stasis-bLSM/mergeManager.cpp
sears 297e715514 move update progress out of application threads, and into background thread
git-svn-id: svn+ssh://svn.corp.yahoo.com/yahoo/yrl/labs/pnuts/code/logstore@3288 8dad8b1f-cf64-0410-95b6-bcf113ffbcfe
2011-11-04 20:59:22 +00:00

632 lines
24 KiB
C++

/*
* mergeManager.cpp
*
* Created on: May 19, 2010
* Author: sears
*/
#include "mergeManager.h"
#include "mergeStats.h"
#include "logstore.h"
#include "math.h"
#include "time.h"
#include <stasis/transactional.h>
#undef try
#undef end
#define LEGACY_BACKPRESSURE
mergeStats* mergeManager:: get_merge_stats(int mergeLevel) {
if (mergeLevel == 0) {
return c0;
} else if (mergeLevel == 1) {
return c1;
} else if(mergeLevel == 2) {
return c2;
} else {
abort();
}
}
mergeManager::~mergeManager() {
still_running = false;
pthread_cond_signal(&pp_cond);
pthread_join(pp_thread, 0);
pthread_join(update_progress_pthread, 0);
pthread_cond_destroy(&pp_cond);
delete c0;
delete c1;
delete c2;
}
void mergeManager::new_merge(int mergeLevel) {
mergeStats * s = get_merge_stats(mergeLevel);
if(s->merge_level == 0) {
// target_size was set during startup
} else if(s->merge_level == 1) {
assert(c0->target_size);
c1->target_size = (pageid_t)(*ltable->R() * (double)ltable->mean_c0_run_length);
assert(c1->target_size);
s->new_merge2();
} else if(s->merge_level == 2) {
// target_size is infinity...
s->new_merge2();
} else { abort(); }
#ifdef EXTENDED_STATS
gettimeofday(&s->stats_start,0);
double elapsed = (tv_to_double(&s->stats_start) - tv_to_double(&s->stats_sleep));
s->stats_lifetime_elapsed += elapsed;
(s->stats_elapsed) = elapsed;
(s->stats_active) = 0;
#endif
}
void mergeManager::set_c0_size(int64_t size) {
assert(size);
c0->target_size = size;
}
void mergeManager::update_progress(mergeStats * s, int delta) {
s->delta += delta;
if((!delta) || s->delta > UPDATE_PROGRESS_DELTA) {
rwlc_writelock(ltable->header_mut);
if(delta) {
s->delta = 0;
if(!s->need_tick) { s->need_tick = 1; }
}
if(s->merge_level == 2) {
if(s->active) {
s->in_progress = ((double)(s->bytes_in_large + s->bytes_in_small)) / (double)(get_merge_stats(s->merge_level-1)->mergeable_size + s->base_size);
} else {
s->in_progress = 0;
}
} else if(s->merge_level == 1) { // C0-C1 merge (c0 is continuously growing...)
if(s->active) {
// s->in_progress = ((double)(s->bytes_in_large+s->bytes_in_small)) / (double)(s->base_size+fmax(ltable->mean_c0_run_length,(double)s->bytes_in_small));
s->in_progress = ((double)(s->bytes_in_large+s->bytes_in_small)) / (double)(s->base_size+fmax(c0->target_size,(double)s->bytes_in_small));
//s->in_progress = ((double)(s->bytes_in_large+s->bytes_in_small)) / (((double)s->base_size)+(double)s->bytes_in_small);
} else {
s->in_progress = 0;
}
}
if(s->target_size) {
if(s->merge_level == 0) {
s->out_progress = ((double)s->get_current_size()) / (double)ltable->mean_c0_run_length;
} else {
// To see what's going on in the following code, consider a
// system with R = 3 and |C0| = 1. (R is the number of rounds that a
// C1-C2 merge takes during a bulk load, and also the ratios |C1|/|C0|
// and |C2|/|C1|).
// |Cn| is the size of a given tree component, normalized to the amount
// of data that can be inserted into C0 (because of red-black tree
// overheads, the effective capacity of C0 is a function of the average
// tuple size and the physical memory allotted to C0).
// Here is a trace of the costs of each round of merges during
// a bulk load (where no data is overwritten):
// Round | App writes | I/O performed by C0-C1 | I/O performed by C1-C2
// 0 | 1 | 1 |
// 1 | 1 | 3 = 2 * 1 + 1 | 0 (idle)
// 2 | 1 | 7 = 2 * 3 + 1 |
// 3 | 1 | 1 |
// 4 | 1 | 3 | R (just a copy)
// 5 | 1 | 7 |
// 6 | 1 | 1 |
// 7 | 1 | 3 | 3 * R = 2 * R + R
// 8 | 1 | 7 |
// 9 | 1 | 1 |
// 10 | 1 | 3 | 2 ( 3 * R ) + R
// 11 | 1 | 7 |
// i | 1 | t(0) = 1 | u0 = u1 =...= uR = 0
// | | i < R: t(i) = 1+2*t(i-1)| u(i) = 2 * u(i-R) + R
// | | i >=R: t(i) = t(i%R) |
// Note that, at runtime, we can directly compute u(i) for the current
// C1-C2 merge:
// u_j <= (1 + \alpha) * (|c2| + |c1_mergeable|) [eq 1]
// Where, \alpha is a constant between 0 and 1 that depends on the
// number of and deletes in c1_mergeable. For now, we assume it is 1.
// Now, for each C1-C2 round, we want to split the total disk
// work evenly amongst the C0-C1 rounds. Thus, the amount
// consumed by C1-C2 + C0-C1 should be equal (if possible) for
// each pass over C0:
// t(Rj) + u(Rj) = t(Rj+1) + u(Rj+1) = ... = t(Rj+R-1) + u(Rj+R-1)
// Work for set of C0 passes during j'th C1-C2 merge:
// work(j) = \sum_{k=0..R-1}{t(Rj+k)}+u_j [eq 2]
// Ideally, we would like the amount of work performed during each
// application visible round, i, to be the same throughout a given C1-C2
// merger. Unfortunately, there's no way to ensure that this will be the
// case in general, as nothing prevents:
// f(i) = (R * t[i] > u_j)
// from being true. Therefore, we partition the i according to f(i).
// t(i) is monotonically increasing, so this creates two contiguous sets.
// Let R' be the first i where f(i) is true, or R if no such i exists.
// [eq 3]
// Then:
// work'(j) = work(j) - \sum{k=R'...R-1} t(Rj+k) [eq 4]
// We now define u_j(i); the amount of progress we would like the C1-C2
// merger to make in each application visible round.
// The later rounds (where f(i) is true) already perform more work than
// we'd like, so we set:
// u_j(i) = 0 if f(i) [eq 5a]
// We evenly divide the remaining work:
// t(i) + u_j(i) = work'(j) / R' if not f(i)
// The t(i) are fixed, giving us R' equations in R' unknowns; solving
// for u_j(i):
// u_j(i) = work'(j)/R' - t(i) if not f(i) [eq 5b]
// Note 1:
// If the tree is big enough, we compute R in a way that guarantees f(i)
// is false. We do not do this for small trees because it leads to R<3,
// which negatively impacts throughput. Therefore, we set R=3 and deal
// with periodic transient increases in application-visible throughput.
// Note 2:
// If the working set is small, then C1 will not get bigger from one
// merge to the next. To cope with this, we compute delta_c1_c2 by
// figuring out what the percent complete for c2 should be once C1 is
// full, assuming we're performing a bulk load. We set delta to the
// difference between the current progress and the desired progress. If
// delta is negative, then the C1-C2 merge will still be ahead of the
// C0-C1 merge at the end of this round, so we set delta to zero, which
// effectively puts the C2 merger to sleep.
// eq 2: Compute t[i] (from table) and initial value of work(j)
int merge_count = (int)ceil(*ltable->R()-0.1);
// next, estimate merge_number (i) based on the size of c1.
// ( i = R * j + merge_number)
int merge_number = (int)floor(((double)c1->base_size)/(double)ltable->mean_c0_run_length);
s->out_progress = ((double)merge_number + s->in_progress) / (double) merge_count;
// eq 1: Compute u_j
if(c2->active && c1->mergeable_size) {
#ifdef LEGACY_BACKPRESSURE
c1_c2_delta = c1->out_progress - c2->in_progress;
#else
pageid_t u__j = (pageid_t)(2.0 * (double)(c2->base_size + c1->mergeable_size));
double* t = (double*)malloc(sizeof(double) * merge_count);
t[0] = ltable->mean_c0_run_length;
double t__j = t[0];
for(int i = 1; i < merge_count; i++) {
t[i] = t[i-1] * 2.0 + ltable->mean_c0_run_length;
t__j += t[i];
}
double work_j = t__j + u__j;
// eq 3: Compute R'
int R_prime;
{
double frac_work = work_j / (double)merge_count;
for(R_prime = 0; R_prime < merge_count; R_prime++) {
if(t[R_prime] > frac_work) break;
}
}
// eq 4: Compute work'
double work_prime_j = work_j;
for(int i = R_prime; i < merge_count; i++) {
work_prime_j -= t[i]; // u_j[i] will be set to zero, so no need to subtract it off.
}
// eq 5a,b: Compute the u_j(i)'s for this C1-C2 round:
double* u_j = (double*)malloc(sizeof(double) * merge_count);
for(int i = 0; i < R_prime; i++) {
u_j[i] = work_prime_j / R_prime - t[i]; // [5b]
}
for(int i = R_prime; i < merge_count; i++) {
u_j[i] = 0; // [5a]
}
// we now have everything we need to know how far along we should expect
// c1 and c2 to be at the beginning and end of this pass.
double expected_c1_start_progress = ((double)merge_number) / (double)merge_count;
double expected_c2_start_progress = 0.0;
double expected_c1_end_progress = ((double)(merge_number+1)) / (double)merge_count;
double expected_c2_end_progress = 0.0;
for(int i = 0; i <= merge_number; i++) {
if(i < merge_number) {
expected_c2_start_progress += u_j[i];
}
expected_c2_end_progress += u_j[i];
}
expected_c2_start_progress /= u__j;
expected_c2_end_progress /= u__j;
assert(expected_c1_start_progress > -0.01 && expected_c1_start_progress < 1.01 &&
expected_c2_start_progress > -0.01 && expected_c2_start_progress < 1.01 &&
expected_c1_end_progress > -0.01 && expected_c1_end_progress < 1.01 &&
expected_c2_end_progress > -0.01 && expected_c2_end_progress < 1.01 &&
expected_c1_start_progress <= expected_c1_end_progress &&
expected_c2_start_progress <= expected_c2_end_progress);
double c1_scale_progress = (c1->out_progress - expected_c1_start_progress) / (expected_c1_end_progress - expected_c1_start_progress);
double c2_scale_progress = (c2->in_progress - expected_c2_start_progress) / (expected_c2_end_progress - expected_c2_start_progress);
c1_c2_delta = c1_scale_progress - c2_scale_progress;
#endif
} else {
c1_c2_delta = -0.02; // Elsewhere, we try to keep this number between -0.05 and -0.01.
}
// Appendix to analysis: Computation of t(i) and u(i) for bulk-loads
// This is not used above (since both can be computed at runtime), but
// may be of use for future analysis.
// t(i) is easily computable, but u(i) is less straightforward:
// u(i) = 2 * u(i-R) + R
// u(i+R) = 2 * u(i) + R
// Subtracting:
// u(i+R) - u(i) = 2u(i-R) - 2u(i)
// u(i+R) = u(i) + 2u(u-R)
// u(0) = 0; u(R) = R
// Characteristic polynomial:
// r^n = r^(n-1) + 2r^(n-2)
// divide by r^(n-2):
// r^2 = r + 2 ; r^2 - r - 2 = 0
// characteristic roots:
// r = (1 +/- sqrt(1 + 8)) / 2 = 2 or -1
// 2^n*C - D = a_n
// 2^0 * C - D = 0; C = D.
// 2 * C - D = R ; C = D = R.
// So, u(n) = 2^n*R - R
// or:
// sum{u(i..i+R-1)} = 2*floor(i/3)^R - R.
}
}
#if EXTENDED_STATS
struct timeval now;
gettimeofday(&now, 0);
double stats_elapsed_delta = tv_to_double(&now) - ts_to_double(&s->stats_last_tick);
if(stats_elapsed_delta < 0.0000001) { stats_elapsed_delta = 0.0000001; }
s->stats_lifetime_active += stats_elapsed_delta;
s->stats_lifetime_elapsed += stats_elapsed_delta;
s->stats_active += stats_elapsed_delta;
s->stats_elapsed += stats_elapsed_delta;
s->stats_lifetime_consumed += s->stats_bytes_in_small_delta;
double stats_tau = 60.0; // number of seconds to look back for window computation. (this is the expected mean residence time in an exponential decay model, so the units are not so intuitive...)
double stats_decay = exp((0.0-stats_elapsed_delta)/stats_tau);
double_to_ts(&s->stats_last_tick, tv_to_double(&now));
double stats_window_bps = ((double)s->stats_bytes_in_small_delta) / (double)stats_elapsed_delta;
s->stats_bps = (1.0-stats_decay) * stats_window_bps + stats_decay * s->stats_bps;
s->stats_bytes_in_small_delta = 0;
#endif
rwlc_unlock(ltable->header_mut);
}
}
/**
* This function is invoked periodically by the merge threads. It updates mergeManager's statistics, and applies
* backpressure as necessary.
*
* Here is the backpressure algorithm.
*
* We want to maintain these two invariants:
* - for each byte consumed by the app->c0 threads, a byte is consumed by the c0->c1 merge thread.
* - for each byte consumed by the c0->c1 thread, the c1->c2 thread consumes a byte
*
* More concretely (and taking into account varying values of R):
* capacity(C_i) - current_size(C_i) >= size(C_i_mergeable) - bytes_consumed_by_next_merger
*
* where:
* capacity c0 = c0_queue_size
* capacity c1 = c1_queue_size
*
* current_size(c_i) = sum(bytes_out_delta) - sum(bytes_in_large_delta)
*
* bytes_consumed_by_merger = sum(stats_bytes_in_small_delta)
*/
void mergeManager::tick(mergeStats * s) {
if(s && s->merge_level == 1) { // apply backpressure based on merge progress.
if(s->need_tick) {
s->need_tick = 0;
// Only apply back pressure if next thread is not waiting on us.
rwlc_readlock(ltable->header_mut);
if(c1->mergeable_size && c2->active) {
if(c1_c2_delta > -0.01) {
DEBUG("Input is too far ahead. Delta is %f\n", c1_c2_delta);
double delta = c1_c2_delta;
rwlc_unlock(ltable->header_mut);
delta += 0.01; // delta > 0;
double slp = 0.001 + delta;
struct timespec sleeptime;
DEBUG("\ndisk sleeping %0.6f tree_megabytes %0.3f\n", slp, ((double)ltable->tree_bytes)/(1024.0*1024.0));
double_to_ts(&sleeptime,slp);
nanosleep(&sleeptime, 0);
update_progress(s, 0);
s->need_tick = 1;
} else {
rwlc_unlock(ltable->header_mut);
}
} else {
rwlc_unlock(ltable->header_mut);
}
}
} else if((!s) || s->merge_level == 0) {
// Simple backpressure algorithm based on how full C0 is.
pageid_t cur_c0_sz;
if(s) {
// Is C0 bigger than is allowed?
while((cur_c0_sz = s->get_current_size()) > ltable->max_c0_size) { // can't use s->current_size, since this is the thread that maintains that number...
printf("\nMEMORY OVERRUN!!!! SLEEP!!!!\n");
struct timespec ts;
double_to_ts(&ts, 0.1);
nanosleep(&ts, 0);
}
// Linear backpressure model
s->out_progress = ((double)cur_c0_sz)/((double)ltable->max_c0_size);
} else {
cur_c0_sz = c0->get_current_size();
}
double delta = ((double)cur_c0_sz)/(0.95*(double)ltable->max_c0_size); // 0 <= delta <= 1.111...
delta -= 1.0;
if(delta > 0.00005) {
double slp = 0.001 + 5.0 * delta; //0.0015 < slp < 1.112111..
if(!s) {
// printf("sleeping!\n");
}
DEBUG("\nmem sleeping %0.6f tree_megabytes %0.3f\n", slp, ((double)ltable->tree_bytes)/(1024.0*1024.0));
struct timespec sleeptime;
double_to_ts(&sleeptime, slp);
DEBUG("%d Sleep C %f\n", s->merge_level, slp);
nanosleep(&sleeptime, 0);
}
}
}
void mergeManager::read_tuple_from_small_component(int merge_level, datatuple * tup) {
if(tup) {
mergeStats * s = get_merge_stats(merge_level);
(s->num_tuples_in_small)++;
#if EXTENDED_STATS
(s->stats_bytes_in_small_delta) += tup->byte_length();
#endif
(s->bytes_in_small) += tup->byte_length();
if(merge_level != 0) {
update_progress(s, tup->byte_length());
}
tick(s);
}
}
void mergeManager::read_tuple_from_large_component(int merge_level, int tuple_count, pageid_t byte_len) {
if(tuple_count) {
mergeStats * s = get_merge_stats(merge_level);
s->num_tuples_in_large += tuple_count;
s->bytes_in_large += byte_len;
if(merge_level != 0) {
update_progress(s, byte_len);
}
}
}
void mergeManager::wrote_tuple(int merge_level, datatuple * tup) {
mergeStats * s = get_merge_stats(merge_level);
(s->num_tuples_out)++;
(s->bytes_out) += tup->byte_length();
}
void mergeManager::finished_merge(int merge_level) {
mergeStats *s = get_merge_stats(merge_level);
update_progress(s, 0);
s->active = false;
if(merge_level != 0) {
get_merge_stats(merge_level - 1)->mergeable_size = 0;
update_progress(get_merge_stats(merge_level-1), 0);
}
#if EXTENDED_STATS
gettimeofday(&s->stats_done, 0);
double elapsed = tv_to_double(&s->stats_done) - ts_to_double(&s->stats_last_tick);
(s->stats_lifetime_active) += elapsed;
(s->stats_lifetime_elapsed) += elapsed;
(s->stats_elapsed) += elapsed;
(s->stats_active) += elapsed;
memcpy(&s->stats_sleep, &s->stats_done, sizeof(s->stats_sleep));
#define VERBOSE
#ifdef VERBOSE
fprintf(stdout, "\n");
s->pretty_print(stdout);
#endif
#endif
update_progress(get_merge_stats(merge_level), 0);
}
void * mergeManager::update_progress_thread() {
pthread_mutex_t dummy_mut;
pthread_mutex_init(&dummy_mut, 0);
while(still_running) {
struct timeval tv;
gettimeofday(&tv, 0);
struct timespec ts;
double_to_ts(&ts, tv_to_double(&tv)+0.1);
pthread_cond_timedwait(&update_progress_cond, &dummy_mut, &ts);
// printf("Calling update progress\n");
update_progress(c0,0);
}
return 0;
}
void * mergeManager::pretty_print_thread() {
pthread_mutex_t dummy_mut;
pthread_mutex_init(&dummy_mut, 0);
while(still_running) {
struct timeval tv;
gettimeofday(&tv, 0);
struct timespec ts;
double_to_ts(&ts, tv_to_double(&tv)+1.01);
pthread_cond_timedwait(&pp_cond, &dummy_mut, &ts);
if(ltable) {
rwlc_readlock(ltable->header_mut);
pretty_print(stdout);
rwlc_unlock(ltable->header_mut);
}
}
printf("\n");
return 0;
}
void * merge_manager_pretty_print_thread(void * arg) {
mergeManager * m = (mergeManager*)arg;
return m->pretty_print_thread();
}
void * merge_manager_update_progress_thread(void * arg) {
mergeManager * m = (mergeManager*)arg;
return m->update_progress_thread();
}
double mergeManager::c1_c2_progress_delta() {
return c1_c2_delta;
}
void mergeManager::init_helper(void) {
struct timeval tv;
c1_c2_delta = -0.02; // XXX move this magic number somewhere. It's also in update_progress.
gettimeofday(&tv, 0);
#if EXTENDED_STATS
double_to_ts(&c0->stats_last_tick, tv_to_double(&tv));
double_to_ts(&c1->stats_last_tick, tv_to_double(&tv));
double_to_ts(&c2->stats_last_tick, tv_to_double(&tv));
#endif
still_running = true;
pthread_cond_init(&pp_cond, 0);
pthread_create(&pp_thread, 0, merge_manager_pretty_print_thread, (void*)this);
pthread_create(&update_progress_pthread, 0, merge_manager_update_progress_thread, (void*)this);
}
mergeManager::mergeManager(logtable *ltable):
UPDATE_PROGRESS_PERIOD(0.005),
ltable(ltable) {
c0 = new mergeStats(0, ltable ? ltable->max_c0_size : 10000000);
c1 = new mergeStats(1, (int64_t)(ltable ? ((double)(ltable->max_c0_size) * *ltable->R()) : 100000000.0) );
c2 = new mergeStats(2, 0);
init_helper();
}
mergeManager::mergeManager(logtable *ltable, int xid, recordid rid):
UPDATE_PROGRESS_PERIOD(0.005),
ltable(ltable) {
marshalled_header h;
Tread(xid, rid, &h);
c0 = new mergeStats(xid, h.c0);
c1 = new mergeStats(xid, h.c1);
c2 = new mergeStats(xid, h.c2);
init_helper();
}
recordid mergeManager::talloc(int xid) {
marshalled_header h;
recordid ret = Talloc(xid, sizeof(h));
h.c0 = c0->talloc(xid);
h.c1 = c1->talloc(xid);
h.c2 = c2->talloc(xid);
Tset(xid, ret, &h);
return ret;
}
void mergeManager::marshal(int xid, recordid rid) {
marshalled_header h;
Tread(xid, rid, &h);
c0->marshal(xid, h.c0);
c1->marshal(xid, h.c1);
c2->marshal(xid, h.c2);
}
void mergeManager::pretty_print(FILE * out) {
#if EXTENDED_STATS
logtable * lt = ltable;
bool have_c0 = false;
bool have_c0m = false;
bool have_c1 = false;
bool have_c1m = false;
bool have_c2 = false;
if(lt) {
have_c0 = NULL != lt->get_tree_c0();
have_c0m = NULL != lt->get_tree_c0_mergeable();
have_c1 = NULL != lt->get_tree_c1();
have_c1m = NULL != lt->get_tree_c1_mergeable() ;
have_c2 = NULL != lt->get_tree_c2();
}
pageid_t mb = 1024 * 1024;
fprintf(out,"[merge progress MB/s window (lifetime)]: app [%s %6lldMB tot %6lldMB cur ~ %3.0f%%/%3.0f%% %6.1fsec %4.1f (%4.1f)] %s %s [%s %3.0f%% ~ %3.0f%% %4.1f (%4.1f)] %s %s [%s %3.0f%% %4.1f (%4.1f)] %s ",
c0->active ? "RUN" : "---", (long long)(c0->stats_lifetime_consumed / mb), (long long)(c0->get_current_size() / mb), 100.0 * c0->out_progress, 100.0 * ((double)c0->get_current_size())/(double)ltable->max_c0_size, c0->stats_lifetime_elapsed, c0->stats_bps/((double)mb), c0->stats_lifetime_consumed/(((double)mb)*c0->stats_lifetime_elapsed),
have_c0 ? "C0" : "..",
have_c0m ? "C0'" : "...",
c1->active ? "RUN" : "---", 100.0 * c1->in_progress, 100.0 * c1->out_progress, c1->stats_bps/((double)mb), c1->stats_lifetime_consumed/(((double)mb)*c1->stats_lifetime_elapsed),
have_c1 ? "C1" : "..",
have_c1m ? "C1'" : "...",
c2->active ? "RUN" : "---", 100.0 * c2->in_progress, c2->stats_bps/((double)mb), c2->stats_lifetime_consumed/(((double)mb)*c2->stats_lifetime_elapsed),
have_c2 ? "C2" : "..");
#endif
//#define PP_SIZES
#ifdef PP_SIZES
{
pageid_t mb = 1024 * 1024;
fprintf(out, "[target cur base in_small in_large, out, mergeable] C0 %4lld %4lld %4lld %4lld %4lld %4lld %4lld ",
c0->target_size/mb, c0->current_size/mb, c0->base_size/mb, c0->bytes_in_small/mb,
c0->bytes_in_large/mb, c0->bytes_out/mb, c0->mergeable_size/mb);
fprintf(out, "C1 %4lld %4lld %4lld %4lld %4lld %4lld %4lld ",
c1->target_size/mb, c1->current_size/mb, c1->base_size/mb, c1->bytes_in_small/mb,
c1->bytes_in_large/mb, c1->bytes_out/mb, c1->mergeable_size/mb);
fprintf(out, "C2 ---- %4lld %4lld %4lld %4lld %4lld %4lld ",
/*----*/ c2->current_size/mb, c2->base_size/mb, c2->bytes_in_small/mb,
c2->bytes_in_large/mb, c2->bytes_out/mb, c2->mergeable_size/mb);
}
#endif
// fprintf(out, "Throttle: %6.1f%% (cur) %6.1f%% (overall) ", 100.0*(last_throttle_seconds/(last_elapsed_seconds)), 100.0*(throttle_seconds/(elapsed_seconds)));
// fprintf(out, "C0 size %4lld resident %4lld ",
// 2*c0_queueSize/mb,
// (c0->bytes_out - c0->bytes_in_large)/mb);
// fprintf(out, "C1 size %4lld resident %4lld\r",
// 2*c1_queueSize/mb,
// (c1->bytes_out - c1->bytes_in_large)/mb);
// fprintf(out, "C2 size %4lld\r",
// 2*c2_queueSize/mb);
// fprintf(out, "C1 MB/s (eff; active) %6.1f C2 MB/s %6.1f\r",
// ((double)c1_totalConsumed)/((double)c1_totalWorktime),
// ((double)c2_totalConsumed)/((double)c2_totalWorktime));
fflush(out);
#if 0 // XXX would like to bring this back somehow...
assert((!c1->active) || (c1->in_progress >= -0.01 && c1->in_progress < 1.02));
assert((!c2->active) || (c2->in_progress >= -0.01 && c2->in_progress < 1.10));
#endif
fprintf(out, "\r");
}