Remove the MRU, it wasn't really effective in most cases anyway and complicated logic (and was buggy). For now the cache mutex will be hot, but eventually I hope to move the cache to a lock-free dequeue. khash.h and cas.h aren't used anymore, so they have been removed.

This commit is contained in:
Gregory Burd 2013-07-18 13:14:54 -04:00
parent bbadc81d53
commit 2694cc1dba
3 changed files with 49 additions and 918 deletions

View file

@ -1,159 +0,0 @@
/*
* wterl: an Erlang NIF for WiredTiger
*
* Copyright (c) 2012-2013 Basho Technologies, Inc. All Rights Reserved.
*
* This file is provided to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
*/
/*
* Most of the following source code is copied directly from: "The Lock-Free
* Library" (http://www.cl.cam.ac.uk/research/srg/netos/lock-free/) reused and
* redistrubuted in accordance with their license:
*
* Copyright (c) 2002-2003 K A Fraser, All Rights Reserved.
*
* * Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CAS_H_
#define __CAS_H_
#define CACHE_LINE_SIZE 64
#define ATOMIC_INCR(_v,_newval) \
do { \
__typeof(_v) __val = (_v); \
while ( (_newval = CASIO(&(_v),__val,__val+1)) != __val ) \
__val = _newval; \
} while ( 0 )
#define ATOMIC_ADD_TO(_v,_x) \
do { \
__typeof(_v) __val = (_v), __newval; \
while ( (__newval = CASIO(&(_v),__val,__val+(_x))) != __val ) \
__val = __newval; \
} while ( 0 )
#define ATOMIC_SET_TO(_v,_x) \
do { \
int __val = (_v), __newval; \
while ( (__newval = CASIO(&(_v),__val,__val=(_x))) != __val ) \
__val = __newval; \
} while ( 0 )
#define CACHE_ALIGNED_SIZEOF(_s) \
((sizeof(_s)) + CACHE_LINE_SIZE*2) + \
CACHE_LINE_SIZE - 1) & ~(CACHE_LINE_SIZE-1))) \
/*
* I. Compare-and-swap.
*/
/*
* This is a strong barrier! Reads cannot be delayed beyond a later store.
* Reads cannot be hoisted beyond a LOCK prefix. Stores always in-order.
*/
#define CAS(_a, _o, _n) \
({ __typeof__(_o) __o = _o; \
__asm__ __volatile__( \
"lock cmpxchg %3,%1" \
: "=a" (__o), "=m" (*(volatile unsigned int *)(_a)) \
: "0" (__o), "r" (_n) ); \
__o; \
})
#define FAS(_a, _n) \
({ __typeof__(_n) __o; \
__asm__ __volatile__( \
"lock xchg %0,%1" \
: "=r" (__o), "=m" (*(volatile unsigned int *)(_a)) \
: "0" (_n) ); \
__o; \
})
#define CAS64(_a, _o, _n) \
({ __typeof__(_o) __o = _o; \
__asm__ __volatile__( \
"movl %3, %%ecx;" \
"movl %4, %%ebx;" \
"lock cmpxchg8b %1" \
: "=A" (__o), "=m" (*(volatile unsigned long long *)(_a)) \
: "0" (__o), "m" (_n >> 32), "m" (_n) \
: "ebx", "ecx" ); \
__o; \
})
/* Update Integer location, return Old value. */
#define CASIO CAS
#define FASIO FAS
/* Update Pointer location, return Old value. */
#define CASPO CAS
#define FASPO FAS
/* Update 32/64-bit location, return Old value. */
#define CAS32O CAS
#define CAS64O CAS64
/*
* II. Memory barriers.
* WMB(): All preceding write operations must commit before any later writes.
* RMB(): All preceding read operations must commit before any later reads.
* MB(): All preceding memory accesses must commit before any later accesses.
*
* If the compiler does not observe these barriers (but any sane compiler
* will!), then VOLATILE should be defined as 'volatile'.
*/
#define MB() __asm__ __volatile__ ("lock; addl $0,0(%%esp)" : : : "memory")
#define WMB() __asm__ __volatile__ ("" : : : "memory")
#define RMB() MB()
#define VOLATILE /*volatile*/
/* On Intel, CAS is a strong barrier, but not a compile barrier. */
#define RMB_NEAR_CAS() WMB()
#define WMB_NEAR_CAS() WMB()
#define MB_NEAR_CAS() WMB()
/*
* III. Cycle counter access.
*/
typedef unsigned long long tick_t;
#define RDTICK() \
({ tick_t __t; __asm__ __volatile__ ("rdtsc" : "=A" (__t)); __t; })
#endif /* __CAS_H_ */

View file

@ -1,643 +0,0 @@
/* The MIT License
Copyright (c) 2008, 2009, 2011 by Attractive Chaos <attractor@live.co.uk>
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
/*
An example:
#include "khash.h"
KHASH_MAP_INIT_INT(32, char)
int main() {
int ret, is_missing;
khiter_t k;
khash_t(32) *h = kh_init(32);
k = kh_put(32, h, 5, &ret);
kh_value(h, k) = 10;
k = kh_get(32, h, 10);
is_missing = (k == kh_end(h));
k = kh_get(32, h, 5);
kh_del(32, h, k);
for (k = kh_begin(h); k != kh_end(h); ++k)
if (kh_exist(h, k)) kh_value(h, k) = 1;
kh_destroy(32, h);
return 0;
}
*/
/*
2011-12-29 (0.2.7):
* Minor code clean up; no actual effect.
2011-09-16 (0.2.6):
* The capacity is a power of 2. This seems to dramatically improve the
speed for simple keys. Thank Zilong Tan for the suggestion. Reference:
- http://code.google.com/p/ulib/
- http://nothings.org/computer/judy/
* Allow to optionally use linear probing which usually has better
performance for random input. Double hashing is still the default as it
is more robust to certain non-random input.
* Added Wang's integer hash function (not used by default). This hash
function is more robust to certain non-random input.
2011-02-14 (0.2.5):
* Allow to declare global functions.
2009-09-26 (0.2.4):
* Improve portability
2008-09-19 (0.2.3):
* Corrected the example
* Improved interfaces
2008-09-11 (0.2.2):
* Improved speed a little in kh_put()
2008-09-10 (0.2.1):
* Added kh_clear()
* Fixed a compiling error
2008-09-02 (0.2.0):
* Changed to token concatenation which increases flexibility.
2008-08-31 (0.1.2):
* Fixed a bug in kh_get(), which has not been tested previously.
2008-08-31 (0.1.1):
* Added destructor
*/
#ifndef __AC_KHASH_H
#define __AC_KHASH_H
/*!
@header
Generic hash table library.
*/
#define AC_VERSION_KHASH_H "0.2.6"
#include <stdlib.h>
#include <string.h>
#include <limits.h>
/* compiler specific configuration */
#if UINT_MAX == 0xffffffffu
typedef unsigned int khint32_t;
#elif ULONG_MAX == 0xffffffffu
typedef unsigned long khint32_t;
#endif
#if ULONG_MAX == ULLONG_MAX
typedef unsigned long khint64_t;
#else
typedef unsigned long long khint64_t;
#endif
#ifdef _MSC_VER
#define kh_inline __inline
#else
#define kh_inline inline
#endif
typedef khint32_t khint_t;
typedef khint_t khiter_t;
#define __ac_isempty(flag, i) ((flag[i>>4]>>((i&0xfU)<<1))&2)
#define __ac_isdel(flag, i) ((flag[i>>4]>>((i&0xfU)<<1))&1)
#define __ac_iseither(flag, i) ((flag[i>>4]>>((i&0xfU)<<1))&3)
#define __ac_set_isdel_false(flag, i) (flag[i>>4]&=~(1ul<<((i&0xfU)<<1)))
#define __ac_set_isempty_false(flag, i) (flag[i>>4]&=~(2ul<<((i&0xfU)<<1)))
#define __ac_set_isboth_false(flag, i) (flag[i>>4]&=~(3ul<<((i&0xfU)<<1)))
#define __ac_set_isdel_true(flag, i) (flag[i>>4]|=1ul<<((i&0xfU)<<1))
#ifdef KHASH_LINEAR
#define __ac_inc(k, m) 1
#else
#define __ac_inc(k, m) (((k)>>3 ^ (k)<<3) | 1) & (m)
#endif
#define __ac_fsize(m) ((m) < 16? 1 : (m)>>4)
#ifndef kroundup32
#define kroundup32(x) (--(x), (x)|=(x)>>1, (x)|=(x)>>2, (x)|=(x)>>4, (x)|=(x)>>8, (x)|=(x)>>16, ++(x))
#endif
#ifndef kcalloc
#define kcalloc(N,Z) calloc(N,Z)
#endif
#ifndef kmalloc
#define kmalloc(Z) malloc(Z)
#endif
#ifndef krealloc
#define krealloc(P,Z) realloc(P,Z)
#endif
#ifndef kfree
#define kfree(P) free(P)
#endif
static const double __ac_HASH_UPPER = 0.77;
#define __KHASH_TYPE(name, khkey_t, khval_t) \
typedef struct { \
khint_t n_buckets, size, n_occupied, upper_bound; \
khint32_t *flags; \
khkey_t *keys; \
khval_t *vals; \
} kh_##name##_t;
#define __KHASH_PROTOTYPES(name, khkey_t, khval_t) \
extern kh_##name##_t *kh_init_##name(void); \
extern void kh_destroy_##name(kh_##name##_t *h); \
extern void kh_clear_##name(kh_##name##_t *h); \
extern khint_t kh_get_##name(const kh_##name##_t *h, khkey_t key); \
extern int kh_resize_##name(kh_##name##_t *h, khint_t new_n_buckets); \
extern khint_t kh_put_##name(kh_##name##_t *h, khkey_t key, int *ret); \
extern void kh_del_##name(kh_##name##_t *h, khint_t x);
#define __KHASH_IMPL(name, SCOPE, khkey_t, khval_t, kh_is_map, __hash_func, __hash_equal) \
SCOPE kh_##name##_t *kh_init_##name(void) { \
return (kh_##name##_t*)kcalloc(1, sizeof(kh_##name##_t)); \
} \
SCOPE void kh_destroy_##name(kh_##name##_t *h) \
{ \
if (h) { \
kfree((void *)h->keys); kfree(h->flags); \
kfree((void *)h->vals); \
kfree(h); \
} \
} \
SCOPE void kh_clear_##name(kh_##name##_t *h) \
{ \
if (h && h->flags) { \
memset(h->flags, 0xaa, __ac_fsize(h->n_buckets) * sizeof(khint32_t)); \
h->size = h->n_occupied = 0; \
} \
} \
SCOPE khint_t kh_get_##name(const kh_##name##_t *h, khkey_t key) \
{ \
if (h->n_buckets) { \
khint_t inc, k, i, last, mask; \
mask = h->n_buckets - 1; \
k = __hash_func(key); i = k & mask; \
inc = __ac_inc(k, mask); last = i; /* inc==1 for linear probing */ \
while (!__ac_isempty(h->flags, i) && (__ac_isdel(h->flags, i) || !__hash_equal(h->keys[i], key))) { \
i = (i + inc) & mask; \
if (i == last) return h->n_buckets; \
} \
return __ac_iseither(h->flags, i)? h->n_buckets : i; \
} else return 0; \
} \
SCOPE int kh_resize_##name(kh_##name##_t *h, khint_t new_n_buckets) \
{ /* This function uses 0.25*n_buckets bytes of working space instead of [sizeof(key_t+val_t)+.25]*n_buckets. */ \
khint32_t *new_flags = 0; \
khint_t j = 1; \
{ \
kroundup32(new_n_buckets); \
if (new_n_buckets < 4) new_n_buckets = 4; \
if (h->size >= (khint_t)(new_n_buckets * __ac_HASH_UPPER + 0.5)) j = 0; /* requested size is too small */ \
else { /* hash table size to be changed (shrink or expand); rehash */ \
new_flags = (khint32_t*)kmalloc(__ac_fsize(new_n_buckets) * sizeof(khint32_t)); \
if (!new_flags) return -1; \
memset(new_flags, 0xaa, __ac_fsize(new_n_buckets) * sizeof(khint32_t)); \
if (h->n_buckets < new_n_buckets) { /* expand */ \
khkey_t *new_keys = (khkey_t*)krealloc((void *)h->keys, new_n_buckets * sizeof(khkey_t)); \
if (!new_keys) return -1; \
h->keys = new_keys; \
if (kh_is_map) { \
khval_t *new_vals = (khval_t*)krealloc((void *)h->vals, new_n_buckets * sizeof(khval_t)); \
if (!new_vals) return -1; \
h->vals = new_vals; \
} \
} /* otherwise shrink */ \
} \
} \
if (j) { /* rehashing is needed */ \
for (j = 0; j != h->n_buckets; ++j) { \
if (__ac_iseither(h->flags, j) == 0) { \
khkey_t key = h->keys[j]; \
khval_t val; \
khint_t new_mask; \
new_mask = new_n_buckets - 1; \
if (kh_is_map) val = h->vals[j]; \
__ac_set_isdel_true(h->flags, j); \
while (1) { /* kick-out process; sort of like in Cuckoo hashing */ \
khint_t inc, k, i; \
k = __hash_func(key); \
i = k & new_mask; \
inc = __ac_inc(k, new_mask); \
while (!__ac_isempty(new_flags, i)) i = (i + inc) & new_mask; \
__ac_set_isempty_false(new_flags, i); \
if (i < h->n_buckets && __ac_iseither(h->flags, i) == 0) { /* kick out the existing element */ \
{ khkey_t tmp = h->keys[i]; h->keys[i] = key; key = tmp; } \
if (kh_is_map) { khval_t tmp = h->vals[i]; h->vals[i] = val; val = tmp; } \
__ac_set_isdel_true(h->flags, i); /* mark it as deleted in the old hash table */ \
} else { /* write the element and jump out of the loop */ \
h->keys[i] = key; \
if (kh_is_map) h->vals[i] = val; \
break; \
} \
} \
} \
} \
if (h->n_buckets > new_n_buckets) { /* shrink the hash table */ \
h->keys = (khkey_t*)krealloc((void *)h->keys, new_n_buckets * sizeof(khkey_t)); \
if (kh_is_map) h->vals = (khval_t*)krealloc((void *)h->vals, new_n_buckets * sizeof(khval_t)); \
} \
kfree(h->flags); /* free the working space */ \
h->flags = new_flags; \
h->n_buckets = new_n_buckets; \
h->n_occupied = h->size; \
h->upper_bound = (khint_t)(h->n_buckets * __ac_HASH_UPPER + 0.5); \
} \
return 0; \
} \
SCOPE khint_t kh_put_##name(kh_##name##_t *h, khkey_t key, int *ret) \
{ \
khint_t x; \
if (h->n_occupied >= h->upper_bound) { /* update the hash table */ \
if (h->n_buckets > (h->size<<1)) { \
if (kh_resize_##name(h, h->n_buckets - 1) < 0) { /* clear "deleted" elements */ \
*ret = -1; return h->n_buckets; \
} \
} else if (kh_resize_##name(h, h->n_buckets + 1) < 0) { /* expand the hash table */ \
*ret = -1; return h->n_buckets; \
} \
} /* TODO: to implement automatically shrinking; resize() already support shrinking */ \
{ \
khint_t inc, k, i, site, last, mask = h->n_buckets - 1; \
x = site = h->n_buckets; k = __hash_func(key); i = k & mask; \
if (__ac_isempty(h->flags, i)) x = i; /* for speed up */ \
else { \
inc = __ac_inc(k, mask); last = i; \
while (!__ac_isempty(h->flags, i) && (__ac_isdel(h->flags, i) || !__hash_equal(h->keys[i], key))) { \
if (__ac_isdel(h->flags, i)) site = i; \
i = (i + inc) & mask; \
if (i == last) { x = site; break; } \
} \
if (x == h->n_buckets) { \
if (__ac_isempty(h->flags, i) && site != h->n_buckets) x = site; \
else x = i; \
} \
} \
} \
if (__ac_isempty(h->flags, x)) { /* not present at all */ \
h->keys[x] = key; \
__ac_set_isboth_false(h->flags, x); \
++h->size; ++h->n_occupied; \
*ret = 1; \
} else if (__ac_isdel(h->flags, x)) { /* deleted */ \
h->keys[x] = key; \
__ac_set_isboth_false(h->flags, x); \
++h->size; \
*ret = 2; \
} else *ret = 0; /* Don't touch h->keys[x] if present and not deleted */ \
return x; \
} \
SCOPE void kh_del_##name(kh_##name##_t *h, khint_t x) \
{ \
if (x != h->n_buckets && !__ac_iseither(h->flags, x)) { \
__ac_set_isdel_true(h->flags, x); \
--h->size; \
} \
}
#define KHASH_DECLARE(name, khkey_t, khval_t) \
__KHASH_TYPE(name, khkey_t, khval_t) \
__KHASH_PROTOTYPES(name, khkey_t, khval_t)
#define KHASH_INIT2(name, SCOPE, khkey_t, khval_t, kh_is_map, __hash_func, __hash_equal) \
__KHASH_TYPE(name, khkey_t, khval_t) \
__KHASH_IMPL(name, SCOPE, khkey_t, khval_t, kh_is_map, __hash_func, __hash_equal)
#define KHASH_INIT(name, khkey_t, khval_t, kh_is_map, __hash_func, __hash_equal) \
KHASH_INIT2(name, static kh_inline, khkey_t, khval_t, kh_is_map, __hash_func, __hash_equal)
/* --- BEGIN OF HASH FUNCTIONS --- */
/*! @function
@abstract Integer hash function
@param key The integer [khint32_t]
@return The hash value [khint_t]
*/
#define kh_int_hash_func(key) (khint32_t)(key)
/*! @function
@abstract Integer comparison function
*/
#define kh_int_hash_equal(a, b) ((a) == (b))
/*! @function
@abstract 64-bit integer hash function
@param key The integer [khint64_t]
@return The hash value [khint_t]
*/
#define kh_int64_hash_func(key) (khint32_t)((key)>>33^(key)^(key)<<11)
/*! @function
@abstract 64-bit integer comparison function
*/
#define kh_int64_hash_equal(a, b) ((a) == (b))
/*! @function
@abstract Pointer hash function
@param key The integer void *
@return The hash value [khint_t]
*/
#define kh_ptr_hash_func(key) (khint32_t)(key)
/*! @function
@abstract Pointer comparison function
*/
#define kh_ptr_hash_equal(a, b) ((a) == (b))
/*! @function
@abstract 64-bit pointer hash function
@param key The integer void *
@return The hash value [khint_t]
*/
#define kh_ptr64_hash_func(key) (khint32_t)(((khint64_t)key)>>33^((khint64_t)key)^((khint64_t)key)<<11)
/*! @function
@abstract 64-bit pointer comparison function
*/
#define kh_ptr64_hash_equal(a, b) ((a) == (b))
/*! @function
@abstract const char* hash function
@param s Pointer to a null terminated string
@return The hash value
*/
static kh_inline khint_t __ac_X31_hash_string(const char *s)
{
khint_t h = (khint_t)*s;
if (h) for (++s ; *s; ++s) h = (h << 5) - h + (khint_t)*s;
return h;
}
/*! @function
@abstract Another interface to const char* hash function
@param key Pointer to a null terminated string [const char*]
@return The hash value [khint_t]
*/
#define kh_str_hash_func(key) __ac_X31_hash_string(key)
/*! @function
@abstract Const char* comparison function
*/
#define kh_str_hash_equal(a, b) (strcmp(a, b) == 0)
static kh_inline khint_t __ac_Wang_hash(khint_t key)
{
key += ~(key << 15);
key ^= (key >> 10);
key += (key << 3);
key ^= (key >> 6);
key += ~(key << 11);
key ^= (key >> 16);
return key;
}
#define kh_int_hash_func2(k) __ac_Wang_hash((khint_t)key)
/* --- END OF HASH FUNCTIONS --- */
/* Other convenient macros... */
/*!
@abstract Type of the hash table.
@param name Name of the hash table [symbol]
*/
#define khash_t(name) kh_##name##_t
/*! @function
@abstract Initiate a hash table.
@param name Name of the hash table [symbol]
@return Pointer to the hash table [khash_t(name)*]
*/
#define kh_init(name) kh_init_##name()
/*! @function
@abstract Destroy a hash table.
@param name Name of the hash table [symbol]
@param h Pointer to the hash table [khash_t(name)*]
*/
#define kh_destroy(name, h) kh_destroy_##name(h)
/*! @function
@abstract Reset a hash table without deallocating memory.
@param name Name of the hash table [symbol]
@param h Pointer to the hash table [khash_t(name)*]
*/
#define kh_clear(name, h) kh_clear_##name(h)
/*! @function
@abstract Resize a hash table.
@param name Name of the hash table [symbol]
@param h Pointer to the hash table [khash_t(name)*]
@param s New size [khint_t]
*/
#define kh_resize(name, h, s) kh_resize_##name(h, s)
/*! @function
@abstract Insert a key to the hash table.
@param name Name of the hash table [symbol]
@param h Pointer to the hash table [khash_t(name)*]
@param k Key [type of keys]
@param r Extra return code: 0 if the key is present in the hash table;
1 if the bucket is empty (never used); 2 if the element in
the bucket has been deleted [int*]
@return Iterator to the inserted element [khint_t]
*/
#define kh_put(name, h, k, r) kh_put_##name(h, k, r)
/*! @function
@abstract Retrieve a key from the hash table.
@param name Name of the hash table [symbol]
@param h Pointer to the hash table [khash_t(name)*]
@param k Key [type of keys]
@return Iterator to the found element, or kh_end(h) if the element is absent [khint_t]
*/
#define kh_get(name, h, k) kh_get_##name(h, k)
/*! @function
@abstract Remove a key from the hash table.
@param name Name of the hash table [symbol]
@param h Pointer to the hash table [khash_t(name)*]
@param k Iterator to the element to be deleted [khint_t]
*/
#define kh_del(name, h, k) kh_del_##name(h, k)
/*! @function
@abstract Test whether a bucket contains data.
@param h Pointer to the hash table [khash_t(name)*]
@param x Iterator to the bucket [khint_t]
@return 1 if containing data; 0 otherwise [int]
*/
#define kh_exist(h, x) (!__ac_iseither((h)->flags, (x)))
/*! @function
@abstract Get key given an iterator
@param h Pointer to the hash table [khash_t(name)*]
@param x Iterator to the bucket [khint_t]
@return Key [type of keys]
*/
#define kh_key(h, x) ((h)->keys[x])
/*! @function
@abstract Get value given an iterator
@param h Pointer to the hash table [khash_t(name)*]
@param x Iterator to the bucket [khint_t]
@return Value [type of values]
@discussion For hash sets, calling this results in segfault.
*/
#define kh_val(h, x) ((h)->vals[x])
/*! @function
@abstract Alias of kh_val()
*/
#define kh_value(h, x) ((h)->vals[x])
/*! @function
@abstract Get the start iterator
@param h Pointer to the hash table [khash_t(name)*]
@return The start iterator [khint_t]
*/
#define kh_begin(h) (khint_t)(0)
/*! @function
@abstract Get the end iterator
@param h Pointer to the hash table [khash_t(name)*]
@return The end iterator [khint_t]
*/
#define kh_end(h) ((h)->n_buckets)
/*! @function
@abstract Get the number of elements in the hash table
@param h Pointer to the hash table [khash_t(name)*]
@return Number of elements in the hash table [khint_t]
*/
#define kh_size(h) ((h)->size)
/*! @function
@abstract Get the number of buckets in the hash table
@param h Pointer to the hash table [khash_t(name)*]
@return Number of buckets in the hash table [khint_t]
*/
#define kh_n_buckets(h) ((h)->n_buckets)
/*! @function
@abstract Iterate over the entries in the hash table
@param h Pointer to the hash table [khash_t(name)*]
@param kvar Variable to which key will be assigned
@param vvar Variable to which value will be assigned
@param code Block of code to execute
*/
#define kh_foreach(h, kvar, vvar, code) { khint_t __i; \
for (__i = kh_begin(h); __i != kh_end(h); ++__i) { \
if (!kh_exist(h,__i)) continue; \
(kvar) = kh_key(h,__i); \
(vvar) = kh_val(h,__i); \
code; \
} }
/*! @function
@abstract Iterate over the values in the hash table
@param h Pointer to the hash table [khash_t(name)*]
@param vvar Variable to which value will be assigned
@param code Block of code to execute
*/
#define kh_foreach_value(h, vvar, code) { khint_t __i; \
for (__i = kh_begin(h); __i != kh_end(h); ++__i) { \
if (!kh_exist(h,__i)) continue; \
(vvar) = kh_val(h,__i); \
code; \
} }
/* More conenient interfaces */
/*! @function
@abstract Instantiate a hash map containing (void *) keys
@param name Name of the hash table [symbol]
@param khval_t Type of values [type]
*/
#ifdef __x86_64__
#define KHASH_MAP_INIT_PTR(name, khval_t) \
KHASH_INIT(name, void*, khval_t, 1, kh_ptr64_hash_func, kh_ptr64_hash_equal)
#else
#define KHASH_MAP_INIT_PTR(name, khval_t) \
KHASH_INIT(name, void*, khval_t, 1, kh_ptr_hash_func, kh_ptr_hash_equal)
#endif
/*! @function
@abstract Instantiate a hash set containing integer keys
@param name Name of the hash table [symbol]
*/
#define KHASH_SET_INIT_INT(name) \
KHASH_INIT(name, khint32_t, char, 0, kh_int_hash_func, kh_int_hash_equal)
/*! @function
@abstract Instantiate a hash map containing integer keys
@param name Name of the hash table [symbol]
@param khval_t Type of values [type]
*/
#define KHASH_MAP_INIT_INT(name, khval_t) \
KHASH_INIT(name, khint32_t, khval_t, 1, kh_int_hash_func, kh_int_hash_equal)
/*! @function
@abstract Instantiate a hash map containing 64-bit integer keys
@param name Name of the hash table [symbol]
*/
#define KHASH_SET_INIT_INT64(name) \
KHASH_INIT(name, khint64_t, char, 0, kh_int64_hash_func, kh_int64_hash_equal)
/*! @function
@abstract Instantiate a hash map containing 64-bit integer keys
@param name Name of the hash table [symbol]
@param khval_t Type of values [type]
*/
#define KHASH_MAP_INIT_INT64(name, khval_t) \
KHASH_INIT(name, khint64_t, khval_t, 1, kh_int64_hash_func, kh_int64_hash_equal)
typedef const char *kh_cstr_t;
/*! @function
@abstract Instantiate a hash map containing const char* keys
@param name Name of the hash table [symbol]
*/
#define KHASH_SET_INIT_STR(name) \
KHASH_INIT(name, kh_cstr_t, char, 0, kh_str_hash_func, kh_str_hash_equal)
/*! @function
@abstract Instantiate a hash map containing const char* keys
@param name Name of the hash table [symbol]
@param khval_t Type of values [type]
*/
#define KHASH_MAP_INIT_STR(name, khval_t) \
KHASH_INIT(name, kh_cstr_t, khval_t, 1, kh_str_hash_func, kh_str_hash_equal)
#endif /* __AC_KHASH_H */

View file

@ -60,7 +60,6 @@ typedef struct wterl_conn {
STAILQ_HEAD(ctxs, wterl_ctx) cache;
ErlNifMutex *cache_mutex;
uint32_t cache_size;
struct wterl_ctx *mru_ctx[ASYNC_NIF_MAX_WORKERS];
} WterlConnHandle;
typedef struct {
@ -288,6 +287,7 @@ __retain_ctx(WterlConnHandle *conn_handle, uint32_t worker_id,
struct wterl_ctx **ctx,
int count, const char *session_config, ...)
{
UNUSED(worker_id);
int i = 0;
uint32_t hash = 0;
uint32_t crc = 0;
@ -324,74 +324,50 @@ __retain_ctx(WterlConnHandle *conn_handle, uint32_t worker_id,
DPRINTF("sig %llu [%u:%u]", PRIuint64(sig), crc, hash);
va_end(ap);
*ctx = NULL;
c = conn_handle->mru_ctx[worker_id];
if (CASPO(&conn_handle->mru_ctx[worker_id], c, 0) == c) {
if (c == 0) {
// mru miss:
DPRINTF("[%.4u] mru miss, empty", worker_id);
*ctx = NULL;
} else {
if (c->sig == sig) {
// mru hit:
DPRINTF("[%.4u] mru hit: %llu found", worker_id, PRIuint64(sig));
*ctx = c;
} else {
// mru mismatch:
DPRINTF("[%.4u] mru miss: %llu != %llu", worker_id, PRIuint64(sig), PRIuint64(c->sig));
__ctx_cache_add(conn_handle, c);
*ctx = NULL;
}
}
}
if (*ctx == NULL) {
// check the cache
(*ctx) = __ctx_cache_find(conn_handle, sig);
if ((*ctx) == NULL) {
// cache miss:
DPRINTF("[%.4u] cache miss: %llu [cache size: %d]", worker_id, PRIuint64(sig), conn_handle->cache_size);
WT_CONNECTION *conn = conn_handle->conn;
WT_SESSION *session = NULL;
int rc = conn->open_session(conn, NULL, session_config, &session);
if (rc != 0) {
return rc;
}
size_t s = sizeof(struct wterl_ctx) + (count * sizeof(struct cursor_info)) + sig_len;
*ctx = enif_alloc(s); // TODO: enif_alloc_resource()
if (*ctx == NULL) {
session->close(session, NULL);
return ENOMEM;
}
memset(*ctx, 0, s);
(*ctx)->sig = sig;
(*ctx)->session = session;
(*ctx)->sig_len = sig_len;
char *p = (char *)(*ctx) + (s - sig_len);
(*ctx)->session_config = __copy_str_into(&p, session_config);
(*ctx)->num_cursors = count;
session_config = arg;
va_start(ap, session_config);
for (i = 0; i < count; i++) {
const char *uri = va_arg(ap, const char *);
const char *config = va_arg(ap, const char *);
// TODO: what to do (if anything) when uri or config is NULL?
(*ctx)->ci[i].uri = __copy_str_into(&p, uri);
(*ctx)->ci[i].config = __copy_str_into(&p, config);
rc = session->open_cursor(session, uri, NULL, config, &(*ctx)->ci[i].cursor);
if (rc != 0) {
enif_free(*ctx);
session->close(session, NULL); // this will free the cursors too
return rc;
}
}
va_end(ap);
} else {
// cache hit:
DPRINTF("[%.4u] cache hit: %llu [cache size: %d]", worker_id, PRIuint64(sig), conn_handle->cache_size);
}
// check the cache
c = __ctx_cache_find(conn_handle, sig);
if (c == NULL) {
// cache miss:
DPRINTF("[%.4u] cache miss: %llu [cache size: %d]", worker_id, PRIuint64(sig), conn_handle->cache_size);
WT_CONNECTION *conn = conn_handle->conn;
WT_SESSION *session = NULL;
int rc = conn->open_session(conn, NULL, session_config, &session);
if (rc != 0) return rc;
size_t s = sizeof(struct wterl_ctx) + (count * sizeof(struct cursor_info)) + sig_len;
c = enif_alloc(s); // TODO: enif_alloc_resource()
if (c == NULL) {
session->close(session, NULL);
return ENOMEM;
}
memset(c, 0, s);
c->sig = sig;
c->session = session;
c->sig_len = sig_len;
char *p = (char *)c + (s - sig_len);
c->session_config = __copy_str_into(&p, session_config);
c->num_cursors = count;
session_config = arg;
va_start(ap, session_config);
for (i = 0; i < count; i++) {
const char *uri = va_arg(ap, const char *);
const char *config = va_arg(ap, const char *);
// TODO: what to do (if anything) when uri or config is NULL?
c->ci[i].uri = __copy_str_into(&p, uri);
c->ci[i].config = __copy_str_into(&p, config);
rc = session->open_cursor(session, uri, NULL, config, &c->ci[i].cursor);
if (rc != 0) {
enif_free(c);
session->close(session, NULL); // this will free the cursors too
va_end(ap);
return rc;
}
}
va_end(ap);
} else {
// cache hit:
DPRINTF("[%.4u] cache hit: %llu [cache size: %d]", worker_id, PRIuint64(sig), conn_handle->cache_size);
}
*ctx = c;
return 0;
}
@ -401,27 +377,16 @@ __retain_ctx(WterlConnHandle *conn_handle, uint32_t worker_id,
static void
__release_ctx(WterlConnHandle *conn_handle, uint32_t worker_id, struct wterl_ctx *ctx)
{
UNUSED(worker_id);
uint32_t i;
WT_CURSOR *cursor;
struct wterl_ctx *c = NULL;
for (i = 0; i < ctx->num_cursors; i++) {
cursor = ctx->ci[i].cursor;
cursor->reset(cursor);
}
c = conn_handle->mru_ctx[worker_id];
if (CASPO(&conn_handle->mru_ctx[worker_id], c, ctx) != c) {
__ctx_cache_add(conn_handle, ctx);
DPRINTF("[%.4u] reset %d cursors, returnd ctx to cache", worker_id, ctx->num_cursors);
} else {
if (c != NULL) {
__ctx_cache_add(conn_handle, c);
DPRINTF("[%.4u] reset %d cursors, returned ctx to cache", worker_id, ctx->num_cursors);
} else {
DPRINTF("[%.4u] reset %d cursors, returned ctx to mru", worker_id, ctx->num_cursors);
}
}
__ctx_cache_add(conn_handle, ctx);
DPRINTF("[%.4u] reset %d cursors, returnd ctx to cache", worker_id, ctx->num_cursors);
}
/**
@ -433,19 +398,6 @@ void
__close_all_sessions(WterlConnHandle *conn_handle)
{
struct wterl_ctx *c, *n;
int worker_id;
// clear out the mru
for (worker_id = 0; worker_id < ASYNC_NIF_MAX_WORKERS; worker_id++) {
do {
c = conn_handle->mru_ctx[worker_id];
} while(CASPO(&conn_handle->mru_ctx[worker_id], c, 0) != c);
if (c != 0) {
c->session->close(c->session, NULL);
enif_free(c);
}
}
// clear out the cache
c = STAILQ_FIRST(&conn_handle->cache);
@ -468,28 +420,9 @@ void
__close_cursors_on(WterlConnHandle *conn_handle, const char *uri)
{
struct wterl_ctx *c, *n;
int worker_id, idx, cnt;
int idx, cnt;
// walk the mru first, look for open cursors on matching uri
for (worker_id = 0; worker_id < ASYNC_NIF_MAX_WORKERS; worker_id++) {
c = conn_handle->mru_ctx[worker_id];
if (CASPO(&conn_handle->mru_ctx[worker_id], c, 0) == c && c != 0) {
cnt = c->num_cursors;
for(idx = 0; idx < cnt; idx++) {
if (!strcmp(c->ci[idx].uri, uri)) {
c->session->close(c->session, NULL);
enif_free(c);
break;
} else {
if (CASPO(&conn_handle->mru_ctx[worker_id], 0, c) != 0) {
__ctx_cache_add(conn_handle, c);
}
}
}
}
}
// next we walk the cache, look for open cursors on matching uri
// walk the entries in the cache, look for open cursors on matching uri
c = STAILQ_FIRST(&conn_handle->cache);
while (c != NULL) {
n = STAILQ_NEXT(c, entries);