/* * mergeManager.cpp * * Created on: May 19, 2010 * Author: sears */ #include "mergeManager.h" #include "mergeStats.h" #include "logstore.h" #include "math.h" mergeStats* mergeManager:: get_merge_stats(int mergeLevel) { if (mergeLevel == 0) { return c0; } else if (mergeLevel == 1) { return c1; } else if(mergeLevel == 2) { return c2; } else { abort(); } } mergeManager::~mergeManager() { pthread_mutex_destroy(&mut); pthread_mutex_destroy(&throttle_mut); pthread_mutex_destroy(&dummy_throttle_mut); pthread_cond_destroy(&dummy_throttle_cond); delete c0; delete c1; delete c2; } void mergeManager::new_merge(mergeStats * s) { pthread_mutex_lock(&mut); if(s->merge_count) { if(s->merge_level == 0) { // target_size was set during startup } else if(s->merge_level == 1) { assert(c0->target_size); c1->target_size = (pageid_t)(*ltable->R() * (double)c0->target_size); //c1_queueSize > s->bytes_out ? c1_queueSize : s->bytes_out; assert(c1->target_size); } else if(s->merge_level == 2) { // target_size is infinity... } else { abort(); } } pthread_mutex_unlock(&mut); } void mergeManager::set_c0_size(int64_t size) { c0->target_size = size; } /** * This function is invoked periodically by the merge threads. It updates mergeManager's statistics, and applies * backpressure as necessary. * * Here is the backpressure algorithm. * * We want to maintain these two invariants: * - for each byte consumed by the app->c0 threads, a byte is consumed by the c0->c1 merge thread. * - for each byte consumed by the c0->c1 thread, the c1->c2 thread consumes a byte * * More concretely (and taking into account varying values of R): * capacity(C_i) - current_size(C_i) >= size(C_i_mergeable) - bytes_consumed_by_next_merger * * where: * capacity c0 = c0_queue_size * capacity c1 = c1_queue_size * * current_size(c_i) = sum(bytes_out_delta) - sum(bytes_in_large_delta) * * bytes_consumed_by_merger = sum(bytes_in_small_delta) */ void mergeManager::tick(mergeStats * s, bool block) { pageid_t tick_length_bytes = 10*1024; if(true || s->bytes_in_small_delta > tick_length_bytes) { s->current_size = s->base_size + s->bytes_out - s->bytes_in_large; if(block) { // pthread_mutex_lock(&mut); struct timeval now; gettimeofday(&now, 0); double elapsed_delta = tv_to_double(&now) - ts_to_double(&s->last_tick); double bps = 0; // = (double)s->bytes_in_small_delta / (double)elapsed_delta; s->lifetime_elapsed += elapsed_delta; s->lifetime_consumed += s->bytes_in_small_delta; double decay = 0.9999; // XXX set this in some principled way. Surely, it should depend on tick_length (once that's working...) s->window_elapsed = (decay * s->window_elapsed) + elapsed_delta; s->window_consumed = (decay * s->window_consumed) + s->bytes_in_small_delta; double_to_ts(&s->last_tick, tv_to_double(&now)); s->bytes_in_small_delta = 0; int64_t overshoot = 0; int64_t overshoot_fudge = 1024*1024; // XXX set based on avg / max tuple size? int spin = 0; double total_sleep = 0.0; do{ double c0_c1_progress = ((double)(c1->bytes_in_large + c1->bytes_in_small)) / (double)(c0->mergeable_size + c1->base_size); double c1_c2_progress = ((double)(c2->bytes_in_large + c2->bytes_in_small)) / (double)(c1->mergeable_size + c2->base_size); double c0_c1_bps = c1->window_consumed / c1->window_elapsed; double c1_c2_bps = c2->window_consumed / c2->window_elapsed; if(s->merge_level == 0) { pageid_t c0_c1_bytes_remaining = (pageid_t)((1.0-c0_c1_progress) * (double)c0->mergeable_size); pageid_t c0_bytes_left = c0->target_size - c0->current_size; overshoot = overshoot_fudge + c0_c1_bytes_remaining - c0_bytes_left; bps = c0_c1_bps; if(!c0->mergeable_size) { overshoot = -1; } if(c0->mergeable_size && ! c1->active) { overshoot = c0->current_size + overshoot_fudge; } } else if (s->merge_level == 1) { pageid_t c1_c2_bytes_remaining = (pageid_t)((1.0-c1_c2_progress) * (double)c1->mergeable_size); pageid_t c1_bytes_left = c1->target_size - c1->current_size; overshoot = overshoot_fudge + c1_c2_bytes_remaining - c1_bytes_left; if(!c1->mergeable_size) { overshoot = -1; } if(c1->mergeable_size && ! c2->active) { overshoot = c1->current_size + overshoot_fudge; } bps = c1_c2_bps; } //#define PP_THREAD_INFO #ifdef PP_THREAD_INFO printf("#%d mbps %6.1f overshoot %9lld current_size = %9lld ",s->merge_level, bps / (1024.0*1024.0), overshoot, s->current_size); #endif pretty_print(stdout); if(overshoot > 0) { // throttle // it took "elapsed" seconds to process "tick_length_bytes" mb double sleeptime = 2.0 * (double)overshoot / bps; struct timespec sleep_until; double max_c0_sleep = 0.1; double max_c1_sleep = 0.1; double max_sleep = s->merge_level == 0 ? max_c0_sleep : max_c1_sleep; if(sleeptime < 0.01) { sleeptime = 0.01; } if(sleeptime > max_sleep) { sleeptime = max_sleep; } spin ++; total_sleep += sleeptime; if((spin > 20) || (total_sleep > (max_sleep * 10))) { if(bps > 1) { printf("\nMerge thread %d Overshoot: %lld Throttle min(1, %6f) spin %d, total_sleep %6.3f\n", s->merge_level, overshoot, sleeptime, spin, total_sleep); } } double_to_ts(&sleep_until, sleeptime + tv_to_double(&now)); pthread_cond_timedwait(&dummy_throttle_cond, <able->header_mut, &sleep_until); gettimeofday(&now, 0); } } while(overshoot > overshoot_fudge); } else { pretty_print(stdout); } // pthread_mutex_unlock(&mut); } } mergeManager::mergeManager(logtable *ltable): ltable(ltable), c0(new mergeStats(this, 0)), c1(new mergeStats(this, 1)), c2(new mergeStats(this, 2)) { pthread_mutex_init(&mut, 0); pthread_mutex_init(&throttle_mut, 0); pthread_mutex_init(&dummy_throttle_mut, 0); pthread_cond_init(&dummy_throttle_cond, 0); struct timeval tv; gettimeofday(&tv, 0); double_to_ts(&c0->last_tick, tv_to_double(&tv)); double_to_ts(&c1->last_tick, tv_to_double(&tv)); double_to_ts(&c2->last_tick, tv_to_double(&tv)); } void mergeManager::pretty_print(FILE * out) { pageid_t mb = 1024 * 1024; logtable * lt = (logtable*)ltable; bool have_c0 = false; bool have_c0m = false; bool have_c1 = false; bool have_c1m = false; bool have_c2 = false; if(lt) { // pthread_mutex_lock(<->header_mut); have_c0 = NULL != lt->get_tree_c0(); have_c0m = NULL != lt->get_tree_c0_mergeable(); have_c1 = NULL != lt->get_tree_c1(); have_c1m = NULL != lt->get_tree_c1_mergeable() ; have_c2 = NULL != lt->get_tree_c2(); // pthread_mutex_unlock(<->header_mut); } double c0_c1_progress = 100.0 * (c1->bytes_in_large + c1->bytes_in_small) / (c0->mergeable_size + c1->base_size); // c1->bytes_in_small / c0->mergeable_size; double c1_c2_progress = 100.0 * (c2->bytes_in_large + c2->bytes_in_small) / (c1->mergeable_size + c2->base_size); //c2->bytes_in_small / c1->mergeable_size; assert((!c1->active) || (c0_c1_progress >= -1 && c0_c1_progress < 102)); assert((!c2->active) || (c1_c2_progress >= -1 && c1_c2_progress < 102)); fprintf(out,"[merge progress MB/s window (lifetime)]: app [%s %6lldMB %6.1fsec %4.1f (%4.1f)] %s %s [%s %3.0f%% %4.1f (%4.1f)] %s %s [%s %3.0f%% %4.1f (%4.1f)] %s ", c0->active ? "RUN" : "---", (uint64_t)(c0->lifetime_consumed / mb), c0->lifetime_elapsed, c0->window_consumed/(((double)mb)*c0->window_elapsed), c0->lifetime_consumed/(((double)mb)*c0->lifetime_elapsed), have_c0 ? "C0" : "..", have_c0m ? "C0'" : "...", c1->active ? "RUN" : "---", c0_c1_progress, c1->window_consumed/(((double)mb)*c1->window_elapsed), c1->lifetime_consumed/(((double)mb)*c1->lifetime_elapsed), have_c1 ? "C1" : "..", have_c1m ? "C1'" : "...", c2->active ? "RUN" : "---", c1_c2_progress, c2->window_consumed/(((double)mb)*c2->window_elapsed), c2->lifetime_consumed/(((double)mb)*c2->lifetime_elapsed), have_c2 ? "C2" : ".."); #define PP_SIZES #ifdef PP_SIZES fprintf(out, "[size in small/large, out, mergeable] C0 %4lld %4lld %4lld %4lld %4lld %4lld ", c0->target_size/mb, c0->current_size/mb, c0->bytes_in_small/mb, c0->bytes_in_large/mb, c0->bytes_out/mb, c0->mergeable_size/mb); fprintf(out, "C1 %4lld %4lld %4lld %4lld %4lld %4lld ", c1->target_size/mb, c1->current_size/mb, c1->bytes_in_small/mb, c1->bytes_in_large/mb, c1->bytes_out/mb, c1->mergeable_size/mb); fprintf(out, "C2 ---- %4lld %4lld %4lld %4lld %4lld ", /*----*/ c2->current_size/mb, c2->bytes_in_small/mb, c2->bytes_in_large/mb, c2->bytes_out/mb, c2->mergeable_size/mb); #endif // fprintf(out, "Throttle: %6.1f%% (cur) %6.1f%% (overall) ", 100.0*(last_throttle_seconds/(last_elapsed_seconds)), 100.0*(throttle_seconds/(elapsed_seconds))); // fprintf(out, "C0 size %4lld resident %4lld ", // 2*c0_queueSize/mb, // (c0->bytes_out - c0->bytes_in_large)/mb); // fprintf(out, "C1 size %4lld resident %4lld\r", // 2*c1_queueSize/mb, // (c1->bytes_out - c1->bytes_in_large)/mb); // fprintf(out, "C2 size %4lld\r", // 2*c2_queueSize/mb); // fprintf(out, "C1 MB/s (eff; active) %6.1f C2 MB/s %6.1f\r", // ((double)c1_totalConsumed)/((double)c1_totalWorktime), // ((double)c2_totalConsumed)/((double)c2_totalWorktime)); fflush(out); fprintf(out, "\r"); }