/* * diskTreeComponent.h * * Created on: Feb 18, 2010 * Author: sears */ #ifndef DISKTREECOMPONENT_H_ #define DISKTREECOMPONENT_H_ #include "datapage.h" #include "datatuple.h" #include "mergeStats.h" class diskTreeComponent { public: class internalNodes; class iterator; diskTreeComponent(int xid, pageid_t internal_region_size, pageid_t datapage_region_size, pageid_t datapage_size, mergeStats* stats) : ltree(new diskTreeComponent::internalNodes(xid, internal_region_size, datapage_region_size, datapage_size)), dp(0), datapage_size(datapage_size), stats(stats) {} diskTreeComponent(int xid, recordid root, recordid internal_node_state, recordid datapage_state, mergeStats* stats) : ltree(new diskTreeComponent::internalNodes(xid, root, internal_node_state, datapage_state)), dp(0), datapage_size(-1), stats(stats) {} ~diskTreeComponent() { delete dp; delete ltree; } recordid get_root_rid(); recordid get_datapage_allocator_rid(); recordid get_internal_node_allocator_rid(); internalNodes * get_internal_nodes() { return ltree; } datatuple* findTuple(int xid, datatuple::key_t key, size_t keySize); int insertTuple(int xid, datatuple *t); void writes_done(); iterator * open_iterator() { return new iterator(ltree); } iterator * open_iterator(datatuple * key) { if(key != NULL) { return new iterator(ltree, key); } else { return new iterator(ltree); } } void force(int xid); void dealloc(int xid); void list_regions(int xid, pageid_t *internal_node_region_length, pageid_t *internal_node_region_count, pageid_t **internal_node_regions, pageid_t *datapage_region_length, pageid_t *datapage_region_count, pageid_t **datapage_regions); void print_tree(int xid) { ltree->print_tree(xid); } private: DataPage* insertDataPage(int xid, datatuple *tuple); internalNodes * ltree; DataPage* dp; pageid_t datapage_size; /*mergeManager::mergeStats*/ void *stats; // XXX hack to work around circular includes. public: class internalNodes{ public: internalNodes(int xid, pageid_t internal_region_size, pageid_t datapage_region_size, pageid_t datapage_size); internalNodes(int xid, recordid root, recordid internal_node_state, recordid datapage_state); ~internalNodes(); void print_tree(int xid); //returns the id of the data page that could contain the given key pageid_t findPage(int xid, const byte *key, size_t keySize); //appends a leaf page, val_page is the id of the leaf page recordid appendPage(int xid, const byte *key,size_t keySize, pageid_t val_page); inline RegionAllocator* get_datapage_alloc() { return datapage_alloc; } inline RegionAllocator* get_internal_node_alloc() { return internal_node_alloc; } const recordid &get_root_rec(){return root_rec;} private: recordid create(int xid); void writeNodeRecord(int xid, Page *p, recordid &rid, const byte *key, size_t keylen, pageid_t ptr); //reads the given record and returns the page id stored in it static pageid_t lookupLeafPageFromRid(int xid, recordid rid); recordid appendInternalNode(int xid, Page *p, int64_t depth, const byte *key, size_t key_len, pageid_t val_page); recordid buildPathToLeaf(int xid, recordid root, Page *root_p, int64_t depth, const byte *key, size_t key_len, pageid_t val_page); /** Initialize a page for use as an internal node of the tree. */ inline static void initializeNodePage(int xid, Page *p); //return the left-most leaf, these are not data pages, although referred to as leaf static pageid_t findFirstLeaf(int xid, Page *root, int64_t depth); //return the right-most leaf static pageid_t findLastLeaf(int xid, Page *root, int64_t depth) ; //returns a record that stores the pageid where the given key should be in, i.e. if it exists static recordid lookup(int xid, Page *node, int64_t depth, const byte *key, size_t keySize); const static int64_t DEPTH; const static int64_t COMPARATOR; const static int64_t FIRST_SLOT; const static ssize_t root_rec_size; const static int64_t PREV_LEAF; const static int64_t NEXT_LEAF; pageid_t lastLeaf; void print_tree(int xid, pageid_t pid, int64_t depth); recordid root_rec; RegionAllocator* internal_node_alloc; RegionAllocator* datapage_alloc; struct indexnode_rec { pageid_t ptr; }; public: class iterator { public: iterator(int xid, RegionAllocator *ro_alloc, recordid root); iterator(int xid, RegionAllocator *ro_alloc, recordid root, const byte* key, len_t keylen); int next(); void close(); inline size_t key (byte **key) { *key = (byte*)(t+1); return current.size - sizeof(indexnode_rec); } inline size_t value(byte **value) { *value = (byte*)&(t->ptr); return sizeof(t->ptr); } inline void tupleDone() { } inline void releaseLock() { } private: RegionAllocator * ro_alloc_; Page * p; int xid_; bool done; recordid current; indexnode_rec *t; int justOnePage; }; }; class iterator { public: explicit iterator(diskTreeComponent::internalNodes *tree); explicit iterator(diskTreeComponent::internalNodes *tree,datatuple *key); ~iterator(); datatuple * next_callerFrees(); private: void init_iterators(datatuple * key1, datatuple * key2); inline void init_helper(datatuple * key1); explicit iterator() { abort(); } void operator=(iterator & t) { abort(); } int operator-(iterator & t) { abort(); } private: RegionAllocator * ro_alloc_; // has a filehandle that we use to optimize sequential scans. recordid tree_; //root of the tree diskTreeComponent::internalNodes::iterator* lsmIterator_; pageid_t curr_pageid; //current page id DataPage *curr_page; //current page typedef DataPage::iterator DPITR_T; DPITR_T *dp_itr; }; }; #endif /* DISKTREECOMPONENT_H_ */