151373d09a
git-svn-id: svn+ssh://svn.corp.yahoo.com/yahoo/yrl/labs/pnuts/code/logstore@792 8dad8b1f-cf64-0410-95b6-bcf113ffbcfe
376 lines
12 KiB
C++
376 lines
12 KiB
C++
#ifndef _LOGSTORE_H_
|
|
#define _LOGSTORE_H_
|
|
|
|
#include <stasis/common.h>
|
|
#undef try
|
|
#undef end
|
|
|
|
#include <vector>
|
|
|
|
#include "diskTreeComponent.h"
|
|
#include "memTreeComponent.h"
|
|
|
|
#include "tuplemerger.h"
|
|
|
|
struct logtable_mergedata;
|
|
|
|
template<class TUPLE>
|
|
class logtable {
|
|
public:
|
|
|
|
class iterator;
|
|
|
|
// We want datapages to be as small as possible, assuming they don't force an extra seek to traverse the bottom level of internal nodes.
|
|
// Internal b-tree mem requirements:
|
|
// - Assume keys are small (compared to stasis pages) so we can ignore all but the bottom level of the tree.
|
|
//
|
|
// |internal nodes| ~= (|key| * |tree|) / (datapage_size * |stasis PAGE_SIZE|)
|
|
//
|
|
// Plugging in the numbers today:
|
|
//
|
|
// 6GB ~= 100B * 500 GB / (datapage_size * 4KB)
|
|
// (100B * 500GB) / (6GB * 4KB) = 2.035
|
|
logtable(pageid_t internal_region_size = 1000, pageid_t datapage_region_size = 10000, pageid_t datapage_size = 2);
|
|
|
|
~logtable();
|
|
|
|
//user access functions
|
|
datatuple * findTuple(int xid, const datatuple::key_t key, size_t keySize);
|
|
|
|
datatuple * findTuple_first(int xid, datatuple::key_t key, size_t keySize);
|
|
|
|
void insertTuple(struct datatuple *tuple);
|
|
|
|
//other class functions
|
|
recordid allocTable(int xid);
|
|
void openTable(int xid, recordid rid);
|
|
void flushTable();
|
|
|
|
static void init_stasis();
|
|
static void deinit_stasis();
|
|
|
|
inline uint64_t get_epoch() { return epoch; }
|
|
|
|
void registerIterator(iterator * it);
|
|
void forgetIterator(iterator * it);
|
|
void bump_epoch() ;
|
|
|
|
inline diskTreeComponent * get_tree_c2(){return tree_c2;}
|
|
inline diskTreeComponent * get_tree_c1(){return tree_c1;}
|
|
inline diskTreeComponent * get_tree_c1_mergeable(){return tree_c1_mergeable;}
|
|
|
|
inline void set_tree_c1(diskTreeComponent *t){tree_c1=t; bump_epoch(); }
|
|
inline void set_tree_c1_mergeable(diskTreeComponent *t){tree_c1_mergeable=t; bump_epoch(); }
|
|
inline void set_tree_c2(diskTreeComponent *t){tree_c2=t; bump_epoch(); }
|
|
|
|
inline memTreeComponent<datatuple>::rbtree_ptr_t get_tree_c0(){return tree_c0;}
|
|
inline memTreeComponent<datatuple>::rbtree_ptr_t get_tree_c0_mergeable(){return tree_c0_mergeable;}
|
|
void set_tree_c0(memTreeComponent<datatuple>::rbtree_ptr_t newtree){tree_c0 = newtree; bump_epoch(); }
|
|
void set_tree_c0_mergeable(memTreeComponent<datatuple>::rbtree_ptr_t newtree){tree_c0_mergeable = newtree; bump_epoch(); }
|
|
|
|
void update_persistent_header(int xid);
|
|
|
|
void setMergeData(logtable_mergedata * mdata);
|
|
logtable_mergedata* getMergeData(){return mergedata;}
|
|
|
|
inline tuplemerger * gettuplemerger(){return tmerger;}
|
|
|
|
public:
|
|
|
|
struct table_header {
|
|
recordid c2_root; //tree root record --> points to the root of the b-tree
|
|
recordid c2_state; //tree state --> describes the regions used by the index tree
|
|
recordid c2_dp_state; //data pages state --> regions used by the data pages
|
|
recordid c1_root;
|
|
recordid c1_state;
|
|
recordid c1_dp_state;
|
|
};
|
|
|
|
logtable_mergedata * mergedata;
|
|
rwl * header_lock;
|
|
|
|
int64_t max_c0_size;
|
|
|
|
inline bool is_still_running() { return still_running_; }
|
|
inline void stop() {
|
|
still_running_ = false;
|
|
// XXX must need to do other things!
|
|
}
|
|
|
|
private:
|
|
recordid table_rec;
|
|
struct table_header tbl_header;
|
|
uint64_t epoch;
|
|
diskTreeComponent *tree_c2; //big tree
|
|
diskTreeComponent *tree_c1; //small tree
|
|
diskTreeComponent *tree_c1_mergeable; //small tree: ready to be merged with c2
|
|
memTreeComponent<datatuple>::rbtree_ptr_t tree_c0; // in-mem red black tree
|
|
memTreeComponent<datatuple>::rbtree_ptr_t tree_c0_mergeable; // in-mem red black tree: ready to be merged with c1.
|
|
|
|
int tsize; //number of tuples
|
|
int64_t tree_bytes; //number of bytes
|
|
|
|
//DATA PAGE SETTINGS
|
|
pageid_t internal_region_size; // in number of pages
|
|
pageid_t datapage_region_size; // "
|
|
pageid_t datapage_size; // "
|
|
|
|
tuplemerger *tmerger;
|
|
|
|
std::vector<iterator *> its;
|
|
|
|
bool still_running_;
|
|
public:
|
|
|
|
template<class ITRA, class ITRN>
|
|
class mergeManyIterator {
|
|
public:
|
|
explicit mergeManyIterator(ITRA* a, ITRN** iters, int num_iters, TUPLE*(*merge)(const TUPLE*,const TUPLE*), int (*cmp)(const TUPLE*,const TUPLE*)) :
|
|
num_iters_(num_iters+1),
|
|
first_iter_(a),
|
|
iters_((ITRN**)malloc(sizeof(*iters_) * num_iters)), // exactly the number passed in
|
|
current_((TUPLE**)malloc(sizeof(*current_) * (num_iters_))), // one more than was passed in
|
|
last_iter_(-1),
|
|
cmp_(cmp),
|
|
merge_(merge),
|
|
dups((int*)malloc(sizeof(*dups)*num_iters_))
|
|
{
|
|
current_[0] = first_iter_->getnext();
|
|
for(int i = 1; i < num_iters_; i++) {
|
|
iters_[i-1] = iters[i-1];
|
|
current_[i] = iters_[i-1] ? iters_[i-1]->next_callerFrees() : NULL;
|
|
}
|
|
}
|
|
~mergeManyIterator() {
|
|
delete(first_iter_);
|
|
for(int i = 0; i < num_iters_; i++) {
|
|
if(i != last_iter_) {
|
|
if(current_[i]) TUPLE::freetuple(current_[i]);
|
|
}
|
|
}
|
|
for(int i = 1; i < num_iters_; i++) {
|
|
delete iters_[i-1];
|
|
}
|
|
free(current_);
|
|
free(iters_);
|
|
free(dups);
|
|
}
|
|
TUPLE * peek() {
|
|
TUPLE * ret = getnext();
|
|
last_iter_ = -1; // don't advance iterator on next peek() or getnext() call.
|
|
return ret;
|
|
}
|
|
TUPLE * getnext() {
|
|
int num_dups = 0;
|
|
if(last_iter_ != -1) {
|
|
// get the value after the one we just returned to the user
|
|
//TUPLE::freetuple(current_[last_iter_]); // should never be null
|
|
if(last_iter_ == 0) {
|
|
current_[last_iter_] = first_iter_->getnext();
|
|
} else if(last_iter_ != -1){
|
|
current_[last_iter_] = iters_[last_iter_-1]->next_callerFrees();
|
|
} else {
|
|
// last call was 'peek'
|
|
}
|
|
}
|
|
// find the first non-empty iterator. (Don't need to special-case ITRA since we're looking at current.)
|
|
int min = 0;
|
|
while(min < num_iters_ && !current_[min]) {
|
|
min++;
|
|
}
|
|
if(min == num_iters_) { return NULL; }
|
|
// examine current to decide which tuple to return.
|
|
for(int i = min+1; i < num_iters_; i++) {
|
|
if(current_[i]) {
|
|
int res = cmp_(current_[min], current_[i]);
|
|
if(res > 0) { // min > i
|
|
min = i;
|
|
num_dups = 0;
|
|
} else if(res == 0) { // min == i
|
|
dups[num_dups] = i;
|
|
num_dups++;
|
|
}
|
|
}
|
|
}
|
|
TUPLE * ret;
|
|
if(!merge_) {
|
|
ret = current_[min];
|
|
} else {
|
|
// XXX use merge function to build a new ret.
|
|
abort();
|
|
}
|
|
// advance the iterators that match the tuple we're returning.
|
|
for(int i = 0; i < num_dups; i++) {
|
|
TUPLE::freetuple(current_[dups[i]]); // should never be null
|
|
current_[dups[i]] = iters_[dups[i]-1]->next_callerFrees();
|
|
}
|
|
last_iter_ = min; // mark the min iter to be advance at the next invocation of next(). This saves us a copy in the non-merging case.
|
|
return ret;
|
|
|
|
}
|
|
private:
|
|
int num_iters_;
|
|
ITRA * first_iter_;
|
|
ITRN ** iters_;
|
|
TUPLE ** current_;
|
|
int last_iter_;
|
|
|
|
|
|
int (*cmp_)(const TUPLE*,const TUPLE*);
|
|
TUPLE*(*merge_)(const TUPLE*,const TUPLE*);
|
|
|
|
// temporary variables initiaized once for effiency
|
|
int * dups;
|
|
|
|
};
|
|
|
|
|
|
class iterator {
|
|
public:
|
|
explicit iterator(logtable* ltable)
|
|
: ltable(ltable),
|
|
epoch(ltable->get_epoch()),
|
|
merge_it_(NULL),
|
|
last_returned(NULL),
|
|
key(NULL),
|
|
valid(false) {
|
|
writelock(ltable->header_lock, 0);
|
|
ltable->registerIterator(this);
|
|
validate();
|
|
unlock(ltable->header_lock);
|
|
}
|
|
|
|
explicit iterator(logtable* ltable,TUPLE *key)
|
|
: ltable(ltable),
|
|
epoch(ltable->get_epoch()),
|
|
merge_it_(NULL),
|
|
last_returned(NULL),
|
|
key(key),
|
|
valid(false)
|
|
{
|
|
writelock(ltable->header_lock, 0);
|
|
ltable->registerIterator(this);
|
|
validate();
|
|
unlock(ltable->header_lock);
|
|
}
|
|
|
|
~iterator() {
|
|
writelock(ltable->header_lock,0);
|
|
ltable->forgetIterator(this);
|
|
invalidate();
|
|
if(last_returned) TUPLE::freetuple(last_returned);
|
|
unlock(ltable->header_lock);
|
|
}
|
|
private:
|
|
TUPLE * getnextHelper() {
|
|
TUPLE * tmp = merge_it_->getnext();
|
|
if(last_returned && tmp) {
|
|
assert(TUPLE::compare(last_returned->key(), last_returned->keylen(), tmp->key(), tmp->keylen()) < 0);
|
|
TUPLE::freetuple(last_returned);
|
|
}
|
|
last_returned = tmp;
|
|
return last_returned;
|
|
}
|
|
public:
|
|
TUPLE * getnextIncludingTombstones() {
|
|
readlock(ltable->header_lock, 0);
|
|
revalidate();
|
|
TUPLE * ret = getnextHelper();
|
|
unlock(ltable->header_lock);
|
|
return ret ? ret->create_copy() : NULL;
|
|
}
|
|
|
|
TUPLE * getnext() {
|
|
readlock(ltable->header_lock, 0);
|
|
revalidate();
|
|
TUPLE * ret;
|
|
while((ret = getnextHelper()) && ret->isDelete()) { } // getNextHelper handles its own memory.
|
|
unlock(ltable->header_lock);
|
|
return ret ? ret->create_copy() : NULL; // XXX hate making copy! Caller should not manage our memory.
|
|
}
|
|
|
|
void invalidate() {
|
|
assert(!trywritelock(ltable->header_lock,0));
|
|
if(valid) {
|
|
delete merge_it_;
|
|
merge_it_ = NULL;
|
|
valid = false;
|
|
}
|
|
}
|
|
|
|
private:
|
|
inline void init_helper();
|
|
|
|
explicit iterator() { abort(); }
|
|
void operator=(iterator & t) { abort(); }
|
|
int operator-(iterator & t) { abort(); }
|
|
|
|
private:
|
|
static const int C1 = 0;
|
|
static const int C1_MERGEABLE = 1;
|
|
static const int C2 = 2;
|
|
logtable * ltable;
|
|
uint64_t epoch;
|
|
typedef mergeManyIterator<
|
|
typename memTreeComponent<TUPLE>::revalidatingIterator,
|
|
typename memTreeComponent<TUPLE>::iterator> inner_merge_it_t;
|
|
typedef mergeManyIterator<
|
|
inner_merge_it_t,
|
|
diskTreeComponent::iterator> merge_it_t;
|
|
|
|
merge_it_t* merge_it_;
|
|
|
|
TUPLE * last_returned;
|
|
TUPLE * key;
|
|
bool valid;
|
|
void revalidate() {
|
|
if(!valid) {
|
|
validate();
|
|
} else {
|
|
assert(epoch == ltable->get_epoch());
|
|
}
|
|
}
|
|
|
|
|
|
void validate() {
|
|
typename memTreeComponent<TUPLE>::revalidatingIterator * c0_it;
|
|
typename memTreeComponent<TUPLE>::iterator *c0_mergeable_it[1];
|
|
diskTreeComponent::iterator * disk_it[3];
|
|
epoch = ltable->get_epoch();
|
|
|
|
datatuple *t;
|
|
if(last_returned) {
|
|
t = last_returned;
|
|
} else if(key) {
|
|
t = key;
|
|
} else {
|
|
t = NULL;
|
|
}
|
|
|
|
c0_it = new typename memTreeComponent<TUPLE>::revalidatingIterator(ltable->get_tree_c0(), ltable->getMergeData()->rbtree_mut, t);
|
|
c0_mergeable_it[0] = new typename memTreeComponent<TUPLE>::iterator (ltable->get_tree_c0_mergeable(), t);
|
|
disk_it[0] = ltable->get_tree_c1()->open_iterator(t);
|
|
if(ltable->get_tree_c1_mergeable()) {
|
|
disk_it[1] = ltable->get_tree_c1_mergeable()->open_iterator(t);
|
|
} else {
|
|
disk_it[1] = NULL;
|
|
}
|
|
disk_it[2] = ltable->get_tree_c2()->open_iterator(t);
|
|
|
|
inner_merge_it_t * inner_merge_it =
|
|
new inner_merge_it_t(c0_it, c0_mergeable_it, 1, NULL, TUPLE::compare_obj);
|
|
merge_it_ = new merge_it_t(inner_merge_it, disk_it, 3, NULL, TUPLE::compare_obj); // XXX Hardcodes comparator, and does not handle merges
|
|
if(last_returned) {
|
|
TUPLE * junk = merge_it_->peek();
|
|
if(junk && !TUPLE::compare(junk->key(), junk->keylen(), last_returned->key(), last_returned->keylen())) {
|
|
// we already returned junk
|
|
TUPLE::freetuple(merge_it_->getnext());
|
|
}
|
|
}
|
|
valid = true;
|
|
}
|
|
};
|
|
|
|
};
|
|
|
|
#endif
|