/* * mergeManager.cpp * * Created on: May 19, 2010 * Author: sears */ #include "mergeManager.h" #include "mergeStats.h" #include "logstore.h" #include "math.h" mergeStats* mergeManager:: get_merge_stats(int mergeLevel) { if (mergeLevel == 0) { return c0; } else if (mergeLevel == 1) { return c1; } else if(mergeLevel == 2) { return c2; } else { abort(); } } mergeManager::~mergeManager() { pthread_mutex_destroy(&throttle_mut); pthread_mutex_destroy(&dummy_throttle_mut); pthread_cond_destroy(&dummy_throttle_cond); pthread_cond_destroy(&throttle_wokeup_cond); delete c0; delete c1; delete c2; } void mergeManager::new_merge(int mergeLevel) { mergeStats * s = get_merge_stats(mergeLevel); if(s->merge_level == 0) { // target_size was set during startup } else if(s->merge_level == 1) { assert(c0->target_size); c1->target_size = (pageid_t)(*ltable->R() * (double)c0->target_size); assert(c1->target_size); } else if(s->merge_level == 2) { // target_size is infinity... } else { abort(); } s->new_merge2(); } void mergeManager::set_c0_size(int64_t size) { c0->target_size = size; } void mergeManager::update_progress(mergeStats * s, int delta) { s->delta += delta; if((!delta) || s->delta > UPDATE_PROGRESS_DELTA) { if(delta) { rwlc_writelock(ltable->header_mut); s->delta = 0; if(!s->need_tick) { s->need_tick = 1; } } if(s->merge_level != 0) { if(s->active) { s->in_progress = ((double)(s->bytes_in_large + s->bytes_in_small)) / (double)(get_merge_stats(s->merge_level-1)->mergeable_size + s->base_size); } else { s->in_progress = 0; } } if(s->merge_level != 2) { if(s->mergeable_size) { s->out_progress = ((double)s->current_size) / (double)s->target_size; } else { s->out_progress = 0.0; } } s->current_size = s->base_size + s->bytes_out - s->bytes_in_large; struct timeval now; gettimeofday(&now, 0); double elapsed_delta = tv_to_double(&now) - ts_to_double(&s->last_tick); s->lifetime_elapsed += elapsed_delta; s->lifetime_consumed += s->bytes_in_small_delta; double decay = 0.9999; // XXX set this in some principled way. Surely, it should depend on tick_length (once that's working...) s->window_elapsed = (decay * s->window_elapsed) + elapsed_delta; s->window_consumed = (decay * s->window_consumed) + s->bytes_in_small_delta; double_to_ts(&s->last_tick, tv_to_double(&now)); s->bytes_in_small_delta = 0; s->bps = s->window_consumed / s->window_elapsed; if(delta) rwlc_unlock(ltable->header_mut); } } /** * This function is invoked periodically by the merge threads. It updates mergeManager's statistics, and applies * backpressure as necessary. * * Here is the backpressure algorithm. * * We want to maintain these two invariants: * - for each byte consumed by the app->c0 threads, a byte is consumed by the c0->c1 merge thread. * - for each byte consumed by the c0->c1 thread, the c1->c2 thread consumes a byte * * More concretely (and taking into account varying values of R): * capacity(C_i) - current_size(C_i) >= size(C_i_mergeable) - bytes_consumed_by_next_merger * * where: * capacity c0 = c0_queue_size * capacity c1 = c1_queue_size * * current_size(c_i) = sum(bytes_out_delta) - sum(bytes_in_large_delta) * * bytes_consumed_by_merger = sum(bytes_in_small_delta) */ void mergeManager::tick(mergeStats * s, bool block, bool force) { #define PRINT_SKIP 100 if(force || s->need_tick) { if(block) { rwlc_writelock(ltable->header_mut); while(sleeping[s->merge_level]) { rwlc_cond_wait(&throttle_wokeup_cond, ltable->header_mut); } int64_t overshoot = 0; int64_t overshoot2 = 0; int64_t raw_overshoot = 0; /* model the effect of linux + stasis' write caches; at the end of this merge, we need to force up to FORCE_INTERVAL bytes after we think we're done writing the next component. */ double skew = 0.0; int64_t overshoot_fudge = (int64_t)((s->out_progress-skew) * ((double)FORCE_INTERVAL)/(1.0-skew)); /* model the effect of amortizing this computation: we could become this much more overshot if we don't act now. */ int64_t overshoot_fudge2 = UPDATE_PROGRESS_DELTA; /* multiply by 2 for good measure. These are 'soft' walls, and still let writes trickle through. Once we've exausted the fudge factors, we'll hit a hard wall, and stop writes entirely, so it's better to start thottling too early than too late. */ overshoot_fudge *= 2; overshoot_fudge2 *= 2; int spin = 0; double total_sleep = 0.0; do{ overshoot = 0; overshoot2 = 0; raw_overshoot = 0; double bps; // This needs to be here (and not in update_progress), since the other guy's in_progress changes while we sleep. if(s->merge_level == 0) { if(!(c1->active && c0->mergeable_size)) { overshoot_fudge = 0; overshoot_fudge2 = 0; } raw_overshoot = (int64_t)(((double)c0->target_size) * (c0->out_progress - c1->in_progress)); overshoot = raw_overshoot + overshoot_fudge; overshoot2 = raw_overshoot + overshoot_fudge2; bps = c1->bps; } else if (s->merge_level == 1) { if(!(c2->active && c1->mergeable_size)) { overshoot_fudge = 0; overshoot_fudge2 = 0; } raw_overshoot = (int64_t)(((double)c1->target_size) * (c1->out_progress - c2->in_progress)); overshoot = raw_overshoot + overshoot_fudge; overshoot2 = raw_overshoot + overshoot_fudge2; bps = c2->bps; } //#define PP_THREAD_INFO #ifdef PP_THREAD_INFO printf("\nMerge thread %d %6f %6f Overshoot: raw=%lld, d=%lld eff=%lld Throttle min(1, %6f) spin %d, total_sleep %6.3f\n", s->merge_level, c0_out_progress, c0_c1_in_progress, raw_overshoot, overshoot_fudge, overshoot, -1.0, spin, total_sleep); #endif if(s->print_skipped == PRINT_SKIP) { pretty_print(stdout); s->print_skipped = 0; } else { s->print_skipped++; } bool one_threshold = (overshoot > 0 || overshoot2 > 0) || (raw_overshoot > 0); bool two_threshold = (overshoot > 0 || overshoot2 > 0) && (raw_overshoot > 0); if(one_threshold && (two_threshold || total_sleep < 0.01)) { // throttle // it took "elapsed" seconds to process "tick_length_bytes" mb double sleeptime = 2.0 * fmax((double)overshoot,(double)overshoot2) / bps; struct timespec sleep_until; double max_c0_sleep = 0.1; double min_c0_sleep = 0.05; double max_c1_sleep = 0.5; double min_c1_sleep = 0.1; double max_sleep = s->merge_level == 0 ? max_c0_sleep : max_c1_sleep; double min_sleep = s->merge_level == 0 ? min_c0_sleep : min_c1_sleep; if(sleeptime < min_sleep) { sleeptime = min_sleep; } if(sleeptime > max_sleep) { sleeptime = max_sleep; } spin ++; total_sleep += sleeptime; if((spin > 40) || (total_sleep > (max_sleep * 20.0))) { // if(spin > 20 || s->merge_level == 0) { printf("\nMerge thread %d Overshoot: raw=%lld, d=%lld eff=%lld Throttle min(1, %6f) spin %d, total_sleep %6.3f\n", s->merge_level, raw_overshoot, overshoot_fudge, overshoot, sleeptime, spin, total_sleep); // } } struct timeval now; gettimeofday(&now, 0); double_to_ts(&sleep_until, sleeptime + tv_to_double(&now)); sleeping[s->merge_level] = true; rwlc_cond_timedwait(&dummy_throttle_cond, ltable->header_mut, &sleep_until); sleeping[s->merge_level] = false; pthread_cond_broadcast(&throttle_wokeup_cond); gettimeofday(&now, 0); if(s->merge_level == 0) { update_progress(c1, 0); } if(s->merge_level == 1) { update_progress(c2, 0); } } else { if(overshoot > 0 || overshoot2 > 0) { s->need_tick ++; if(s->need_tick > 100) { printf("need tick %d\n", s->need_tick); } } else { s->need_tick = 0; } break; } } while(1); rwlc_unlock(ltable->header_mut); } else { if(s->print_skipped == PRINT_SKIP) { if(!force) rwlc_writelock(ltable->header_mut); pretty_print(stdout); if(!force) rwlc_unlock(ltable->header_mut); s->print_skipped = 0; } else { s->print_skipped++; } } } } void mergeManager::read_tuple_from_small_component(int merge_level, datatuple * tup) { if(tup) { mergeStats * s = get_merge_stats(merge_level); (s->num_tuples_in_small)++; (s->bytes_in_small_delta) += tup->byte_length(); (s->bytes_in_small) += tup->byte_length(); update_progress(s, tup->byte_length()); tick(s, true); } } void mergeManager::read_tuple_from_large_component(int merge_level, datatuple * tup) { if(tup) { mergeStats * s = get_merge_stats(merge_level); s->num_tuples_in_large++; s->bytes_in_large += tup->byte_length(); // tick(s, false); // would be no-op; we just reduced current_size. update_progress(s, tup->byte_length()); tick(s,false); } } void mergeManager::wrote_tuple(int merge_level, datatuple * tup) { mergeStats * s = get_merge_stats(merge_level); (s->num_tuples_out)++; (s->bytes_out) += tup->byte_length(); // XXX this just updates stat's current size, and (perhaps) does a pretty print. It should not need a mutex. // update_progress(s, tup->byte_length()); // tick(s, false); } void mergeManager::finished_merge(int merge_level) { update_progress(get_merge_stats(merge_level), 0); tick(get_merge_stats(merge_level), false, true); // XXX what does this do??? get_merge_stats(merge_level)->active = false; if(merge_level != 0) { get_merge_stats(merge_level - 1)->mergeable_size = 0; update_progress(get_merge_stats(merge_level-1), 0); } gettimeofday(&get_merge_stats(merge_level)->done, 0); update_progress(get_merge_stats(merge_level), 0); } mergeManager::mergeManager(logtable *ltable): ltable(ltable), c0(new mergeStats(0, ltable ? ltable->max_c0_size : 10000000)), c1(new mergeStats(1, (int64_t)(ltable ? ((double)(ltable->max_c0_size) * *ltable->R()) : 100000000.0) )), c2(new mergeStats(2, 0)) { pthread_mutex_init(&throttle_mut, 0); pthread_mutex_init(&dummy_throttle_mut, 0); pthread_cond_init(&dummy_throttle_cond, 0); pthread_cond_init(&throttle_wokeup_cond, 0); struct timeval tv; gettimeofday(&tv, 0); sleeping[0] = false; sleeping[1] = false; sleeping[2] = false; double_to_ts(&c0->last_tick, tv_to_double(&tv)); double_to_ts(&c1->last_tick, tv_to_double(&tv)); double_to_ts(&c2->last_tick, tv_to_double(&tv)); } void mergeManager::pretty_print(FILE * out) { pageid_t mb = 1024 * 1024; logtable * lt = (logtable*)ltable; bool have_c0 = false; bool have_c0m = false; bool have_c1 = false; bool have_c1m = false; bool have_c2 = false; if(lt) { have_c0 = NULL != lt->get_tree_c0(); have_c0m = NULL != lt->get_tree_c0_mergeable(); have_c1 = NULL != lt->get_tree_c1(); have_c1m = NULL != lt->get_tree_c1_mergeable() ; have_c2 = NULL != lt->get_tree_c2(); } double c0_out_progress = 100.0 * c0->current_size / c0->target_size; double c0_c1_in_progress = 100.0 * (c1->bytes_in_large + c1->bytes_in_small) / (c0->mergeable_size + c1->base_size); double c0_c1_out_progress = 100.0 * c1->current_size / c1->target_size; double c1_c2_progress = 100.0 * (c2->bytes_in_large + c2->bytes_in_small) / (c1->mergeable_size + c2->base_size); assert((!c1->active) || (c0_c1_in_progress >= -1 && c0_c1_in_progress < 102)); assert((!c2->active) || (c1_c2_progress >= -1 && c1_c2_progress < 102)); fprintf(out,"[merge progress MB/s window (lifetime)]: app [%s %6lldMB ~ %3.0f%% %6.1fsec %4.1f (%4.1f)] %s %s [%s %3.0f%% ~ %3.0f%% %4.1f (%4.1f)] %s %s [%s %3.0f%% %4.1f (%4.1f)] %s ", c0->active ? "RUN" : "---", (uint64_t)(c0->lifetime_consumed / mb), c0_out_progress, c0->lifetime_elapsed, c0->window_consumed/(((double)mb)*c0->window_elapsed), c0->lifetime_consumed/(((double)mb)*c0->lifetime_elapsed), have_c0 ? "C0" : "..", have_c0m ? "C0'" : "...", c1->active ? "RUN" : "---", c0_c1_in_progress, c0_c1_out_progress, c1->window_consumed/(((double)mb)*c1->window_elapsed), c1->lifetime_consumed/(((double)mb)*c1->lifetime_elapsed), have_c1 ? "C1" : "..", have_c1m ? "C1'" : "...", c2->active ? "RUN" : "---", c1_c2_progress, c2->window_consumed/(((double)mb)*c2->window_elapsed), c2->lifetime_consumed/(((double)mb)*c2->lifetime_elapsed), have_c2 ? "C2" : ".."); //#define PP_SIZES #ifdef PP_SIZES fprintf(out, "[size in small/large, out, mergeable] C0 %4lld %4lld %4lld %4lld %4lld %4lld ", c0->target_size/mb, c0->current_size/mb, c0->bytes_in_small/mb, c0->bytes_in_large/mb, c0->bytes_out/mb, c0->mergeable_size/mb); fprintf(out, "C1 %4lld %4lld %4lld %4lld %4lld %4lld ", c1->target_size/mb, c1->current_size/mb, c1->bytes_in_small/mb, c1->bytes_in_large/mb, c1->bytes_out/mb, c1->mergeable_size/mb); fprintf(out, "C2 ---- %4lld %4lld %4lld %4lld %4lld ", /*----*/ c2->current_size/mb, c2->bytes_in_small/mb, c2->bytes_in_large/mb, c2->bytes_out/mb, c2->mergeable_size/mb); #endif // fprintf(out, "Throttle: %6.1f%% (cur) %6.1f%% (overall) ", 100.0*(last_throttle_seconds/(last_elapsed_seconds)), 100.0*(throttle_seconds/(elapsed_seconds))); // fprintf(out, "C0 size %4lld resident %4lld ", // 2*c0_queueSize/mb, // (c0->bytes_out - c0->bytes_in_large)/mb); // fprintf(out, "C1 size %4lld resident %4lld\r", // 2*c1_queueSize/mb, // (c1->bytes_out - c1->bytes_in_large)/mb); // fprintf(out, "C2 size %4lld\r", // 2*c2_queueSize/mb); // fprintf(out, "C1 MB/s (eff; active) %6.1f C2 MB/s %6.1f\r", // ((double)c1_totalConsumed)/((double)c1_totalWorktime), // ((double)c2_totalConsumed)/((double)c2_totalWorktime)); fflush(out); fprintf(out, "\r"); }