stasis-bLSM/logstore.h
sears 392a097e44 add atomic testAndSet operation (needed for sherpa tablet names' uniqid field)
git-svn-id: svn+ssh://svn.corp.yahoo.com/yahoo/yrl/labs/pnuts/code/logstore@1158 8dad8b1f-cf64-0410-95b6-bcf113ffbcfe
2010-09-16 22:36:48 +00:00

448 lines
15 KiB
C++

#ifndef _LOGSTORE_H_
#define _LOGSTORE_H_
#include <stasis/common.h>
#undef try
#undef end
#include <vector>
#include "diskTreeComponent.h"
#include "memTreeComponent.h"
#include "tuplemerger.h"
#include "mergeManager.h"
#include "mergeStats.h"
class logtable_mergedata;
template<class TUPLE>
class logtable {
public:
class iterator;
// We want datapages to be as small as possible, assuming they don't force an extra seek to traverse the bottom level of internal nodes.
// Internal b-tree mem requirements:
// - Assume keys are small (compared to stasis pages) so we can ignore all but the bottom level of the tree.
//
// |internal nodes| ~= (|key| * |tree|) / (datapage_size * |stasis PAGE_SIZE|)
//
// Plugging in the numbers today:
//
// 6GB ~= 100B * 500 GB / (datapage_size * 4KB)
// (100B * 500GB) / (6GB * 4KB) = 2.035
logtable(pageid_t internal_region_size = 1000, pageid_t datapage_region_size = 10000, pageid_t datapage_size = 2);
~logtable();
double * R() { return &r_val; }
//user access functions
datatuple * findTuple(int xid, const datatuple::key_t key, size_t keySize);
datatuple * findTuple_first(int xid, datatuple::key_t key, size_t keySize);
private:
datatuple * insertTupleHelper(datatuple *tuple);
public:
void insertManyTuples(struct datatuple **tuples, int tuple_count);
void insertTuple(struct datatuple *tuple);
/** This test and set has strange semantics on two fronts:
*
* 1) It is not atomic with respect to non-testAndSet operations (which is fine in theory, since they have no barrier semantics, and we don't have a use case to support the extra overhead)
* 2) If tuple2 is not null, it looks at tuple2's key instead of tuple's key. This means you can atomically set the value of one key based on the value of another (if you want to...)
*/
bool testAndSetTuple(struct datatuple *tuple, struct datatuple *tuple2);
//other class functions
recordid allocTable(int xid);
void openTable(int xid, recordid rid);
void flushTable();
static void init_stasis();
static void deinit_stasis();
inline uint64_t get_epoch() { return epoch; }
void registerIterator(iterator * it);
void forgetIterator(iterator * it);
void bump_epoch() ;
inline diskTreeComponent * get_tree_c2(){return tree_c2;}
inline diskTreeComponent * get_tree_c1(){return tree_c1;}
inline diskTreeComponent * get_tree_c1_mergeable(){return tree_c1_mergeable;}
inline diskTreeComponent * get_tree_c1_prime(){return tree_c1_prime;}
inline void set_tree_c1(diskTreeComponent *t){tree_c1=t; bump_epoch(); }
inline void set_tree_c1_mergeable(diskTreeComponent *t){tree_c1_mergeable=t; bump_epoch(); }
inline void set_tree_c1_prime(diskTreeComponent *t){tree_c1_prime=t; bump_epoch(); }
inline void set_tree_c2(diskTreeComponent *t){tree_c2=t; bump_epoch(); }
pthread_cond_t c0_needed;
pthread_cond_t c0_ready;
pthread_cond_t c1_needed;
pthread_cond_t c1_ready;
inline memTreeComponent<datatuple>::rbtree_ptr_t get_tree_c0(){return tree_c0;}
inline memTreeComponent<datatuple>::rbtree_ptr_t get_tree_c0_mergeable(){return tree_c0_mergeable;}
void set_tree_c0(memTreeComponent<datatuple>::rbtree_ptr_t newtree){tree_c0 = newtree; bump_epoch(); }
void set_max_c0_size(int64_t max_c0_size) {
this->max_c0_size = max_c0_size;
this->mean_c0_effective_size = max_c0_size;
this->num_c0_mergers = 0;
merge_mgr->set_c0_size(max_c0_size);
merge_mgr->get_merge_stats(1);
}
bool get_c0_is_merging() { return c0_is_merging; }
void set_c0_is_merging(bool is_merging) { c0_is_merging = is_merging; }
void set_tree_c0_mergeable(memTreeComponent<datatuple>::rbtree_ptr_t newtree){tree_c0_mergeable = newtree; bump_epoch(); }
void update_persistent_header(int xid, int merge_level);
void setMergeData(logtable_mergedata * mdata);
logtable_mergedata* getMergeData(){return mergedata;}
inline tuplemerger * gettuplemerger(){return tmerger;}
public:
struct table_header {
recordid c2_root; //tree root record --> points to the root of the b-tree
recordid c2_state; //tree state --> describes the regions used by the index tree
recordid c2_dp_state; //data pages state --> regions used by the data pages
recordid c1_root;
recordid c1_state;
recordid c1_dp_state;
pageid_t c2_base_size;
pageid_t c1_mergeable_size;
pageid_t c1_base_size;
};
logtable_mergedata * mergedata;
rwlc * header_mut;
pthread_mutex_t tick_mut;
pthread_mutex_t rb_mut;
int64_t max_c0_size;
// these track the effectiveness of snowshoveling
int64_t mean_c0_effective_size;
int64_t num_c0_mergers;
mergeManager * merge_mgr;
bool accepting_new_requests;
inline bool is_still_running() { return still_running_; }
inline void stop() {
rwlc_writelock(header_mut);
if(still_running_) {
still_running_ = false;
flushTable();
flushing = true;
}
rwlc_unlock(header_mut);
// XXX must need to do other things! (join the threads?)
}
private:
double r_val;
recordid table_rec;
struct table_header tbl_header;
uint64_t epoch;
diskTreeComponent *tree_c2; //big tree
diskTreeComponent *tree_c1; //small tree
diskTreeComponent *tree_c1_mergeable; //small tree: ready to be merged with c2
diskTreeComponent *tree_c1_prime; //small tree: ready to be merged with c2
memTreeComponent<datatuple>::rbtree_ptr_t tree_c0; // in-mem red black tree
memTreeComponent<datatuple>::rbtree_ptr_t tree_c0_mergeable; // in-mem red black tree: ready to be merged with c1.
bool c0_is_merging;
int tsize; //number of tuples
public:
int64_t tree_bytes; //number of bytes
bool flushing;
//DATA PAGE SETTINGS
pageid_t internal_region_size; // in number of pages
pageid_t datapage_region_size; // "
pageid_t datapage_size; // "
private:
tuplemerger *tmerger;
std::vector<iterator *> its;
mergeStats * c0_stats;
bool still_running_;
public:
template<class ITRA, class ITRN>
class mergeManyIterator {
public:
explicit mergeManyIterator(ITRA* a, ITRN** iters, int num_iters, TUPLE*(*merge)(const TUPLE*,const TUPLE*), int (*cmp)(const TUPLE*,const TUPLE*)) :
num_iters_(num_iters+1),
first_iter_(a),
iters_((ITRN**)malloc(sizeof(*iters_) * num_iters)), // exactly the number passed in
current_((TUPLE**)malloc(sizeof(*current_) * (num_iters_))), // one more than was passed in
last_iter_(-1),
cmp_(cmp),
merge_(merge),
dups((int*)malloc(sizeof(*dups)*num_iters_))
{
current_[0] = first_iter_->next_callerFrees();
for(int i = 1; i < num_iters_; i++) {
iters_[i-1] = iters[i-1];
current_[i] = iters_[i-1] ? iters_[i-1]->next_callerFrees() : NULL;
}
}
~mergeManyIterator() {
delete(first_iter_);
for(int i = 0; i < num_iters_; i++) {
if(i != last_iter_) {
if(current_[i]) TUPLE::freetuple(current_[i]);
}
}
for(int i = 1; i < num_iters_; i++) {
delete iters_[i-1];
}
free(current_);
free(iters_);
free(dups);
}
TUPLE * peek() {
TUPLE * ret = next_callerFrees();
last_iter_ = -1; // don't advance iterator on next peek() or getnext() call.
return ret;
}
TUPLE * next_callerFrees() {
int num_dups = 0;
if(last_iter_ != -1) {
// get the value after the one we just returned to the user
//TUPLE::freetuple(current_[last_iter_]); // should never be null
if(last_iter_ == 0) {
current_[last_iter_] = first_iter_->next_callerFrees();
} else if(last_iter_ != -1){
current_[last_iter_] = iters_[last_iter_-1]->next_callerFrees();
} else {
// last call was 'peek'
}
}
// find the first non-empty iterator. (Don't need to special-case ITRA since we're looking at current.)
int min = 0;
while(min < num_iters_ && !current_[min]) {
min++;
}
if(min == num_iters_) { return NULL; }
// examine current to decide which tuple to return.
for(int i = min+1; i < num_iters_; i++) {
if(current_[i]) {
int res = cmp_(current_[min], current_[i]);
if(res > 0) { // min > i
min = i;
num_dups = 0;
} else if(res == 0) { // min == i
dups[num_dups] = i;
num_dups++;
}
}
}
TUPLE * ret;
if(!merge_) {
ret = current_[min];
} else {
// XXX use merge function to build a new ret.
abort();
}
// advance the iterators that match the tuple we're returning.
for(int i = 0; i < num_dups; i++) {
TUPLE::freetuple(current_[dups[i]]); // should never be null
current_[dups[i]] = iters_[dups[i]-1]->next_callerFrees();
}
last_iter_ = min; // mark the min iter to be advance at the next invocation of next(). This saves us a copy in the non-merging case.
return ret;
}
private:
int num_iters_;
ITRA * first_iter_;
ITRN ** iters_;
TUPLE ** current_;
int last_iter_;
int (*cmp_)(const TUPLE*,const TUPLE*);
TUPLE*(*merge_)(const TUPLE*,const TUPLE*);
// temporary variables initiaized once for effiency
int * dups;
};
class iterator {
public:
explicit iterator(logtable* ltable)
: ltable(ltable),
epoch(ltable->get_epoch()),
merge_it_(NULL),
last_returned(NULL),
key(NULL),
valid(false),
reval_count(0) {
rwlc_readlock(ltable->header_mut);
pthread_mutex_lock(&ltable->rb_mut);
ltable->registerIterator(this);
pthread_mutex_unlock(&ltable->rb_mut);
validate();
// rwlc_unlock(ltable->header_mut);
}
explicit iterator(logtable* ltable,TUPLE *key)
: ltable(ltable),
epoch(ltable->get_epoch()),
merge_it_(NULL),
last_returned(NULL),
key(key),
valid(false),
reval_count(0)
{
rwlc_readlock(ltable->header_mut);
pthread_mutex_lock(&ltable->rb_mut);
ltable->registerIterator(this);
pthread_mutex_unlock(&ltable->rb_mut);
validate();
// rwlc_unlock(ltable->header_mut);
}
~iterator() {
// rwlc_readlock(ltable->header_mut);
pthread_mutex_lock(&ltable->rb_mut);
ltable->forgetIterator(this);
invalidate();
pthread_mutex_unlock(&ltable->rb_mut);
if(last_returned) TUPLE::freetuple(last_returned);
rwlc_unlock(ltable->header_mut);
}
private:
TUPLE * getnextHelper() {
// rwlc_readlock(ltable->header_mut);
revalidate();
TUPLE * tmp = merge_it_->next_callerFrees();
if(last_returned && tmp) {
assert(TUPLE::compare(last_returned->key(), last_returned->keylen(), tmp->key(), tmp->keylen()) < 0);
TUPLE::freetuple(last_returned);
}
last_returned = tmp;
// rwlc_unlock(ltable->header_mut);
return last_returned;
}
public:
TUPLE * getnextIncludingTombstones() {
TUPLE * ret = getnextHelper();
ret = ret ? ret->create_copy() : NULL;
return ret;
}
TUPLE * getnext() {
TUPLE * ret;
while((ret = getnextHelper()) && ret->isDelete()) { } // getNextHelper handles its own memory.
ret = ret ? ret->create_copy() : NULL; // XXX hate making copy! Caller should not manage our memory.
return ret;
}
void invalidate() {
// assert(!trywritelock(ltable->header_lock,0));
if(valid) {
delete merge_it_;
merge_it_ = NULL;
valid = false;
}
}
private:
inline void init_helper();
explicit iterator() { abort(); }
void operator=(iterator & t) { abort(); }
int operator-(iterator & t) { abort(); }
private:
static const int C1 = 0;
static const int C1_MERGEABLE = 1;
static const int C2 = 2;
logtable * ltable;
uint64_t epoch;
typedef mergeManyIterator<
typename memTreeComponent<TUPLE>::batchedRevalidatingIterator,
typename memTreeComponent<TUPLE>::iterator> inner_merge_it_t;
typedef mergeManyIterator<
inner_merge_it_t,
diskTreeComponent::iterator> merge_it_t;
merge_it_t* merge_it_;
TUPLE * last_returned;
TUPLE * key;
bool valid;
int reval_count;
static const int reval_period = 100;
void revalidate() {
if(reval_count == reval_period) {
rwlc_unlock(ltable->header_mut);
reval_count = 0;
rwlc_readlock(ltable->header_mut);
} else {
reval_count++;
}
if(!valid) {
validate();
} else {
assert(epoch == ltable->get_epoch());
}
}
void validate() {
typename memTreeComponent<TUPLE>::batchedRevalidatingIterator * c0_it;
typename memTreeComponent<TUPLE>::iterator *c0_mergeable_it[1];
diskTreeComponent::iterator * disk_it[4];
epoch = ltable->get_epoch();
datatuple *t;
if(last_returned) {
t = last_returned;
} else if(key) {
t = key;
} else {
t = NULL;
}
c0_it = new typename memTreeComponent<TUPLE>::batchedRevalidatingIterator(ltable->get_tree_c0(), 100, &ltable->rb_mut, t);
c0_mergeable_it[0] = new typename memTreeComponent<TUPLE>::iterator (ltable->get_tree_c0_mergeable(), t);
if(ltable->get_tree_c1_prime()) {
disk_it[0] = ltable->get_tree_c1_prime()->open_iterator(t);
} else {
disk_it[0] = NULL;
}
disk_it[1] = ltable->get_tree_c1()->open_iterator(t);
if(ltable->get_tree_c1_mergeable()) {
disk_it[2] = ltable->get_tree_c1_mergeable()->open_iterator(t);
} else {
disk_it[2] = NULL;
}
disk_it[3] = ltable->get_tree_c2()->open_iterator(t);
inner_merge_it_t * inner_merge_it =
new inner_merge_it_t(c0_it, c0_mergeable_it, 1, NULL, TUPLE::compare_obj);
merge_it_ = new merge_it_t(inner_merge_it, disk_it, 4, NULL, TUPLE::compare_obj); // XXX Hardcodes comparator, and does not handle merges
if(last_returned) {
TUPLE * junk = merge_it_->peek();
if(junk && !TUPLE::compare(junk->key(), junk->keylen(), last_returned->key(), last_returned->keylen())) {
// we already returned junk
TUPLE::freetuple(merge_it_->next_callerFrees());
}
}
valid = true;
}
};
};
#endif