stasis-bLSM/logstore.cpp
sears aa7f7189d6 admission control *almost* works; c1 sometimes blocks for a long time when a new c2 is created
git-svn-id: svn+ssh://svn.corp.yahoo.com/yahoo/yrl/labs/pnuts/code/logstore@809 8dad8b1f-cf64-0410-95b6-bcf113ffbcfe
2010-05-26 00:58:17 +00:00

493 lines
14 KiB
C++

#include "logstore.h"
#include "merger.h"
#include <stasis/transactional.h>
#include <stasis/bufferManager.h>
#include <stasis/bufferManager/bufferHash.h>
#include "mergeStats.h"
#undef try
#undef end
static inline double tv_to_double(struct timeval tv)
{
return static_cast<double>(tv.tv_sec) +
(static_cast<double>(tv.tv_usec) / 1000000.0);
}
/////////////////////////////////////////////////////////////////
// LOG TABLE IMPLEMENTATION
/////////////////////////////////////////////////////////////////
template<class TUPLE>
logtable<TUPLE>::logtable(pageid_t internal_region_size, pageid_t datapage_region_size, pageid_t datapage_size)
{
r_val = MIN_R;
tree_c0 = NULL;
tree_c0_mergeable = NULL;
tree_c1 = NULL;
tree_c1_mergeable = NULL;
tree_c2 = NULL;
this->still_running_ = true;
this->merge_mgr = new mergeManager(this);
this->mergedata = 0;
//tmerger = new tuplemerger(&append_merger);
tmerger = new tuplemerger(&replace_merger);
pthread_mutex_init(&header_mut, 0);
pthread_cond_init(&c0_needed, 0);
pthread_cond_init(&c0_ready, 0);
pthread_cond_init(&c1_needed, 0);
pthread_cond_init(&c1_ready, 0);
tsize = 0;
tree_bytes = 0;
epoch = 0;
this->internal_region_size = internal_region_size;
this->datapage_region_size = datapage_region_size;
this->datapage_size = datapage_size;
c0_stats = merge_mgr->get_merge_stats(0);
c0_stats->new_merge();
c0_stats->starting_merge();
}
template<class TUPLE>
logtable<TUPLE>::~logtable()
{
if(tree_c1 != NULL)
delete tree_c1;
if(tree_c2 != NULL)
delete tree_c2;
if(tree_c0 != NULL)
{
memTreeComponent<datatuple>::tearDownTree(tree_c0);
}
pthread_mutex_destroy(&header_mut);
pthread_cond_destroy(&c0_needed);
pthread_cond_destroy(&c0_ready);
pthread_cond_destroy(&c1_needed);
pthread_cond_destroy(&c1_ready);
delete tmerger;
}
template<class TUPLE>
void logtable<TUPLE>::init_stasis() {
DataPage<datatuple>::register_stasis_page_impl();
Tinit();
}
template<class TUPLE>
void logtable<TUPLE>::deinit_stasis() { Tdeinit(); }
template<class TUPLE>
recordid logtable<TUPLE>::allocTable(int xid)
{
table_rec = Talloc(xid, sizeof(tbl_header));
mergeStats * stats = 0;
//create the big tree
tree_c2 = new diskTreeComponent(xid, internal_region_size, datapage_region_size, datapage_size, stats);
//create the small tree
tree_c1 = new diskTreeComponent(xid, internal_region_size, datapage_region_size, datapage_size, stats);
update_persistent_header(xid);
return table_rec;
}
template<class TUPLE>
void logtable<TUPLE>::openTable(int xid, recordid rid) {
table_rec = rid;
Tread(xid, table_rec, &tbl_header);
tree_c2 = new diskTreeComponent(xid, tbl_header.c2_root, tbl_header.c2_state, tbl_header.c2_dp_state, 0);
tree_c1 = new diskTreeComponent(xid, tbl_header.c1_root, tbl_header.c1_state, tbl_header.c1_dp_state, 0);
}
template<class TUPLE>
void logtable<TUPLE>::update_persistent_header(int xid) {
tbl_header.c2_root = tree_c2->get_root_rid();
tbl_header.c2_dp_state = tree_c2->get_datapage_allocator_rid();
tbl_header.c2_state = tree_c2->get_internal_node_allocator_rid();
tbl_header.c1_root = tree_c1->get_root_rid();
tbl_header.c1_dp_state = tree_c1->get_datapage_allocator_rid();
tbl_header.c1_state = tree_c1->get_internal_node_allocator_rid();
Tset(xid, table_rec, &tbl_header);
}
template<class TUPLE>
void logtable<TUPLE>::setMergeData(logtable_mergedata * mdata){
this->mergedata = mdata;
bump_epoch();
}
template<class TUPLE>
void logtable<TUPLE>::flushTable()
{
struct timeval start_tv, stop_tv;
double start, stop;
static double last_start;
static bool first = 1;
static int merge_count = 0;
gettimeofday(&start_tv,0);
start = tv_to_double(start_tv);
pthread_mutex_lock(&header_mut);
int expmcount = merge_count;
c0_stats->finished_merge();
//this is for waiting the previous merger of the mem-tree
//hopefullly this wont happen
bool blocked = false;
while(get_tree_c0_mergeable()) {
pthread_cond_wait(&c0_needed, &header_mut);
blocked = true;
if(expmcount != merge_count) {
pthread_mutex_unlock(&header_mut);
return;
}
}
c0_stats->handed_off_tree();
c0_stats->new_merge();
gettimeofday(&stop_tv,0);
stop = tv_to_double(stop_tv);
set_tree_c0_mergeable(get_tree_c0());
pthread_cond_signal(&c0_ready);
DEBUG("Signaled c0-c1 merge thread\n");
merge_count ++;
set_tree_c0(new memTreeComponent<datatuple>::rbtree_t);
c0_stats->starting_merge();
tsize = 0;
tree_bytes = 0;
pthread_mutex_unlock(&header_mut);
if(blocked && stop - start > 0.1) {
if(first)
{
printf("\nBlocked writes for %f sec\n", stop-start);
first = 0;
}
else
{
printf("\nBlocked writes for %f sec (serviced writes for %f sec)\n",
stop-start, start-last_start);
}
last_start = stop;
} else {
DEBUG("signaled c0-c1 merge\n");
}
}
template<class TUPLE>
datatuple * logtable<TUPLE>::findTuple(int xid, const datatuple::key_t key, size_t keySize)
{
//prepare a search tuple
datatuple *search_tuple = datatuple::create(key, keySize);
pthread_mutex_lock(&header_mut);
datatuple *ret_tuple=0;
//step 1: look in tree_c0
memTreeComponent<datatuple>::rbtree_t::iterator rbitr = get_tree_c0()->find(search_tuple);
if(rbitr != get_tree_c0()->end())
{
DEBUG("tree_c0 size %d\n", get_tree_c0()->size());
ret_tuple = (*rbitr)->create_copy();
}
bool done = false;
//step: 2 look into first in tree if exists (a first level merge going on)
if(get_tree_c0_mergeable() != 0)
{
DEBUG("old mem tree not null %d\n", (*(mergedata->old_c0))->size());
rbitr = get_tree_c0_mergeable()->find(search_tuple);
if(rbitr != get_tree_c0_mergeable()->end())
{
datatuple *tuple = *rbitr;
if(tuple->isDelete()) //tuple deleted
done = true; //return ret_tuple
else if(ret_tuple != 0) //merge the two
{
datatuple *mtuple = tmerger->merge(tuple, ret_tuple); //merge the two
datatuple::freetuple(ret_tuple); //free tuple from current tree
ret_tuple = mtuple; //set return tuple to merge result
}
else //key first found in old mem tree
{
ret_tuple = tuple->create_copy();
}
//we cannot free tuple from old-tree 'cos it is not a copy
}
}
//TODO: Arrange to only hold read latches while hitting disk.
//step 3: check c1
if(!done)
{
datatuple *tuple_c1 = get_tree_c1()->findTuple(xid, key, keySize);
if(tuple_c1 != NULL)
{
bool use_copy = false;
if(tuple_c1->isDelete()) //tuple deleted
done = true;
else if(ret_tuple != 0) //merge the two
{
datatuple *mtuple = tmerger->merge(tuple_c1, ret_tuple); //merge the two
datatuple::freetuple(ret_tuple); //free tuple from before
ret_tuple = mtuple; //set return tuple to merge result
}
else //found for the first time
{
use_copy = true;
ret_tuple = tuple_c1;
}
if(!use_copy)
{
datatuple::freetuple(tuple_c1); //free tuple from tree c1
}
}
}
//step 4: check old c1 if exists
if(!done && get_tree_c1_mergeable() != 0)
{
DEBUG("old c1 tree not null\n");
datatuple *tuple_oc1 = get_tree_c1_mergeable()->findTuple(xid, key, keySize);
if(tuple_oc1 != NULL)
{
bool use_copy = false;
if(tuple_oc1->isDelete())
done = true;
else if(ret_tuple != 0) //merge the two
{
datatuple *mtuple = tmerger->merge(tuple_oc1, ret_tuple); //merge the two
datatuple::freetuple(ret_tuple); //free tuple from before
ret_tuple = mtuple; //set return tuple to merge result
}
else //found for the first time
{
use_copy = true;
ret_tuple = tuple_oc1;
}
if(!use_copy)
{
datatuple::freetuple(tuple_oc1); //free tuple from tree old c1
}
}
}
//step 5: check c2
if(!done)
{
DEBUG("Not in old first disk tree\n");
datatuple *tuple_c2 = get_tree_c2()->findTuple(xid, key, keySize);
if(tuple_c2 != NULL)
{
bool use_copy = false;
if(tuple_c2->isDelete())
done = true;
else if(ret_tuple != 0)
{
datatuple *mtuple = tmerger->merge(tuple_c2, ret_tuple); //merge the two
datatuple::freetuple(ret_tuple); //free tuple from before
ret_tuple = mtuple; //set return tuple to merge result
}
else //found for the first time
{
use_copy = true;
ret_tuple = tuple_c2;
}
if(!use_copy)
{
datatuple::freetuple(tuple_c2); //free tuple from tree c2
}
}
}
pthread_mutex_unlock(&header_mut); // XXX release this each time we could block on disk...
datatuple::freetuple(search_tuple);
return ret_tuple;
}
/*
* returns the first record found with the matching key
* (not to be used together with diffs)
**/
template<class TUPLE>
datatuple * logtable<TUPLE>::findTuple_first(int xid, datatuple::key_t key, size_t keySize)
{
//prepare a search tuple
datatuple * search_tuple = datatuple::create(key, keySize);
pthread_mutex_lock(&header_mut);
datatuple *ret_tuple=0;
//step 1: look in tree_c0
memTreeComponent<datatuple>::rbtree_t::iterator rbitr = get_tree_c0()->find(search_tuple);
if(rbitr != get_tree_c0()->end())
{
DEBUG("tree_c0 size %d\n", tree_c0->size());
ret_tuple = (*rbitr)->create_copy();
}
else
{
DEBUG("Not in mem tree %d\n", tree_c0->size());
//step: 2 look into first in tree if exists (a first level merge going on)
if(get_tree_c0_mergeable() != NULL)
{
DEBUG("old mem tree not null %d\n", (*(mergedata->old_c0))->size());
rbitr = get_tree_c0_mergeable()->find(search_tuple);
if(rbitr != get_tree_c0_mergeable()->end())
{
ret_tuple = (*rbitr)->create_copy();
}
}
if(ret_tuple == 0)
{
DEBUG("Not in old mem tree\n");
//step 3: check c1
ret_tuple = get_tree_c1()->findTuple(xid, key, keySize);
}
if(ret_tuple == 0)
{
DEBUG("Not in first disk tree\n");
//step 4: check old c1 if exists
if( get_tree_c1_mergeable() != 0)
{
DEBUG("old c1 tree not null\n");
ret_tuple = get_tree_c1_mergeable()->findTuple(xid, key, keySize);
}
}
if(ret_tuple == 0)
{
DEBUG("Not in old first disk tree\n");
//step 5: check c2
ret_tuple = get_tree_c2()->findTuple(xid, key, keySize);
}
}
pthread_mutex_unlock(&header_mut);
datatuple::freetuple(search_tuple);
return ret_tuple;
}
template<class TUPLE>
void logtable<TUPLE>::insertTuple(datatuple *tuple)
{
//lock the red-black tree
pthread_mutex_lock(&header_mut);
c0_stats->read_tuple_from_small_component(tuple);
//find the previous tuple with same key in the memtree if exists
memTreeComponent<datatuple>::rbtree_t::iterator rbitr = tree_c0->find(tuple);
datatuple * t = 0;
if(rbitr != tree_c0->end())
{
datatuple *pre_t = *rbitr;
//do the merging
c0_stats->read_tuple_from_large_component(pre_t);
datatuple *new_t = tmerger->merge(pre_t, tuple);
c0_stats->merged_tuples(new_t, tuple, pre_t);
t = new_t;
tree_c0->erase(pre_t); //remove the previous tuple
tree_c0->insert(new_t); //insert the new tuple
//update the tree size (+ new_t size - pre_t size)
tree_bytes += ((int64_t)new_t->byte_length() - (int64_t)pre_t->byte_length());
datatuple::freetuple(pre_t); //free the previous tuple
}
else //no tuple with same key exists in mem-tree
{
t = tuple->create_copy();
//insert tuple into the rbtree
tree_c0->insert(t);
tsize++;
tree_bytes += t->byte_length();// + RB_TREE_OVERHEAD;
}
c0_stats->wrote_tuple(t);
//flushing logic
if(tree_bytes >= max_c0_size )
{
DEBUG("tree size before merge %d tuples %lld bytes.\n", tsize, tree_bytes);
pthread_mutex_unlock(&header_mut);
flushTable();
} else {
//unlock
pthread_mutex_unlock(&header_mut);
}
DEBUG("tree size %d tuples %lld bytes.\n", tsize, tree_bytes);
}
template<class TUPLE>
void logtable<TUPLE>::registerIterator(iterator * it) {
its.push_back(it);
}
template<class TUPLE>
void logtable<TUPLE>::forgetIterator(iterator * it) {
for(unsigned int i = 0; i < its.size(); i++) {
if(its[i] == it) {
its.erase(its.begin()+i);
break;
}
}
}
template<class TUPLE>
void logtable<TUPLE>::bump_epoch() {
// assert(!trywritelock(header_lock,0));
epoch++;
for(unsigned int i = 0; i < its.size(); i++) {
its[i]->invalidate();
}
}
template class logtable<datatuple>;