wterl/c_src/async_nif.h

379 lines
15 KiB
C
Raw Normal View History

/*
* async_nif: An async thread-pool layer for Erlang's NIF API
*
* Copyright (c) 2012 Basho Technologies, Inc. All Rights Reserved.
* Author: Gregory Burd <greg@basho.com> <greg@burd.me>
*
* This file is provided to you under the Apache License,
* Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain
* a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
#ifndef __ASYNC_NIF_H__
#define __ASYNC_NIF_H__
#if defined(__cplusplus)
extern "C" {
#endif
#include "queue.h"
2013-04-14 23:33:14 +00:00
#ifdef ASYNC_NIF_STATS
#include "stats.h"
#endif
#define ASYNC_NIF_MAX_WORKERS 128
struct async_nif_req_entry {
ERL_NIF_TERM ref, *argv;
ErlNifEnv *env;
ErlNifPid pid;
void *args;
void (*fn_work)(ErlNifEnv*, ERL_NIF_TERM, ErlNifPid*, unsigned int, void *);
void (*fn_post)(void *);
STAILQ_ENTRY(async_nif_req_entry) entries;
};
struct async_nif_work_queue {
ErlNifMutex *reqs_mutex;
ErlNifCond *reqs_cnd;
2013-04-14 23:33:14 +00:00
unsigned int depth;
#ifdef ASYNC_NIF_STATS
struct async_stats stats;
#endif
STAILQ_HEAD(reqs, async_nif_req_entry) reqs;
};
struct async_nif_worker_entry {
ErlNifTid tid;
unsigned int worker_id;
struct async_nif_state *async_nif;
struct async_nif_work_queue *q;
};
struct async_nif_state {
unsigned int shutdown;
unsigned int num_workers;
struct async_nif_worker_entry worker_entries[ASYNC_NIF_MAX_WORKERS];
unsigned int num_queues;
unsigned int next_q;
struct async_nif_work_queue queues[ASYNC_NIF_MAX_WORKERS];
};
#define ASYNC_NIF_DECL(decl, frame, pre_block, work_block, post_block) \
struct decl ## _args frame; \
static void fn_work_ ## decl (ErlNifEnv *env, ERL_NIF_TERM ref, ErlNifPid *pid, unsigned int worker_id, struct decl ## _args *args) work_block \
static void fn_post_ ## decl (struct decl ## _args *args) { \
do post_block while(0); \
} \
static ERL_NIF_TERM decl(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv_in[]) { \
struct decl ## _args on_stack_args; \
struct decl ## _args *args = &on_stack_args; \
struct decl ## _args *copy_of_args; \
struct async_nif_req_entry *req = NULL; \
int scheduler_id = 0; \
ErlNifEnv *new_env = NULL; \
/* argv[0] is a ref used for selective recv */ \
/* argv[1] is the current Erlang (scheduler_id - 1) */ \
const ERL_NIF_TERM *argv = argv_in + 2; \
argc -= 2; \
struct async_nif_state *async_nif = (struct async_nif_state*)enif_priv_data(env); \
if (async_nif->shutdown) \
return enif_make_tuple2(env, enif_make_atom(env, "error"), \
enif_make_atom(env, "shutdown")); \
if (!(new_env = enif_alloc_env())) { \
return enif_make_tuple2(env, enif_make_atom(env, "error"), \
enif_make_atom(env, "enomem")); \
} \
do pre_block while(0); \
req = (struct async_nif_req_entry*)enif_alloc(sizeof(struct async_nif_req_entry)); \
if (!req) { \
fn_post_ ## decl (args); \
enif_free_env(new_env); \
return enif_make_tuple2(env, enif_make_atom(env, "error"), \
enif_make_atom(env, "enomem")); \
} \
2013-04-14 23:33:14 +00:00
memset(req, 0, sizeof(struct async_nif_req_entry)); \
copy_of_args = (struct decl ## _args *)enif_alloc(sizeof(struct decl ## _args)); \
if (!copy_of_args) { \
fn_post_ ## decl (args); \
enif_free_env(new_env); \
return enif_make_tuple2(env, enif_make_atom(env, "error"), \
enif_make_atom(env, "enomem")); \
} \
memcpy(copy_of_args, args, sizeof(struct decl ## _args)); \
req->env = new_env; \
req->ref = enif_make_copy(new_env, argv_in[0]); \
enif_self(env, &req->pid); \
req->args = (void*)copy_of_args; \
req->fn_work = (void (*)(ErlNifEnv *, ERL_NIF_TERM, ErlNifPid*, unsigned int, void *))fn_work_ ## decl ; \
req->fn_post = (void (*)(void *))fn_post_ ## decl; \
enif_get_int(env, argv_in[1], &scheduler_id); \
return async_nif_enqueue_req(async_nif, req, scheduler_id); \
}
#define ASYNC_NIF_INIT(name) \
static ErlNifMutex *name##_async_nif_coord = NULL;
#define ASYNC_NIF_LOAD(name, priv) do { \
if (!name##_async_nif_coord) \
name##_async_nif_coord = enif_mutex_create(NULL); \
enif_mutex_lock(name##_async_nif_coord); \
priv = async_nif_load(); \
enif_mutex_unlock(name##_async_nif_coord); \
} while(0);
#define ASYNC_NIF_UNLOAD(name, env) do { \
if (!name##_async_nif_coord) \
name##_async_nif_coord = enif_mutex_create(NULL); \
enif_mutex_lock(name##_async_nif_coord); \
async_nif_unload(env); \
enif_mutex_unlock(name##_async_nif_coord); \
enif_mutex_destroy(name##_async_nif_coord); \
name##_async_nif_coord = NULL; \
} while(0);
#define ASYNC_NIF_UPGRADE(name, env) do { \
if (!name##_async_nif_coord) \
name##_async_nif_coord = enif_mutex_create(NULL); \
enif_mutex_lock(name##_async_nif_coord); \
async_nif_upgrade(env); \
enif_mutex_unlock(name##_async_nif_coord); \
} while(0);
#define ASYNC_NIF_RETURN_BADARG() return enif_make_badarg(env);
#define ASYNC_NIF_WORK_ENV new_env
#define ASYNC_NIF_REPLY(msg) enif_send(NULL, pid, env, enif_make_tuple2(env, ref, msg))
static ERL_NIF_TERM
async_nif_enqueue_req(struct async_nif_state* async_nif, struct async_nif_req_entry *req, int scheduler_id)
{
/* If we're shutting down return an error term and ignore the request. */
if (async_nif->shutdown) {
return enif_make_tuple2(req->env, enif_make_atom(req->env, "error"),
enif_make_atom(req->env, "shutdown"));
}
/* We manage one request queue per-scheduler thread running in the Erlang VM.
Each request is placed onto the queue based on which schdeuler thread
was processing the request. Work queues are balanced only if requests
arrive from a sufficiently random distribution of Erlang scheduler
threads. */
unsigned int qid = async_nif->next_q; // Keep a local to avoid the race.
struct async_nif_work_queue *q = &async_nif->queues[qid];
2013-04-14 23:33:14 +00:00
if (q->depth > 10)
async_nif->next_q = (qid + 1) % async_nif->num_queues;
/* Otherwise, add the request to the work queue. */
enif_mutex_lock(q->reqs_mutex);
STAILQ_INSERT_TAIL(&q->reqs, req, entries);
2013-04-14 23:33:14 +00:00
q->depth++;
//fprintf(stderr, "enqueued %d (%d)\r\n", qid, async_nif->req_count); fflush(stderr);
/* Build the term before releasing the lock so as not to race on the use of
the req pointer. */
ERL_NIF_TERM reply = enif_make_tuple2(req->env, enif_make_atom(req->env, "ok"),
enif_make_tuple2(req->env, enif_make_atom(req->env, "enqueued"),
2013-04-14 23:33:14 +00:00
enif_make_int(req->env, q->depth)));
enif_mutex_unlock(q->reqs_mutex);
enif_cond_signal(q->reqs_cnd);
return reply;
}
static void *
async_nif_worker_fn(void *arg)
{
struct async_nif_worker_entry *we = (struct async_nif_worker_entry *)arg;
unsigned int worker_id = we->worker_id;
struct async_nif_state *async_nif = we->async_nif;
struct async_nif_work_queue *q = we->q;
for(;;) {
struct async_nif_req_entry *req = NULL;
/* Examine the request queue, are there things to be done? */
enif_mutex_lock(q->reqs_mutex);
check_again_for_work:
if (async_nif->shutdown) {
enif_mutex_unlock(q->reqs_mutex);
break;
}
if ((req = STAILQ_FIRST(&q->reqs)) == NULL) {
/* Queue is empty, wait for work */
enif_cond_wait(q->reqs_cnd, q->reqs_mutex);
goto check_again_for_work;
} else {
/* At this point, `req` is ours to execute and we hold the reqs_mutex lock. */
do {
/* Take the request off the queue. */
//fprintf(stderr, "worker %d queue %d performing req (%d)\r\n", worker_id, (worker_id % async_nif->num_queues), async_nif->req_count); fflush(stderr);
STAILQ_REMOVE(&q->reqs, req, async_nif_req_entry, entries);
2013-04-14 23:33:14 +00:00
q->depth--;
enif_mutex_unlock(q->reqs_mutex);
/* Finally, do the work. */
req->fn_work(req->env, req->ref, &req->pid, worker_id, req->args);
req->fn_post(req->args);
enif_free(req->args);
enif_free_env(req->env);
enif_free(req);
/* Continue working if more requests are in the queue, otherwise wait
for new work to arrive. */
if (STAILQ_EMPTY(&q->reqs)) {
req = NULL;
} else {
enif_cond_signal(q->reqs_cnd);
enif_mutex_lock(q->reqs_mutex);
req = STAILQ_FIRST(&q->reqs);
}
} while(req);
}
}
enif_thread_exit(0);
return 0;
}
static void
async_nif_unload(ErlNifEnv *env)
{
unsigned int i;
struct async_nif_state *async_nif = (struct async_nif_state*)enif_priv_data(env);
/* Signal the worker threads, stop what you're doing and exit. */
async_nif->shutdown = 1;
/* Wake up any waiting worker threads. */
for (i = 0; i < async_nif->num_queues; i++) {
struct async_nif_work_queue *q = &async_nif->queues[i];
enif_cond_broadcast(q->reqs_cnd);
}
/* Join for the now exiting worker threads. */
for (i = 0; i < async_nif->num_workers; ++i) {
void *exit_value = 0; /* Ignore this. */
enif_thread_join(async_nif->worker_entries[i].tid, &exit_value);
}
/* Cleanup requests, mutexes and conditions in each work queue. */
for (i = 0; i < async_nif->num_queues; i++) {
struct async_nif_work_queue *q = &async_nif->queues[i];
enif_mutex_destroy(q->reqs_mutex);
enif_cond_destroy(q->reqs_cnd);
/* Worker threads are stopped, now toss anything left in the queue. */
struct async_nif_req_entry *req = NULL;
STAILQ_FOREACH(req, &q->reqs, entries) {
STAILQ_REMOVE(&q->reqs, STAILQ_LAST(&q->reqs, async_nif_req_entry, entries),
async_nif_req_entry, entries);
enif_send(NULL, &req->pid, req->env,
enif_make_tuple2(req->env, enif_make_atom(req->env, "error"),
enif_make_atom(req->env, "shutdown")));
req->fn_post(req->args);
enif_free(req->args);
enif_free(req);
}
}
memset(async_nif, 0, sizeof(struct async_nif_state));
enif_free(async_nif);
}
static void *
async_nif_load(void)
{
static int has_init = 0;
unsigned int i, j;
ErlNifSysInfo info;
struct async_nif_state *async_nif;
/* Don't init more than once. */
if (has_init) return 0;
else has_init = 1;
/* Find out how many schedulers there are. */
enif_system_info(&info, sizeof(ErlNifSysInfo));
/* Init our portion of priv_data's module-specific state. */
async_nif = enif_alloc(sizeof(struct async_nif_state));
if (!async_nif)
return NULL;
memset(async_nif, 0, sizeof(struct async_nif_state));
async_nif->num_queues = info.scheduler_threads;
async_nif->next_q = 0;
async_nif->shutdown = 0;
for (i = 0; i < async_nif->num_queues; i++) {
struct async_nif_work_queue *q = &async_nif->queues[i];
STAILQ_INIT(&q->reqs);
2013-04-14 23:33:14 +00:00
q->depth = 0;
q->reqs_mutex = enif_mutex_create(NULL);
q->reqs_cnd = enif_cond_create(NULL);
}
/* Setup the thread pool management. */
memset(async_nif->worker_entries, 0, sizeof(struct async_nif_worker_entry) * ASYNC_NIF_MAX_WORKERS);
/* Start the worker threads. */
2013-04-14 23:33:14 +00:00
// TODO:
//unsigned int num_workers = ASYNC_NIF_MAX_WORKERS - (ASYNC_NIF_MAX_WORKERS % async_nif->num_queues);
unsigned int num_workers = async_nif->num_queues;
//unsigned int allocation = 1;
//if (num_workers > async_nif->num_queues) {
// allocation = num_workers / async_nif->num_queues;
//}
for (i = 0; i < num_workers; i++) {
struct async_nif_worker_entry *we = &async_nif->worker_entries[i];
we->async_nif = async_nif;
we->worker_id = i;
we->q = &async_nif->queues[i % async_nif->num_queues];
//fprintf(stderr, "%d:%d:%d | allocating worker_id %d to queue %d\r\n", num_workers, async_nif->num_queues, allocation, i, i % async_nif->num_queues); fflush(stderr);
if (enif_thread_create(NULL, &async_nif->worker_entries[i].tid,
&async_nif_worker_fn, (void*)we, NULL) != 0) {
async_nif->shutdown = 1;
for (j = 0; j < async_nif->num_queues; j++) {
struct async_nif_work_queue *q = &async_nif->queues[j];
enif_cond_broadcast(q->reqs_cnd);
enif_mutex_destroy(q->reqs_mutex);
enif_cond_destroy(q->reqs_cnd);
}
while(i-- > 0) {
void *exit_value = 0; /* Ignore this. */
enif_thread_join(async_nif->worker_entries[i].tid, &exit_value);
}
memset(async_nif->worker_entries, 0, sizeof(struct async_nif_worker_entry) * ASYNC_NIF_MAX_WORKERS);
return NULL;
}
}
async_nif->num_workers = i;
return async_nif;
}
static void
async_nif_upgrade(ErlNifEnv *env)
{
// TODO:
}
#if defined(__cplusplus)
}
#endif
#endif // __ASYNC_NIF_H__