stasis-bLSM/mergeManager.cpp
sears 79936da79b loosen some scheduling parameters
git-svn-id: svn+ssh://svn.corp.yahoo.com/yahoo/yrl/labs/pnuts/code/logstore@1467 8dad8b1f-cf64-0410-95b6-bcf113ffbcfe
2010-12-08 19:46:55 +00:00

446 lines
17 KiB
C++

/*
* mergeManager.cpp
*
* Created on: May 19, 2010
* Author: sears
*/
#include "mergeManager.h"
#include "mergeStats.h"
#include "logstore.h"
#include "math.h"
#include "time.h"
mergeStats* mergeManager:: get_merge_stats(int mergeLevel) {
if (mergeLevel == 0) {
return c0;
} else if (mergeLevel == 1) {
return c1;
} else if(mergeLevel == 2) {
return c2;
} else {
abort();
}
}
mergeManager::~mergeManager() {
delete c0;
delete c1;
delete c2;
still_running = false;
pthread_cond_signal(&pp_cond);
pthread_join(pp_thread, 0);
pthread_cond_destroy(&pp_cond);
}
void mergeManager::new_merge(int mergeLevel) {
mergeStats * s = get_merge_stats(mergeLevel);
if(s->merge_level == 0) {
// target_size was set during startup
} else if(s->merge_level == 1) {
assert(c0->target_size);
c1->target_size = (pageid_t)(*ltable->R() * (double)c0->target_size);
assert(c1->target_size);
} else if(s->merge_level == 2) {
// target_size is infinity...
} else { abort(); }
s->new_merge2();
}
void mergeManager::set_c0_size(int64_t size) {
c0->target_size = size;
}
void mergeManager::sleep_on_mini_delta(mergeStats *s, int delta) {
s->mini_delta += delta;
if(/*s->merge_level < 2*/ s->merge_level == 1 && s->mergeable_size && delta) {
int64_t effective_max_delta = (int64_t)(UPDATE_PROGRESS_PERIOD * s->bps);
// if(s->merge_level == 0) { s->base_size = ltable->tree_bytes; }
if(s->mini_delta > effective_max_delta) {
struct timeval now;
gettimeofday(&now, 0);
double now_double = tv_to_double(&now);
double elapsed_delta = now_double - ts_to_double(&s->last_mini_tick);
double slp = UPDATE_PROGRESS_PERIOD - elapsed_delta;
if(slp > 0.001) {
struct timespec sleeptime;
double_to_ts(&sleeptime, slp);
nanosleep(&sleeptime, 0);
printf("%d Sleep A %f\n", s->merge_level, slp);
}
double_to_ts(&s->last_mini_tick, now_double);
s->mini_delta = 0;
}
}
}
void mergeManager::update_progress(mergeStats * s, int delta) {
s->delta += delta;
#if 0
#ifdef NO_SNOWSHOVEL
if(merge_level < 2 && delta) {
#else
if(merge_level == 1 && delta) {
#endif
sleep_on_mini_delta(s, delta);
}
#endif
if((!delta) || s->delta > UPDATE_PROGRESS_DELTA) {
rwlc_writelock(ltable->header_mut);
if(delta) {
s->delta = 0;
if(!s->need_tick) { s->need_tick = 1; }
}
if(s->merge_level == 2
#ifdef NO_SNOWSHOVEL
|| s->merge_level == 1
#endif
) {
if(s->active) {
s->in_progress = ((double)(s->bytes_in_large + s->bytes_in_small)) / (double)(get_merge_stats(s->merge_level-1)->mergeable_size + s->base_size);
} else {
s->in_progress = 0;
}
} else if(s->merge_level == 1) { // C0-C1 merge (c0 is continuously growing...)
if(s->active) {
s->in_progress = ((double)(s->bytes_in_large+s->bytes_in_small)) / (double)(s->base_size+ltable->mean_c0_effective_size);
// if(s->in_progress > 0.95) { s->in_progress = 0.95; }
// assert(s->in_progress > -0.01 && s->in_progress < 1.02);
} else {
s->in_progress = 0;
}
}
#ifdef NO_SNOWSHOVEL
s->current_size = s->base_size + s->bytes_out - s->bytes_in_large;
#else
if(s->merge_level == 0) {
s->current_size = ltable->tree_bytes; // we need to track the number of bytes consumed by the merger; this data is not present in s, so fall back on ltable's aggregate.
} else {
s->current_size = s->base_size + s->bytes_out - s->bytes_in_large;
}
#endif
s->out_progress = ((double)s->current_size) / (double)s->target_size;
struct timeval now;
gettimeofday(&now, 0);
double elapsed_delta = tv_to_double(&now) - ts_to_double(&s->last_tick);
if(elapsed_delta < 0.0000001) { elapsed_delta = 0.0000001; }
s->lifetime_elapsed += elapsed_delta;
s->lifetime_consumed += s->bytes_in_small_delta;
double tau = 60.0; // number of seconds to look back for window computation. (this is the expected mean residence time in an exponential decay model, so the units are not so intuitive...)
double decay = exp((0.0-elapsed_delta)/tau);
double_to_ts(&s->last_tick, tv_to_double(&now));
double window_bps = ((double)s->bytes_in_small_delta) / (double)elapsed_delta;
s->bps = (1.0-decay) * window_bps + decay * s->bps;
s->bytes_in_small_delta = 0;
rwlc_unlock(ltable->header_mut);
}
}
void mergeManager::tick_based_on_merge_progress(mergeStats *s) {
/* model the effect of linux + stasis' write caches; at the end
of this merge, we need to force up to FORCE_INTERVAL bytes
after we think we're done writing the next component. */
int64_t overshoot_fudge = (int64_t)((s->out_progress) * ((double)FORCE_INTERVAL));
/* model the effect of amortizing this computation: we could
become this much more overshot if we don't act now. */
int64_t overshoot_fudge2 = UPDATE_PROGRESS_DELTA;
/* multiply by 2 for good measure. These are 'soft' walls, and
still let writes trickle through. Once we've exhausted the
fudge factors, we'll hit a hard wall, and stop writes
entirely, so it's better to start throttling too early than
too late. */
overshoot_fudge *= 2;
overshoot_fudge2 *= 4;
if(overshoot_fudge > 0.01 * s->target_size) { overshoot_fudge = (int64_t)(0.01 * (double)s->target_size); }
if(overshoot_fudge2 > 0.01 * s->target_size) { overshoot_fudge2 = (int64_t)(0.01 * (double)s->target_size); }
const double max_c0_sleep = 0.1;
const double min_c0_sleep = 0.01;
const double max_c1_sleep = 0.5;
const double min_c1_sleep = 0.1;
double max_sleep = s->merge_level == 0 ? max_c0_sleep : max_c1_sleep;
double min_sleep = s->merge_level == 0 ? min_c0_sleep : min_c1_sleep;
int spin = 0;
double total_sleep = 0.0;
while(1) {
int64_t overshoot = 0;
int64_t overshoot2 = 0;
int64_t raw_overshoot = 0;
double bps;
// This needs to be here (and not in update_progress), since the other guy's in_progress changes while we sleep.
mergeStats * s1;
if(s->merge_level == 0) {
// dead code
s1 = c1;
} else {
s1 = c2;
}
if(s->mergeable_size) { // only apply backpressure if the next merger is not waiting for us
rwlc_readlock(ltable->header_mut);
if(s1->active && s->mergeable_size) {
raw_overshoot = (int64_t)(((double)s->target_size) * (s->out_progress - s1->in_progress));
overshoot = raw_overshoot + overshoot_fudge;
overshoot2 = raw_overshoot + overshoot_fudge2;
bps = s1->bps;
}
rwlc_unlock(ltable->header_mut);
}
if(s->merge_level == 1) {
if(s1->active && s->mergeable_size) {
cur_c1_c2_progress_delta = s1->in_progress - s->out_progress;
} else if(!s->mergeable_size) {
cur_c1_c2_progress_delta = 1;
} else {
// s1 is not active.
cur_c1_c2_progress_delta = 0;
}
}
//#define PP_THREAD_INFO
#ifdef PP_THREAD_INFO
printf("\nMerge thread %d %6f %6f Overshoot: raw=%lld, d=%lld eff=%lld Throttle min(1, %6f) spin %d, total_sleep %6.3f\n", s->merge_level, c0_out_progress, c0_c1_in_progress, raw_overshoot, overshoot_fudge, overshoot, -1.0, spin, total_sleep);
#endif
bool one_threshold = (overshoot > 0 || overshoot2 > 0) || (raw_overshoot > 0);
bool two_threshold = (overshoot > 0 || overshoot2 > 0) && (raw_overshoot > 0);
if(one_threshold && (two_threshold || total_sleep < 0.01)) {
// throttle
// it took "elapsed" seconds to process "tick_length_bytes" mb
double sleeptime = 2.0 * fmax((double)overshoot,(double)overshoot2) / bps;
if(sleeptime < min_sleep) { sleeptime = min_sleep; }
if(sleeptime > max_sleep) { sleeptime = max_sleep; }
spin ++;
total_sleep += sleeptime;
if((spin > 40) || (total_sleep > (max_sleep * 20.0))) {
printf("\nMerge thread %d c0->out=%f c1->in=%f c1->out=%f c2->in=%f\n", s->merge_level, c0->out_progress, c1->in_progress, c1->out_progress, c2->in_progress);
printf("\nMerge thread %d Overshoot: raw=%lld, d=%lld eff=%lld eff2=%lld Throttle min(1, %6f) spin %d, total_sleep %6.3f\n", s->merge_level, (long long)raw_overshoot, (long long)overshoot_fudge, (long long)overshoot, (long long)overshoot2, sleeptime, spin, total_sleep);
}
sleeping[s->merge_level] = true;
struct timespec ts;
double_to_ts(&ts, sleeptime);
nanosleep(&ts, 0);
// printf("%d Sleep B %f\n", s->merge_level, sleeptime);
sleeping[s->merge_level] = false;
update_progress(s1, 0);
} else if(overshoot > 0 || overshoot2 > 0) { // this is our second time around the loop, so remember we're in the hole
s->need_tick ++;
if(s->need_tick > 500) { printf("need tick %d\n", s->need_tick); }
} else { // all is well in the world. we can run worry-free for a while.
s->need_tick = 0;
}
break;
}
}
/**
* This function is invoked periodically by the merge threads. It updates mergeManager's statistics, and applies
* backpressure as necessary.
*
* Here is the backpressure algorithm.
*
* We want to maintain these two invariants:
* - for each byte consumed by the app->c0 threads, a byte is consumed by the c0->c1 merge thread.
* - for each byte consumed by the c0->c1 thread, the c1->c2 thread consumes a byte
*
* More concretely (and taking into account varying values of R):
* capacity(C_i) - current_size(C_i) >= size(C_i_mergeable) - bytes_consumed_by_next_merger
*
* where:
* capacity c0 = c0_queue_size
* capacity c1 = c1_queue_size
*
* current_size(c_i) = sum(bytes_out_delta) - sum(bytes_in_large_delta)
*
* bytes_consumed_by_merger = sum(bytes_in_small_delta)
*/
void mergeManager::tick(mergeStats * s) {
if(s->need_tick) {
#ifdef NO_SNOWSHOVEL
bool snowshovel = false;
#else
bool snowshovel = true;
#endif
if((!snowshovel) || s->merge_level == 1) { // apply backpressure based on merge progress.
tick_based_on_merge_progress(s);
} else if(s->merge_level == 0) {
// Simple backpressure algorithm based on how full C0 is.
// Is C0 bigger than is allowed?
while(ltable->tree_bytes > ltable->max_c0_size) { // can't use s->current_size, since this is the thread that maintains that number...
printf("\nMEMORY OVERRUN!!!! SLEEP!!!!\n");
struct timespec ts;
double_to_ts(&ts, 0.1);
nanosleep(&ts, 0);
}
// Linear backpressure model
s->current_size = ltable->tree_bytes;
s->out_progress = ((double)ltable->tree_bytes)/((double)ltable->max_c0_size);
double delta = ((double)ltable->tree_bytes)/(0.9*(double)ltable->max_c0_size); // 0 <= delta <= 1.111...
delta -= 1.0;
if(delta > 0.00005) {
double slp = 0.001 + 10.0 * delta; //0.0015 < slp < 1.112111..
DEBUG("\nsleeping %0.6f tree_megabytes %0.3f\n", slp, ((double)ltable->tree_bytes)/(1024.0*1024.0));
struct timespec sleeptime;
double_to_ts(&sleeptime, slp);
DEBUG("%d Sleep C %f\n", s->merge_level, slp);
nanosleep(&sleeptime, 0);
}
}
}
}
void mergeManager::read_tuple_from_small_component(int merge_level, datatuple * tup) {
if(tup) {
mergeStats * s = get_merge_stats(merge_level);
(s->num_tuples_in_small)++;
(s->bytes_in_small_delta) += tup->byte_length();
(s->bytes_in_small) += tup->byte_length();
update_progress(s, tup->byte_length());
tick(s);
}
}
void mergeManager::read_tuple_from_large_component(int merge_level, int tuple_count, pageid_t byte_len) {
if(tuple_count) {
mergeStats * s = get_merge_stats(merge_level);
s->num_tuples_in_large += tuple_count;
s->bytes_in_large += byte_len;
update_progress(s, byte_len);
}
}
void mergeManager::wrote_tuple(int merge_level, datatuple * tup) {
mergeStats * s = get_merge_stats(merge_level);
(s->num_tuples_out)++;
(s->bytes_out) += tup->byte_length();
}
void mergeManager::finished_merge(int merge_level) {
update_progress(get_merge_stats(merge_level), 0);
get_merge_stats(merge_level)->active = false;
if(merge_level != 0) {
get_merge_stats(merge_level - 1)->mergeable_size = 0;
update_progress(get_merge_stats(merge_level-1), 0);
}
gettimeofday(&get_merge_stats(merge_level)->done, 0);
update_progress(get_merge_stats(merge_level), 0);
}
void * mergeManager::pretty_print_thread() {
pthread_mutex_t dummy_mut;
pthread_mutex_init(&dummy_mut, 0);
while(still_running) {
struct timeval tv;
gettimeofday(&tv, 0);
struct timespec ts;
double_to_ts(&ts, tv_to_double(&tv)+1.01);
pthread_cond_timedwait(&pp_cond, &dummy_mut, &ts);
if(ltable) {
rwlc_readlock(ltable->header_mut);
pretty_print(stdout);
rwlc_unlock(ltable->header_mut);
}
}
printf("\n");
return 0;
}
void * merge_manager_pretty_print_thread(void * arg) {
mergeManager * m = (mergeManager*)arg;
return m->pretty_print_thread();
}
mergeManager::mergeManager(logtable<datatuple> *ltable):
UPDATE_PROGRESS_PERIOD(0.005),
cur_c1_c2_progress_delta(0.0),
ltable(ltable),
c0(new mergeStats(0, ltable ? ltable->max_c0_size : 10000000)),
c1(new mergeStats(1, (int64_t)(ltable ? ((double)(ltable->max_c0_size) * *ltable->R()) : 100000000.0) )),
c2(new mergeStats(2, 0)) {
struct timeval tv;
gettimeofday(&tv, 0);
sleeping[0] = false;
sleeping[1] = false;
sleeping[2] = false;
double_to_ts(&c0->last_tick, tv_to_double(&tv));
double_to_ts(&c1->last_tick, tv_to_double(&tv));
double_to_ts(&c2->last_tick, tv_to_double(&tv));
still_running = true;
pthread_cond_init(&pp_cond, 0);
pthread_create(&pp_thread, 0, merge_manager_pretty_print_thread, (void*)this);
}
void mergeManager::pretty_print(FILE * out) {
pageid_t mb = 1024 * 1024;
logtable<datatuple> * lt = (logtable<datatuple>*)ltable;
bool have_c0 = false;
bool have_c0m = false;
bool have_c1 = false;
bool have_c1m = false;
bool have_c2 = false;
if(lt) {
have_c0 = NULL != lt->get_tree_c0();
have_c0m = NULL != lt->get_tree_c0_mergeable();
have_c1 = NULL != lt->get_tree_c1();
have_c1m = NULL != lt->get_tree_c1_mergeable() ;
have_c2 = NULL != lt->get_tree_c2();
}
fprintf(out,"[merge progress MB/s window (lifetime)]: app [%s %6lldMB ~ %3.0f%%/%3.0f%% %6.1fsec %4.1f (%4.1f)] %s %s [%s %3.0f%% ~ %3.0f%% %4.1f (%4.1f)] %s %s [%s %3.0f%% %4.1f (%4.1f)] %s ",
c0->active ? "RUN" : "---", (long long)(c0->lifetime_consumed / mb), 100.0 * c0->out_progress, 100.0 * ((double)ltable->tree_bytes)/(double)ltable->max_c0_size, c0->lifetime_elapsed, c0->bps/((double)mb), c0->lifetime_consumed/(((double)mb)*c0->lifetime_elapsed),
have_c0 ? "C0" : "..",
have_c0m ? "C0'" : "...",
c1->active ? "RUN" : "---", 100.0 * c1->in_progress, 100.0 * c1->out_progress, c1->bps/((double)mb), c1->lifetime_consumed/(((double)mb)*c1->lifetime_elapsed),
have_c1 ? "C1" : "..",
have_c1m ? "C1'" : "...",
c2->active ? "RUN" : "---", 100.0 * c2->in_progress, c2->bps/((double)mb), c2->lifetime_consumed/(((double)mb)*c2->lifetime_elapsed),
have_c2 ? "C2" : "..");
// #define PP_SIZES
#ifdef PP_SIZES
fprintf(out, "[target cur base in_small in_large, out, mergeable] C0 %4lld %4lld %4lld %4lld %4lld %4lld %4lld ",
c0->target_size/mb, c0->current_size/mb, c0->base_size/mb, c0->bytes_in_small/mb,
c0->bytes_in_large/mb, c0->bytes_out/mb, c0->mergeable_size/mb);
fprintf(out, "C1 %4lld %4lld %4lld %4lld %4lld %4lld %4lld ",
c1->target_size/mb, c1->current_size/mb, c1->base_size/mb, c1->bytes_in_small/mb,
c1->bytes_in_large/mb, c1->bytes_out/mb, c1->mergeable_size/mb);
fprintf(out, "C2 ---- %4lld %4lld %4lld %4lld %4lld %4lld ",
/*----*/ c2->current_size/mb, c2->base_size/mb, c2->bytes_in_small/mb,
c2->bytes_in_large/mb, c2->bytes_out/mb, c2->mergeable_size/mb);
#endif
// fprintf(out, "Throttle: %6.1f%% (cur) %6.1f%% (overall) ", 100.0*(last_throttle_seconds/(last_elapsed_seconds)), 100.0*(throttle_seconds/(elapsed_seconds)));
// fprintf(out, "C0 size %4lld resident %4lld ",
// 2*c0_queueSize/mb,
// (c0->bytes_out - c0->bytes_in_large)/mb);
// fprintf(out, "C1 size %4lld resident %4lld\r",
// 2*c1_queueSize/mb,
// (c1->bytes_out - c1->bytes_in_large)/mb);
// fprintf(out, "C2 size %4lld\r",
// 2*c2_queueSize/mb);
// fprintf(out, "C1 MB/s (eff; active) %6.1f C2 MB/s %6.1f\r",
// ((double)c1_totalConsumed)/((double)c1_totalWorktime),
// ((double)c2_totalConsumed)/((double)c2_totalWorktime));
fflush(out);
#ifdef NO_SNOWSHOVEL
assert((!c1->active) || (c1->in_progress >= -0.01 && c1->in_progress < 1.02));
#endif
assert((!c2->active) || (c2->in_progress >= -0.01 && c2->in_progress < 1.10));
fprintf(out, "\r");
}