/* * mergeManager.cpp * * Created on: May 19, 2010 * Author: sears */ #include "mergeManager.h" #include "mergeStats.h" #include "logstore.h" #include "math.h" #include "time.h" mergeStats* mergeManager:: get_merge_stats(int mergeLevel) { if (mergeLevel == 0) { return c0; } else if (mergeLevel == 1) { return c1; } else if(mergeLevel == 2) { return c2; } else { abort(); } } mergeManager::~mergeManager() { delete c0; delete c1; delete c2; still_running = false; pthread_cond_signal(&pp_cond); pthread_join(pp_thread, 0); pthread_cond_destroy(&pp_cond); } void mergeManager::new_merge(int mergeLevel) { mergeStats * s = get_merge_stats(mergeLevel); if(s->merge_level == 0) { // target_size was set during startup } else if(s->merge_level == 1) { assert(c0->target_size); c1->target_size = (pageid_t)(*ltable->R() * (double)c0->target_size); assert(c1->target_size); } else if(s->merge_level == 2) { // target_size is infinity... } else { abort(); } s->new_merge2(); } void mergeManager::set_c0_size(int64_t size) { c0->target_size = size; } void mergeManager::sleep_on_mini_delta(mergeStats *s, int delta) { s->mini_delta += delta; if(/*s->merge_level < 2*/ s->merge_level == 1 && s->mergeable_size && delta) { int64_t effective_max_delta = (int64_t)(UPDATE_PROGRESS_PERIOD * s->bps); // if(s->merge_level == 0) { s->base_size = ltable->tree_bytes; } if(s->mini_delta > effective_max_delta) { struct timeval now; gettimeofday(&now, 0); double now_double = tv_to_double(&now); double elapsed_delta = now_double - ts_to_double(&s->last_mini_tick); double slp = UPDATE_PROGRESS_PERIOD - elapsed_delta; if(slp > 0.001) { struct timespec sleeptime; double_to_ts(&sleeptime, slp); nanosleep(&sleeptime, 0); printf("%d Sleep A %f\n", s->merge_level, slp); } double_to_ts(&s->last_mini_tick, now_double); s->mini_delta = 0; } } } void mergeManager::update_progress(mergeStats * s, int delta) { s->delta += delta; #if 0 #ifdef NO_SNOWSHOVEL if(merge_level < 2 && delta) { #else if(merge_level == 1 && delta) { #endif sleep_on_mini_delta(s, delta); } #endif if((!delta) || s->delta > UPDATE_PROGRESS_DELTA) { rwlc_writelock(ltable->header_mut); if(delta) { s->delta = 0; if(!s->need_tick) { s->need_tick = 1; } } if(s->merge_level == 2 #ifdef NO_SNOWSHOVEL || s->merge_level == 1 #endif ) { if(s->active) { s->in_progress = ((double)(s->bytes_in_large + s->bytes_in_small)) / (double)(get_merge_stats(s->merge_level-1)->mergeable_size + s->base_size); } else { s->in_progress = 0; } } else if(s->merge_level == 1) { // C0-C1 merge (c0 is continuously growing...) if(s->active) { s->in_progress = ((double)(s->bytes_in_large+s->bytes_in_small)) / (double)(s->base_size+ltable->mean_c0_effective_size); // if(s->in_progress > 0.95) { s->in_progress = 0.95; } // assert(s->in_progress > -0.01 && s->in_progress < 1.02); } else { s->in_progress = 0; } } #ifdef NO_SNOWSHOVEL s->current_size = s->base_size + s->bytes_out - s->bytes_in_large; #else if(s->merge_level == 0) { s->current_size = ltable->tree_bytes; // we need to track the number of bytes consumed by the merger; this data is not present in s, so fall back on ltable's aggregate. } else { s->current_size = s->base_size + s->bytes_out - s->bytes_in_large; } #endif s->out_progress = ((double)s->current_size) / (double)s->target_size; struct timeval now; gettimeofday(&now, 0); double elapsed_delta = tv_to_double(&now) - ts_to_double(&s->last_tick); if(elapsed_delta < 0.0000001) { elapsed_delta = 0.0000001; } s->lifetime_elapsed += elapsed_delta; s->lifetime_consumed += s->bytes_in_small_delta; double tau = 60.0; // number of seconds to look back for window computation. (this is the expected mean residence time in an exponential decay model, so the units are not so intuitive...) double decay = exp((0.0-elapsed_delta)/tau); double_to_ts(&s->last_tick, tv_to_double(&now)); double window_bps = ((double)s->bytes_in_small_delta) / (double)elapsed_delta; s->bps = (1.0-decay) * window_bps + decay * s->bps; s->bytes_in_small_delta = 0; rwlc_unlock(ltable->header_mut); } } void mergeManager::tick_based_on_merge_progress(mergeStats *s) { /* model the effect of linux + stasis' write caches; at the end of this merge, we need to force up to FORCE_INTERVAL bytes after we think we're done writing the next component. */ int64_t overshoot_fudge = (int64_t)((s->out_progress) * ((double)FORCE_INTERVAL)); /* model the effect of amortizing this computation: we could become this much more overshot if we don't act now. */ int64_t overshoot_fudge2 = UPDATE_PROGRESS_DELTA; /* multiply by 2 for good measure. These are 'soft' walls, and still let writes trickle through. Once we've exhausted the fudge factors, we'll hit a hard wall, and stop writes entirely, so it's better to start throttling too early than too late. */ overshoot_fudge *= 2; overshoot_fudge2 *= 4; if(overshoot_fudge > 0.01 * s->target_size) { overshoot_fudge = (int64_t)(0.01 * (double)s->target_size); } if(overshoot_fudge2 > 0.01 * s->target_size) { overshoot_fudge2 = (int64_t)(0.01 * (double)s->target_size); } const double max_c0_sleep = 0.1; const double min_c0_sleep = 0.01; const double max_c1_sleep = 0.5; const double min_c1_sleep = 0.1; double max_sleep = s->merge_level == 0 ? max_c0_sleep : max_c1_sleep; double min_sleep = s->merge_level == 0 ? min_c0_sleep : min_c1_sleep; int spin = 0; double total_sleep = 0.0; while(1) { int64_t overshoot = 0; int64_t overshoot2 = 0; int64_t raw_overshoot = 0; double bps; // This needs to be here (and not in update_progress), since the other guy's in_progress changes while we sleep. mergeStats * s1; if(s->merge_level == 0) { // dead code s1 = c1; } else { s1 = c2; } if(s->mergeable_size) { // only apply backpressure if the next merger is not waiting for us rwlc_readlock(ltable->header_mut); if(s1->active && s->mergeable_size) { raw_overshoot = (int64_t)(((double)s->target_size) * (s->out_progress - s1->in_progress)); overshoot = raw_overshoot + overshoot_fudge; overshoot2 = raw_overshoot + overshoot_fudge2; bps = s1->bps; } rwlc_unlock(ltable->header_mut); } if(s->merge_level == 1) { if(s1->active && s->mergeable_size) { cur_c1_c2_progress_delta = s1->in_progress - s->out_progress; } else if(!s->mergeable_size) { cur_c1_c2_progress_delta = 1; } else { // s1 is not active. cur_c1_c2_progress_delta = 0; } } //#define PP_THREAD_INFO #ifdef PP_THREAD_INFO printf("\nMerge thread %d %6f %6f Overshoot: raw=%lld, d=%lld eff=%lld Throttle min(1, %6f) spin %d, total_sleep %6.3f\n", s->merge_level, c0_out_progress, c0_c1_in_progress, raw_overshoot, overshoot_fudge, overshoot, -1.0, spin, total_sleep); #endif bool one_threshold = (overshoot > 0 || overshoot2 > 0) || (raw_overshoot > 0); bool two_threshold = (overshoot > 0 || overshoot2 > 0) && (raw_overshoot > 0); if(one_threshold && (two_threshold || total_sleep < 0.01)) { // throttle // it took "elapsed" seconds to process "tick_length_bytes" mb double sleeptime = 2.0 * fmax((double)overshoot,(double)overshoot2) / bps; if(sleeptime < min_sleep) { sleeptime = min_sleep; } if(sleeptime > max_sleep) { sleeptime = max_sleep; } spin ++; total_sleep += sleeptime; if((spin > 40) || (total_sleep > (max_sleep * 20.0))) { printf("\nMerge thread %d c0->out=%f c1->in=%f c1->out=%f c2->in=%f\n", s->merge_level, c0->out_progress, c1->in_progress, c1->out_progress, c2->in_progress); printf("\nMerge thread %d Overshoot: raw=%lld, d=%lld eff=%lld eff2=%lld Throttle min(1, %6f) spin %d, total_sleep %6.3f\n", s->merge_level, (long long)raw_overshoot, (long long)overshoot_fudge, (long long)overshoot, (long long)overshoot2, sleeptime, spin, total_sleep); } sleeping[s->merge_level] = true; struct timespec ts; double_to_ts(&ts, sleeptime); nanosleep(&ts, 0); // printf("%d Sleep B %f\n", s->merge_level, sleeptime); sleeping[s->merge_level] = false; update_progress(s1, 0); } else if(overshoot > 0 || overshoot2 > 0) { // this is our second time around the loop, so remember we're in the hole s->need_tick ++; if(s->need_tick > 500) { printf("need tick %d\n", s->need_tick); } } else { // all is well in the world. we can run worry-free for a while. s->need_tick = 0; } break; } } /** * This function is invoked periodically by the merge threads. It updates mergeManager's statistics, and applies * backpressure as necessary. * * Here is the backpressure algorithm. * * We want to maintain these two invariants: * - for each byte consumed by the app->c0 threads, a byte is consumed by the c0->c1 merge thread. * - for each byte consumed by the c0->c1 thread, the c1->c2 thread consumes a byte * * More concretely (and taking into account varying values of R): * capacity(C_i) - current_size(C_i) >= size(C_i_mergeable) - bytes_consumed_by_next_merger * * where: * capacity c0 = c0_queue_size * capacity c1 = c1_queue_size * * current_size(c_i) = sum(bytes_out_delta) - sum(bytes_in_large_delta) * * bytes_consumed_by_merger = sum(bytes_in_small_delta) */ void mergeManager::tick(mergeStats * s) { if(s->need_tick) { #ifdef NO_SNOWSHOVEL bool snowshovel = false; #else bool snowshovel = true; #endif if((!snowshovel) || s->merge_level == 1) { // apply backpressure based on merge progress. tick_based_on_merge_progress(s); } else if(s->merge_level == 0) { // Simple backpressure algorithm based on how full C0 is. // Is C0 bigger than is allowed? while(ltable->tree_bytes > ltable->max_c0_size) { // can't use s->current_size, since this is the thread that maintains that number... printf("\nMEMORY OVERRUN!!!! SLEEP!!!!\n"); struct timespec ts; double_to_ts(&ts, 0.1); nanosleep(&ts, 0); } // Linear backpressure model s->current_size = ltable->tree_bytes; s->out_progress = ((double)ltable->tree_bytes)/((double)ltable->max_c0_size); double delta = ((double)ltable->tree_bytes)/(0.9*(double)ltable->max_c0_size); // 0 <= delta <= 1.111... delta -= 1.0; if(delta > 0.00005) { double slp = 0.001 + 10.0 * delta; //0.0015 < slp < 1.112111.. DEBUG("\nsleeping %0.6f tree_megabytes %0.3f\n", slp, ((double)ltable->tree_bytes)/(1024.0*1024.0)); struct timespec sleeptime; double_to_ts(&sleeptime, slp); DEBUG("%d Sleep C %f\n", s->merge_level, slp); nanosleep(&sleeptime, 0); } } } } void mergeManager::read_tuple_from_small_component(int merge_level, datatuple * tup) { if(tup) { mergeStats * s = get_merge_stats(merge_level); (s->num_tuples_in_small)++; (s->bytes_in_small_delta) += tup->byte_length(); (s->bytes_in_small) += tup->byte_length(); update_progress(s, tup->byte_length()); tick(s); } } void mergeManager::read_tuple_from_large_component(int merge_level, int tuple_count, pageid_t byte_len) { if(tuple_count) { mergeStats * s = get_merge_stats(merge_level); s->num_tuples_in_large += tuple_count; s->bytes_in_large += byte_len; update_progress(s, byte_len); } } void mergeManager::wrote_tuple(int merge_level, datatuple * tup) { mergeStats * s = get_merge_stats(merge_level); (s->num_tuples_out)++; (s->bytes_out) += tup->byte_length(); } void mergeManager::finished_merge(int merge_level) { update_progress(get_merge_stats(merge_level), 0); get_merge_stats(merge_level)->active = false; if(merge_level != 0) { get_merge_stats(merge_level - 1)->mergeable_size = 0; update_progress(get_merge_stats(merge_level-1), 0); } gettimeofday(&get_merge_stats(merge_level)->done, 0); update_progress(get_merge_stats(merge_level), 0); } void * mergeManager::pretty_print_thread() { pthread_mutex_t dummy_mut; pthread_mutex_init(&dummy_mut, 0); while(still_running) { struct timeval tv; gettimeofday(&tv, 0); struct timespec ts; double_to_ts(&ts, tv_to_double(&tv)+1.01); pthread_cond_timedwait(&pp_cond, &dummy_mut, &ts); if(ltable) { rwlc_readlock(ltable->header_mut); pretty_print(stdout); rwlc_unlock(ltable->header_mut); } } printf("\n"); return 0; } void * merge_manager_pretty_print_thread(void * arg) { mergeManager * m = (mergeManager*)arg; return m->pretty_print_thread(); } mergeManager::mergeManager(logtable *ltable): UPDATE_PROGRESS_PERIOD(0.005), cur_c1_c2_progress_delta(0.0), ltable(ltable), c0(new mergeStats(0, ltable ? ltable->max_c0_size : 10000000)), c1(new mergeStats(1, (int64_t)(ltable ? ((double)(ltable->max_c0_size) * *ltable->R()) : 100000000.0) )), c2(new mergeStats(2, 0)) { struct timeval tv; gettimeofday(&tv, 0); sleeping[0] = false; sleeping[1] = false; sleeping[2] = false; double_to_ts(&c0->last_tick, tv_to_double(&tv)); double_to_ts(&c1->last_tick, tv_to_double(&tv)); double_to_ts(&c2->last_tick, tv_to_double(&tv)); still_running = true; pthread_cond_init(&pp_cond, 0); pthread_create(&pp_thread, 0, merge_manager_pretty_print_thread, (void*)this); } void mergeManager::pretty_print(FILE * out) { pageid_t mb = 1024 * 1024; logtable * lt = (logtable*)ltable; bool have_c0 = false; bool have_c0m = false; bool have_c1 = false; bool have_c1m = false; bool have_c2 = false; if(lt) { have_c0 = NULL != lt->get_tree_c0(); have_c0m = NULL != lt->get_tree_c0_mergeable(); have_c1 = NULL != lt->get_tree_c1(); have_c1m = NULL != lt->get_tree_c1_mergeable() ; have_c2 = NULL != lt->get_tree_c2(); } fprintf(out,"[merge progress MB/s window (lifetime)]: app [%s %6lldMB ~ %3.0f%%/%3.0f%% %6.1fsec %4.1f (%4.1f)] %s %s [%s %3.0f%% ~ %3.0f%% %4.1f (%4.1f)] %s %s [%s %3.0f%% %4.1f (%4.1f)] %s ", c0->active ? "RUN" : "---", (long long)(c0->lifetime_consumed / mb), 100.0 * c0->out_progress, 100.0 * ((double)ltable->tree_bytes)/(double)ltable->max_c0_size, c0->lifetime_elapsed, c0->bps/((double)mb), c0->lifetime_consumed/(((double)mb)*c0->lifetime_elapsed), have_c0 ? "C0" : "..", have_c0m ? "C0'" : "...", c1->active ? "RUN" : "---", 100.0 * c1->in_progress, 100.0 * c1->out_progress, c1->bps/((double)mb), c1->lifetime_consumed/(((double)mb)*c1->lifetime_elapsed), have_c1 ? "C1" : "..", have_c1m ? "C1'" : "...", c2->active ? "RUN" : "---", 100.0 * c2->in_progress, c2->bps/((double)mb), c2->lifetime_consumed/(((double)mb)*c2->lifetime_elapsed), have_c2 ? "C2" : ".."); // #define PP_SIZES #ifdef PP_SIZES fprintf(out, "[target cur base in_small in_large, out, mergeable] C0 %4lld %4lld %4lld %4lld %4lld %4lld %4lld ", c0->target_size/mb, c0->current_size/mb, c0->base_size/mb, c0->bytes_in_small/mb, c0->bytes_in_large/mb, c0->bytes_out/mb, c0->mergeable_size/mb); fprintf(out, "C1 %4lld %4lld %4lld %4lld %4lld %4lld %4lld ", c1->target_size/mb, c1->current_size/mb, c1->base_size/mb, c1->bytes_in_small/mb, c1->bytes_in_large/mb, c1->bytes_out/mb, c1->mergeable_size/mb); fprintf(out, "C2 ---- %4lld %4lld %4lld %4lld %4lld %4lld ", /*----*/ c2->current_size/mb, c2->base_size/mb, c2->bytes_in_small/mb, c2->bytes_in_large/mb, c2->bytes_out/mb, c2->mergeable_size/mb); #endif // fprintf(out, "Throttle: %6.1f%% (cur) %6.1f%% (overall) ", 100.0*(last_throttle_seconds/(last_elapsed_seconds)), 100.0*(throttle_seconds/(elapsed_seconds))); // fprintf(out, "C0 size %4lld resident %4lld ", // 2*c0_queueSize/mb, // (c0->bytes_out - c0->bytes_in_large)/mb); // fprintf(out, "C1 size %4lld resident %4lld\r", // 2*c1_queueSize/mb, // (c1->bytes_out - c1->bytes_in_large)/mb); // fprintf(out, "C2 size %4lld\r", // 2*c2_queueSize/mb); // fprintf(out, "C1 MB/s (eff; active) %6.1f C2 MB/s %6.1f\r", // ((double)c1_totalConsumed)/((double)c1_totalWorktime), // ((double)c2_totalConsumed)/((double)c2_totalWorktime)); fflush(out); #ifdef NO_SNOWSHOVEL assert((!c1->active) || (c1->in_progress >= -0.01 && c1->in_progress < 1.02)); #endif assert((!c2->active) || (c2->in_progress >= -0.01 && c2->in_progress < 1.10)); fprintf(out, "\r"); }