#include #include "logserver.h" #include "datatuple.h" #include "merger.h" #include "logstore.h" #include "requestDispatch.h" #include #include #include #include #include #include #include #include #include void *serverLoop(void *args); void logserver::startserver(logtable *ltable) { sys_alive = true; this->ltable = ltable; selcond = new pthread_cond_t; pthread_cond_init(selcond, 0); self_pipe = (int*)malloc(2 * sizeof(int)); pipe(self_pipe); fcntl(self_pipe[0], F_SETFL, O_NONBLOCK); fcntl(self_pipe[1], F_SETFL, O_NONBLOCK); //initialize threads for(size_t i=0; ith_handle = new pthread_t; struct pthread_data *worker_data = new pthread_data; worker_th->data = worker_data; worker_data->idleth_queue = &idleth_queue; worker_data->ready_queue = &ready_queue; worker_data->work_queue = &work_queue; #ifdef STATS_ENABLED worker_data->num_reqs = 0; #endif worker_data->qlock = qlock; worker_data->selcond = selcond; worker_data->self_pipe = self_pipe; worker_data->th_cond = new pthread_cond_t; pthread_cond_init(worker_data->th_cond,0); worker_data->th_mut = new pthread_mutex_t; pthread_mutex_init(worker_data->th_mut,0); worker_data->workitem = new int; *(worker_data->workitem) = -1; worker_data->ltable = ltable; worker_data->sys_alive = &sys_alive; pthread_create(worker_th->th_handle, 0, thread_work_fn, worker_th); idleth_queue.push(*worker_th); } //start server socket sdata = new serverth_data; sdata->server_socket = &serversocket; sdata->server_port = server_port; sdata->idleth_queue = &idleth_queue; sdata->ready_queue = &ready_queue; sdata->selcond = selcond; sdata->self_pipe = self_pipe; sdata->qlock = qlock; pthread_create(&server_thread, 0, serverLoop, sdata); //start monitoring loop eventLoop(); } void logserver::stopserver() { //close the server socket //stops receiving data on the server socket shutdown(serversocket, 0); //wait for all threads to be idle while(idleth_queue.size() != nthreads) sleep(1); #ifdef STATS_ENABLED printf("\n\nSTATISTICS\n"); std::map num_reqsc; std::map work_timec; #endif //set the system running flag to false sys_alive = false; for(size_t i=0; idata->th_mut); pthread_cond_signal(idle_th->data->th_cond); pthread_mutex_unlock(idle_th->data->th_mut); //wait for it to join pthread_join(*(idle_th->th_handle), 0); //free the thread variables pthread_cond_destroy(idle_th->data->th_cond); #ifdef STATS_ENABLED if(i == 0) { tot_threadwork_time = 0; num_reqs = 0; } tot_threadwork_time += idle_th->data->work_time; num_reqs += idle_th->data->num_reqs; printf("thread %llu: work_time %.3f\t#calls %d\tavg req process time:\t%.3f\n", (unsigned long long)i, idle_th->data->work_time, idle_th->data->num_reqs, (( idle_th->data->num_reqs == 0 ) ? 0 : idle_th->data->work_time / idle_th->data->num_reqs) ); for(std::map::const_iterator itr = idle_th->data->num_reqsc.begin(); itr != idle_th->data->num_reqsc.end(); itr++) { std::string ckey = (*itr).first; printf("\t%s\t%d\t%.3f\t%.3f\n", ckey.c_str(), (*itr).second, idle_th->data->work_timec[ckey], idle_th->data->work_timec[ckey] / (*itr).second); if(num_reqsc.find(ckey) == num_reqsc.end()){ num_reqsc[ckey] = 0; work_timec[ckey] = 0; } num_reqsc[ckey] += (*itr).second; work_timec[ckey] += idle_th->data->work_timec[ckey]; } #endif delete idle_th->data->th_cond; delete idle_th->data->th_mut; delete idle_th->data->workitem; delete idle_th->data; delete idle_th->th_handle; } th_list.clear(); close(self_pipe[0]); close(self_pipe[1]); free(self_pipe); #ifdef STATS_ENABLED printf("\n\nAggregated Stats:\n"); for(std::map::const_iterator itr = num_reqsc.begin(); itr != num_reqsc.end(); itr++) { std::string ckey = (*itr).first; printf("\t%s\t%d\t%.3f\t%.3f\n", ckey.c_str(), (*itr).second, work_timec[ckey], work_timec[ckey] / (*itr).second); } tot_time = (stop_tv.tv_sec - start_tv.tv_sec) * 1000 + (stop_tv.tv_usec / 1000 - start_tv.tv_usec / 1000); printf("\ntot time:\t%f\n",tot_time); printf("tot work time:\t%f\n", tot_threadwork_time); printf("load avg:\t%f\n", tot_threadwork_time / tot_time); printf("tot num reqs\t%d\n", num_reqs); if(num_reqs!= 0) { printf("tot work time / num reqs:\t%.3f\n", tot_threadwork_time / num_reqs); printf("tot time / num reqs:\t%.3f\n", tot_time / num_reqs ); } #endif return; } void logserver::eventLoop() { fd_set readfs; int maxfd; struct timespec ts; std::vector sel_list; sel_list.push_back(self_pipe[0]); // struct timeval no_timeout = { 0, 0 }; while(true) { //clear readset FD_ZERO(&readfs); maxfd = -1; ts.tv_nsec = 250000; //nanosec ts.tv_sec = 0; //update select set pthread_mutex_lock(qlock); assert(sel_list.size() != 0); // self_pipe[0] should always be there. if(sel_list.size() == 1) { assert(sel_list[0] == self_pipe[0]); while(ready_queue.size() == 0) pthread_cond_wait(selcond, qlock); } //new connections + processed conns are in ready_queue //add them to select list while(ready_queue.size() > 0) { sel_list.push_back(ready_queue.front()); ready_queue.pop(); } pthread_mutex_unlock(qlock); //ready select set for(std::vector::const_iterator itr=sel_list.begin(); itr != sel_list.end(); itr++) { if(maxfd < *itr) maxfd = *itr; FD_SET(*itr, &readfs); } //select events int sel_res = select(maxfd+1, &readfs, NULL, NULL, NULL); //&no_timeout);// &Timeout); #ifdef STATS_ENABLED if(num_selcalls == 0) gettimeofday(&start_tv, 0); num_selevents += sel_res; num_selcalls++; #endif pthread_mutex_lock(qlock); for(size_t i=0; i 0) //assign the job to an indle thread { DEBUG("push currsock = %d onto idleth\n", currsock); fflush(stdout); pthread_item idle_th = idleth_queue.front(); idleth_queue.pop(); //wake up the thread to do work pthread_mutex_lock(idle_th.data->th_mut); //set the job of the idle thread assert(currsock != -1); *(idle_th.data->workitem) = currsock; pthread_cond_signal(idle_th.data->th_cond); pthread_mutex_unlock(idle_th.data->th_mut); } else { DEBUG("push currsock = %d onto workqueue\n", currsock); fflush(stdout); //insert the given element to the work queue work_queue.push(currsock); } } //remove from the sel_list if(currsock != self_pipe[0]) { sel_list.erase(sel_list.begin()+i); i--; } } else { DEBUG("not set\n"); } } pthread_mutex_unlock(qlock); #ifdef STATS_ENABLED gettimeofday(&stop_tv, 0); #endif } } void *serverLoop(void *args) { serverth_data *sdata = (serverth_data*)args; int sockfd; //socket descriptor struct sockaddr_in serv_addr; struct sockaddr_in cli_addr; int newsockfd; //newly created //open a socket sockfd = socket(AF_INET, SOCK_STREAM, 0); if (sockfd < 0) { printf("ERROR opening socket\n"); return 0; } bzero((char *) &serv_addr, sizeof(serv_addr)); serv_addr.sin_family = AF_INET; serv_addr.sin_addr.s_addr = htonl(INADDR_ANY); serv_addr.sin_port = htons(sdata->server_port); if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) { printf("ERROR on binding.\n"); return 0; } //start listening on the server socket //second arg is the max number of connections waiting in queue if(listen(sockfd,SOMAXCONN)==-1) { printf("ERROR on listen.\n"); return 0; } printf("LSM Server listening...\n"); *(sdata->server_socket) = sockfd; int flag, result; while(true) { socklen_t clilen = sizeof(cli_addr); newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr, &clilen); if (newsockfd < 0) { printf("ERROR on accept.\n"); return 0; // we probably want to continue instead of return here (when not debugging) } flag = 1; result = setsockopt(newsockfd, /* socket affected */ IPPROTO_TCP, /* set option at TCP level */ TCP_NODELAY, /* name of option */ (char *) &flag, /* the cast is historical cruft */ sizeof(int)); /* length of option value */ if (result < 0) { printf("ERROR on setting socket option TCP_NODELAY.\n"); return 0; } char clientip[20]; inet_ntop(AF_INET, (void*) &(cli_addr.sin_addr), clientip, 20); // printf("Connection from:\t%s\n", clientip); pthread_mutex_lock(sdata->qlock); //insert the given element to the ready queue sdata->ready_queue->push(newsockfd); /* if(sdata->ready_queue->size() == 1) //signal the event loop pthread_cond_signal(sdata->selcond); else */ if(sdata->ready_queue->size() == 1) { // signal the event loop pthread_cond_signal(sdata->selcond); char gunk = 42; int ret; if(-1 == (ret = write(sdata->self_pipe[1], &gunk, 1))) { if(errno != EAGAIN) { perror("Couldn't write to pipe!"); abort(); } } else { assert(ret == 1); } } pthread_mutex_unlock(sdata->qlock); } } void * thread_work_fn( void * args) { pthread_item * item = (pthread_item *) args; pthread_mutex_lock(item->data->th_mut); while(true) { while(*(item->data->workitem) == -1) { if(!*(item->data->sys_alive)) break; pthread_cond_wait(item->data->th_cond, item->data->th_mut); //wait for job } #ifdef STATS_ENABLED gettimeofday(& (item->data->start_tv), 0); std::ostringstream ostr; ostr << *(item->data->workitem) << "_"; #endif if(!*(item->data->sys_alive)) { break; } // XXX move this logserver error handling logic into requestDispatch.cpp //step 1: read the opcode network_op_t opcode = readopfromsocket(*(item->data->workitem), LOGSTORE_CLIENT_REQUEST); if(opcode == LOGSTORE_CONN_CLOSED_ERROR) { opcode = OP_DONE; printf("Broken client closed connection uncleanly\n"); } int err = opcode == OP_DONE || opiserror(opcode); //close the conn on failure //step 2: read the first tuple from client datatuple *tuple = 0, *tuple2 = 0; if(!err) { tuple = readtuplefromsocket(*(item->data->workitem), &err); } // read the second tuple from client if(!err) { tuple2 = readtuplefromsocket(*(item->data->workitem), &err); } //step 3: process the tuple if(!err) { err = requestDispatch::dispatch_request(opcode, tuple, tuple2, item->data->ltable, *(item->data->workitem)); } //free the tuple if(tuple) datatuple::freetuple(tuple); if(tuple2) datatuple::freetuple(tuple2); pthread_mutex_lock(item->data->qlock); // Deal with old work_queue item by freeing it or putting it back in the queue. if(err) { if(opcode != OP_DONE) { char *msg; if(-1 != asprintf(&msg, "network error. conn closed. (%d, %llu) ", *(item->data->workitem), (unsigned long long)item->data->work_queue->size())) { perror(msg); free(msg); } else { printf("error preparing string for perror!"); } } else { // printf("client done. conn closed. (%d, %d)\n", // *(item->data->workitem), item->data->work_queue->size()); } close(*(item->data->workitem)); } else { //add conn desc to ready queue item->data->ready_queue->push(*(item->data->workitem)); if(item->data->ready_queue->size() == 1) { //signal the event loop pthread_cond_signal(item->data->selcond); char gunk = 13; int ret =write(item->data->self_pipe[1], &gunk, 1); if(ret == -1) { if(errno != EAGAIN) { perror("Couldn't write to self_pipe!"); abort(); } } else { assert(ret == 1); } } } if(item->data->work_queue->size() > 0) { int new_work = item->data->work_queue->front(); item->data->work_queue->pop(); *(item->data->workitem) = new_work; } else { //set work to -1 *(item->data->workitem) = -1; //add self to idle queue item->data->idleth_queue->push(*item); } pthread_mutex_unlock(item->data->qlock); if(!err) { #ifdef STATS_ENABLED if( item->data->num_reqs == 0 ) item->data->work_time = 0; gettimeofday(& (item->data->stop_tv), 0); (item->data->num_reqs)++; item->data->work_time += (item->data->stop_tv.tv_sec - item->data->start_tv.tv_sec) * 1000 + (item->data->stop_tv.tv_usec / 1000 - item->data->start_tv.tv_usec / 1000); int iopcode = opcode; ostr << iopcode; std::string clientkey = ostr.str(); if(item->data->num_reqsc.find(clientkey) == item->data->num_reqsc.end()) { item->data->num_reqsc[clientkey]=0; item->data->work_timec[clientkey]=0; } item->data->num_reqsc[clientkey]++; item->data->work_timec[clientkey] += (item->data->stop_tv.tv_sec - item->data->start_tv.tv_sec) * 1000 + (item->data->stop_tv.tv_usec / 1000 - item->data->start_tv.tv_usec / 1000);; #endif } } pthread_mutex_unlock(item->data->th_mut); return NULL; }