefromsocket(*(item->data->workitem), &err); } // read the second tuple from client if(!err) { tuple2 = readtuplefromsocket(*(item->data->workitem), &err); } //step 3: process the tuple if(opcode == OP_INSERT) { //insert/update/delete item->data->ltable->insertTuple(tuple); //step 4: send response err = writeoptosocket(*(item->data->workitem), LOGSTORE_RESPONSE_SUCCESS); } else if(opcode == OP_FIND) { //find the tuple datatuple *dt = item->data->ltable->findTuple(-1, tuple->key(), tuple->keylen()); #ifdef STATS_ENABLED if(dt == 0) { DEBUG("key not found:\t%s\n", datatuple::key_to_str(tuple.key()).c_str()); } else if( dt->datalen() != 1024) { DEBUG("data len for\t%s:\t%d\n", datatuple::key_to_str(tuple.key()).c_str(), dt->datalen); if(datatuple::compare(tuple->key(), dt->key()) != 0) { DEBUG("key not equal:\t%s\t%s\n", datatuple::key_to_str(tuple.key()).c_str(), datatuple::key_to_str(dt->key).c_str()); } } #endif bool dt_needs_free; if(dt == 0) //tuple does not exist. { dt = tuple; dt->setDelete(); dt_needs_free = false; } else { dt_needs_free = true; } //send the reply code int err = writeoptosocket(*(item->data->workitem), LOGSTORE_RESPONSE_SENDING_TUPLES); if(!err) { //send the tuple err = writetupletosocket(*(item->data->workitem), dt); } if(!err) { writeendofiteratortosocket(*(item->data->workitem)); } //free datatuple if(dt_needs_free) { datatuple::freetuple(dt); } } else if(opcode == OP_SCAN) { size_t limit = -1; size_t count = 0; if(!err) { limit = readcountfromsocket(*(item->data->workitem), &err); } if(!err) { err = writeoptosocket(*(item->data->workitem), LOGSTORE_RESPONSE_SENDING_TUPLES); } if(!err) { logtableIterator * itr = new logtableIterator(item->data->ltable, tuple); datatuple * t; while(!err && (t = itr->getnext())) { if(tuple2) { // are we at the end of range? if(datatuple::compare_obj(t, tuple2) >= 0) { datatuple::freetuple(t); break; } } err = writetupletosocket(*(item->data->workitem), t); datatuple::freetuple(t); count ++; if(count == limit) { break; } // did we hit limit? } delete itr; } if(!err) { writeendofiteratortosocket(*(item->data->workitem)); } } else if(opcode == OP_DBG_BLOCKMAP) { // produce a list of stasis regions int xid = Tbegin(); readlock(item->data->ltable->header_lock, 0); // produce a list of regions used by current tree components pageid_t datapage_c1_region_length, datapage_c1_mergeable_region_length = 0, datapage_c2_region_length; pageid_t datapage_c1_region_count, datapage_c1_mergeable_region_count = 0, datapage_c2_region_count; pageid_t * datapage_c1_regions = item->data->ltable->get_tree_c1()->get_alloc()->list_regions(xid, &datapage_c1_region_length, &datapage_c1_region_count); pageid_t * datapage_c1_mergeable_regions = NULL; if(item->data->ltable->get_tree_c1_mergeable()) { datapage_c1_mergeable_regions = item->data->ltable->get_tree_c1_mergeable()->get_alloc()->list_regions(xid, &datapage_c1_mergeable_region_length, &datapage_c1_mergeable_region_count); } pageid_t * datapage_c2_regions = item->data->ltable->get_tree_c2()->get_alloc()->list_regions(xid, &datapage_c2_region_length, &datapage_c2_region_count); pageid_t tree_c1_region_length, tree_c1_mergeable_region_length = 0, tree_c2_region_length; pageid_t tree_c1_region_count, tree_c1_mergeable_region_count = 0, tree_c2_region_count; recordid tree_c1_region_header = item->data->ltable->get_tree_c1()->get_tree_state(); recordid tree_c2_region_header = item->data->ltable->get_tree_c2()->get_tree_state(); pageid_t * tree_c1_regions = diskTreeComponent::list_region_rid(xid, &tree_c1_region_header, &tree_c1_region_length, &tree_c1_region_count); pageid_t * tree_c1_mergeable_regions = NULL; if(item->data->ltable->get_tree_c1_mergeable()) { recordid tree_c1_mergeable_region_header = item->data->ltable->get_tree_c1_mergeable()->get_tree_state(); tree_c1_mergeable_regions = diskTreeComponent::list_region_rid(xid, &tree_c1_mergeable_region_header, &tree_c1_mergeable_region_length, &tree_c1_mergeable_region_count); } pageid_t * tree_c2_regions = diskTreeComponent::list_region_rid(xid, &tree_c2_region_header, &tree_c2_region_length, &tree_c2_region_count); unlock(item->data->ltable->header_lock); Tcommit(xid); printf("C1 Datapage Regions (each is %lld pages long):\n", datapage_c1_region_length); for(pageid_t i = 0; i < datapage_c1_region_count; i++) { printf("%lld ", datapage_c1_regions[i]); } printf("\nC1 Internal Node Regions (each is %lld pages long):\n", tree_c1_region_length); for(pageid_t i = 0; i < tree_c1_region_count; i++) { printf("%lld ", tree_c1_regions[i]); } printf("\nC2 Datapage Regions (each is %lld pages long):\n", datapage_c2_region_length); for(pageid_t i = 0; i < datapage_c2_region_count; i++) { printf("%lld ", datapage_c2_regions[i]); } printf("\nC2 Internal Node Regions (each is %lld pages long):\n", tree_c2_region_length); for(pageid_t i = 0; i < tree_c2_region_count; i++) { printf("%lld ", tree_c2_regions[i]); } printf("\nStasis Region Map\n"); boundary_tag tag; pageid_t pid = ROOT_RECORD.page; TregionReadBoundaryTag(xid, pid, &tag); pageid_t max_off = 0; bool done; do { max_off = pid + tag.size; // print tag. printf("\tPage %lld\tSize %lld\tAllocationManager %d\n", (long long)pid, (long long)tag.size, (int)tag.allocation_manager); done = ! TregionNextBoundaryTag(xid, &pid, &tag, 0/*all allocation managers*/); } while(!done); printf("\n"); printf("Tree components are using %lld megabytes. File is using %lld megabytes.", PAGE_SIZE * (tree_c1_region_length * tree_c1_region_count + tree_c1_mergeable_region_length * tree_c1_mergeable_region_count + tree_c2_region_length * tree_c2_region_count + datapage_c1_region_length * datapage_c1_region_count + datapage_c1_mergeable_region_length * datapage_c1_mergeable_region_count + datapage_c2_region_length * datapage_c2_region_count) / (1024 * 1024), (PAGE_SIZE * max_off) / (1024*1024)); free(datapage_c1_regions); if(datapage_c1_mergeable_regions) free(datapage_c1_mergeable_regions); free(datapage_c2_regions); free(tree_c1_regions); if(tree_c1_mergeable_regions) free(tree_c1_mergeable_regions); free(tree_c2_regions); err = writeoptosocket(*(item->data->workitem), LOGSTORE_RESPONSE_SUCCESS); } //free the tuple if(tuple) datatuple::freetuple(tuple); if(tuple2) datatuple::freetuple(tuple2); if(err) { perror("could not respond to client"); network_disconnect(item, true); continue; } else { pthread_mutex_lock(item->data->qlock); //add conn desc to ready queue item->data->ready_queue->push(*(item->data->workitem)); if(item->data->ready_queue->size() == 1) //signal the event loop pthread_cond_signal(item->data->selcond); if(item->data->work_queue->size() > 0) { int new_work = item->data->work_queue->front(); item->data->work_queue->pop(); *(item->data->workitem) = new_work; } else { //set work to -1 *(item->data->workitem) = -1; //add self to idle queue item->data->idleth_queue->push(*item); } pthread_mutex_unlock(item->data->qlock); } #ifdef STATS_ENABLED if( item->data->num_reqs == 0 ) item->data->work_time = 0; gettimeofday(& (item->data->stop_tv), 0); (item->data->num_reqs)++; item->data->work_time += (item->data->stop_tv.tv_sec - item->data->start_tv.tv_sec) * 1000 + (item->data->stop_tv.tv_usec / 1000 - item->data->start_tv.tv_usec / 1000); int iopcode = opcode; ostr << iopcode; std::string clientkey = ostr.str(); if(item->data->num_reqsc.find(clientkey) == item->data->num_reqsc.end()) { item->data->num_reqsc[clientkey]=0; item->data->work_timec[clientkey]=0; } item->data->num_reqsc[clientkey]++; item->data->work_timec[clientkey] += (item->data->stop_tv.tv_sec - item->data->start_tv.tv_sec) * 1000 + (item->data->stop_tv.tv_usec / 1000 - item->data->start_tv.tv_usec / 1000);; #endif } pthread_mutex_unlock(item->data->th_mut); return NULL; }