WIP: replcae the kbtree with khash, we don't need the tree features (yet, if ever) and hash is faster; add a most-recently-used stash for contexts as it's highly likely that worker threads will do many operations with the same shape/signature of session/cursors/tables/config and that path can be lock-free as well making it much faster (one would hope); somewhere something is stepping on read-only ErlNifBinary data and so a crc check is failing and causing the runtime to abort, that's the latest item to find/fix.

This commit is contained in:
Gregory Burd 2013-06-04 14:45:23 -04:00
parent b002294c4e
commit f1b7d8322d
6 changed files with 176 additions and 696 deletions

View file

@ -34,7 +34,7 @@ extern "C" {
#define UNUSED(v) ((void)(v))
#endif
#define ASYNC_NIF_MAX_WORKERS 1024
#define ASYNC_NIF_MAX_WORKERS 512
#define ASYNC_NIF_WORKER_QUEUE_SIZE 500
#define ASYNC_NIF_MAX_QUEUED_REQS 1000 * ASYNC_NIF_MAX_WORKERS
@ -278,8 +278,8 @@ async_nif_enqueue_req(struct async_nif_state* async_nif, struct async_nif_req_en
performing the request). */
ERL_NIF_TERM reply = enif_make_tuple2(req->env, enif_make_atom(req->env, "ok"),
enif_make_atom(req->env, "enqueued"));
enif_mutex_unlock(q->reqs_mutex);
enif_cond_signal(q->reqs_cnd);
enif_mutex_unlock(q->reqs_mutex);
return reply;
}
@ -314,11 +314,11 @@ async_nif_worker_fn(void *arg)
/* At this point the next req is ours to process and we hold the
reqs_mutex lock. Take the request off the queue. */
req = fifo_q_get(reqs, q->reqs);
enif_mutex_unlock(q->reqs_mutex);
/* Ensure that there is at least one other worker thread watching this
queue. */
enif_cond_signal(q->reqs_cnd);
enif_mutex_unlock(q->reqs_mutex);
/* Perform the work. */
req->fn_work(req->env, req->ref, &req->pid, worker_id, req->args);

View file

@ -24,7 +24,7 @@
extern "C" {
#endif
#define DEBUG 1
#if !(__STDC_VERSION__ >= 199901L || defined(__GNUC__))
# undef DEBUG
# define DEBUG 0

View file

@ -1,507 +0,0 @@
/*-
* Copyright 1997-1999, 2001, John-Mark Gurney.
* 2008-2009, Attractive Chaos <attractor@live.co.uk>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef __AC_KBTREE_H
#define __AC_KBTREE_H
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
typedef struct {
int32_t is_internal:1, n:31;
} kbnode_t;
#define __KB_KEY(type, x) ((type*)((char*)x + 4))
#define __KB_PTR(btr, x) ((kbnode_t**)((char*)x + btr->off_ptr))
#define __KB_TREE_T(name) \
typedef struct { \
kbnode_t *root; \
int off_key, off_ptr, ilen, elen; \
int n, t; \
int n_keys, n_nodes; \
} kbtree_##name##_t;
#define __KB_INIT(name, key_t) \
kbtree_##name##_t *kb_init_##name(int size) \
{ \
kbtree_##name##_t *b; \
b = (kbtree_##name##_t*)calloc(1, sizeof(kbtree_##name##_t)); \
b->t = ((size - 4 - sizeof(void*)) / (sizeof(void*) + sizeof(key_t)) + 1) >> 1; \
if (b->t < 2) { \
free(b); return 0; \
} \
b->n = 2 * b->t - 1; \
b->off_ptr = 4 + b->n * sizeof(key_t); \
b->ilen = (4 + sizeof(void*) + b->n * (sizeof(void*) + sizeof(key_t)) + 3) >> 2 << 2; \
b->elen = (b->off_ptr + 3) >> 2 << 2; \
b->root = (kbnode_t*)calloc(1, b->ilen); \
++b->n_nodes; \
return b; \
}
#define __kb_destroy(b) do { \
int i, max = 8; \
kbnode_t *x, **top, **stack = 0; \
if (b) { \
top = stack = (kbnode_t**)calloc(max, sizeof(kbnode_t*)); \
*top++ = (b)->root; \
while (top != stack) { \
x = *--top; \
if (x->is_internal == 0) { free(x); continue; } \
for (i = 0; i <= x->n; ++i) \
if (__KB_PTR(b, x)[i]) { \
if (top - stack == max) { \
max <<= 1; \
stack = (kbnode_t**)realloc(stack, max * sizeof(kbnode_t*)); \
top = stack + (max>>1); \
} \
*top++ = __KB_PTR(b, x)[i]; \
} \
free(x); \
} \
} \
free(b); free(stack); \
} while (0)
#define __kb_get_first(key_t, b, ret) do { \
kbnode_t *__x = (b)->root; \
while (__KB_PTR(b, __x)[0] != 0) \
__x = __KB_PTR(b, __x)[0]; \
(ret) = __KB_KEY(key_t, __x)[0]; \
} while (0)
#define __KB_GET_AUX0(name, key_t, __cmp) \
static inline int __kb_get_aux_##name(const kbnode_t * __restrict x, const key_t * __restrict k, int *r) \
{ \
int tr, *rr, begin, end, n = x->n >> 1; \
if (x->n == 0) return -1; \
if (__cmp(*k, __KB_KEY(key_t, x)[n]) < 0) { \
begin = 0; end = n; \
} else { begin = n; end = x->n - 1; } \
rr = r? r : &tr; \
n = end; \
while (n >= begin && (*rr = __cmp(*k, __KB_KEY(key_t, x)[n])) < 0) --n; \
return n; \
}
#define __KB_GET_AUX1(name, key_t, __cmp) \
static inline int __kb_getp_aux_##name(const kbnode_t * __restrict x, const key_t * __restrict k, int *r) \
{ \
int tr, *rr, begin = 0, end = x->n; \
if (x->n == 0) return -1; \
rr = r? r : &tr; \
while (begin < end) { \
int mid = (begin + end) >> 1; \
if (__cmp(__KB_KEY(key_t, x)[mid], *k) < 0) begin = mid + 1; \
else end = mid; \
} \
if (begin == x->n) { *rr = 1; return x->n - 1; } \
if ((*rr = __cmp(*k, __KB_KEY(key_t, x)[begin])) < 0) --begin; \
return begin; \
}
#define __KB_GET(name, key_t) \
static key_t *kb_getp_##name(kbtree_##name##_t *b, const key_t * __restrict k) \
{ \
int i, r = 0; \
kbnode_t *x = b->root; \
while (x) { \
i = __kb_getp_aux_##name(x, k, &r); \
if (i >= 0 && r == 0) return &__KB_KEY(key_t, x)[i]; \
if (x->is_internal == 0) return 0; \
x = __KB_PTR(b, x)[i + 1]; \
} \
return 0; \
} \
static inline key_t *kb_get_##name(kbtree_##name##_t *b, const key_t k) \
{ \
return kb_getp_##name(b, &k); \
}
#define __KB_INTERVAL(name, key_t) \
static void kb_intervalp_##name(kbtree_##name##_t *b, const key_t * __restrict k, key_t **lower, key_t **upper) \
{ \
int i, r = 0; \
kbnode_t *x = b->root; \
*lower = *upper = 0; \
while (x) { \
i = __kb_getp_aux_##name(x, k, &r); \
if (i >= 0 && r == 0) { \
*lower = *upper = &__KB_KEY(key_t, x)[i]; \
return; \
} \
if (i >= 0) *lower = &__KB_KEY(key_t, x)[i]; \
if (i < x->n - 1) *upper = &__KB_KEY(key_t, x)[i + 1]; \
if (x->is_internal == 0) return; \
x = __KB_PTR(b, x)[i + 1]; \
} \
} \
static inline void kb_interval_##name(kbtree_##name##_t *b, const key_t k, key_t **lower, key_t **upper) \
{ \
kb_intervalp_##name(b, &k, lower, upper); \
}
#define __KB_PUT(name, key_t, __cmp) \
/* x must be an internal node */ \
static void __kb_split_##name(kbtree_##name##_t *b, kbnode_t *x, int i, kbnode_t *y) \
{ \
kbnode_t *z; \
z = (kbnode_t*)calloc(1, y->is_internal? b->ilen : b->elen); \
++b->n_nodes; \
z->is_internal = y->is_internal; \
z->n = b->t - 1; \
memcpy(__KB_KEY(key_t, z), __KB_KEY(key_t, y) + b->t, sizeof(key_t) * (b->t - 1)); \
if (y->is_internal) memcpy(__KB_PTR(b, z), __KB_PTR(b, y) + b->t, sizeof(void*) * b->t); \
y->n = b->t - 1; \
memmove(__KB_PTR(b, x) + i + 2, __KB_PTR(b, x) + i + 1, sizeof(void*) * (x->n - i)); \
__KB_PTR(b, x)[i + 1] = z; \
memmove(__KB_KEY(key_t, x) + i + 1, __KB_KEY(key_t, x) + i, sizeof(key_t) * (x->n - i)); \
__KB_KEY(key_t, x)[i] = __KB_KEY(key_t, y)[b->t - 1]; \
++x->n; \
} \
static void __kb_putp_aux_##name(kbtree_##name##_t *b, kbnode_t *x, const key_t * __restrict k) \
{ \
int i = x->n - 1; \
if (x->is_internal == 0) { \
i = __kb_getp_aux_##name(x, k, 0); \
if (i != x->n - 1) \
memmove(__KB_KEY(key_t, x) + i + 2, __KB_KEY(key_t, x) + i + 1, (x->n - i - 1) * sizeof(key_t)); \
__KB_KEY(key_t, x)[i + 1] = *k; \
++x->n; \
} else { \
i = __kb_getp_aux_##name(x, k, 0) + 1; \
if (__KB_PTR(b, x)[i]->n == 2 * b->t - 1) { \
__kb_split_##name(b, x, i, __KB_PTR(b, x)[i]); \
if (__cmp(*k, __KB_KEY(key_t, x)[i]) > 0) ++i; \
} \
__kb_putp_aux_##name(b, __KB_PTR(b, x)[i], k); \
} \
} \
static void kb_putp_##name(kbtree_##name##_t *b, const key_t * __restrict k) \
{ \
kbnode_t *r, *s; \
++b->n_keys; \
r = b->root; \
if (r->n == 2 * b->t - 1) { \
++b->n_nodes; \
s = (kbnode_t*)calloc(1, b->ilen); \
b->root = s; s->is_internal = 1; s->n = 0; \
__KB_PTR(b, s)[0] = r; \
__kb_split_##name(b, s, 0, r); \
r = s; \
} \
__kb_putp_aux_##name(b, r, k); \
} \
static inline void kb_put_##name(kbtree_##name##_t *b, const key_t k) \
{ \
kb_putp_##name(b, &k); \
}
#define __KB_DEL(name, key_t) \
static key_t __kb_delp_aux_##name(kbtree_##name##_t *b, kbnode_t *x, const key_t * __restrict k, int s) \
{ \
int yn, zn, i, r = 0; \
kbnode_t *xp, *y, *z; \
key_t kp; \
if (x == 0) return *k; \
if (s) { /* s can only be 0, 1 or 2 */ \
r = x->is_internal == 0? 0 : s == 1? 1 : -1; \
i = s == 1? x->n - 1 : -1; \
} else i = __kb_getp_aux_##name(x, k, &r); \
if (x->is_internal == 0) { \
if (s == 2) ++i; \
kp = __KB_KEY(key_t, x)[i]; \
memmove(__KB_KEY(key_t, x) + i, __KB_KEY(key_t, x) + i + 1, (x->n - i - 1) * sizeof(key_t)); \
--x->n; \
return kp; \
} \
if (r == 0) { \
if ((yn = __KB_PTR(b, x)[i]->n) >= b->t) { \
xp = __KB_PTR(b, x)[i]; \
kp = __KB_KEY(key_t, x)[i]; \
__KB_KEY(key_t, x)[i] = __kb_delp_aux_##name(b, xp, 0, 1); \
return kp; \
} else if ((zn = __KB_PTR(b, x)[i + 1]->n) >= b->t) { \
xp = __KB_PTR(b, x)[i + 1]; \
kp = __KB_KEY(key_t, x)[i]; \
__KB_KEY(key_t, x)[i] = __kb_delp_aux_##name(b, xp, 0, 2); \
return kp; \
} else if (yn == b->t - 1 && zn == b->t - 1) { \
y = __KB_PTR(b, x)[i]; z = __KB_PTR(b, x)[i + 1]; \
__KB_KEY(key_t, y)[y->n++] = *k; \
memmove(__KB_KEY(key_t, y) + y->n, __KB_KEY(key_t, z), z->n * sizeof(key_t)); \
if (y->is_internal) memmove(__KB_PTR(b, y) + y->n, __KB_PTR(b, z), (z->n + 1) * sizeof(void*)); \
y->n += z->n; \
memmove(__KB_KEY(key_t, x) + i, __KB_KEY(key_t, x) + i + 1, (x->n - i - 1) * sizeof(key_t)); \
memmove(__KB_PTR(b, x) + i + 1, __KB_PTR(b, x) + i + 2, (x->n - i - 1) * sizeof(void*)); \
--x->n; \
free(z); \
return __kb_delp_aux_##name(b, y, k, s); \
} \
} \
++i; \
if ((xp = __KB_PTR(b, x)[i])->n == b->t - 1) { \
if (i > 0 && (y = __KB_PTR(b, x)[i - 1])->n >= b->t) { \
memmove(__KB_KEY(key_t, xp) + 1, __KB_KEY(key_t, xp), xp->n * sizeof(key_t)); \
if (xp->is_internal) memmove(__KB_PTR(b, xp) + 1, __KB_PTR(b, xp), (xp->n + 1) * sizeof(void*)); \
__KB_KEY(key_t, xp)[0] = __KB_KEY(key_t, x)[i - 1]; \
__KB_KEY(key_t, x)[i - 1] = __KB_KEY(key_t, y)[y->n - 1]; \
if (xp->is_internal) __KB_PTR(b, xp)[0] = __KB_PTR(b, y)[y->n]; \
--y->n; ++xp->n; \
} else if (i < x->n && (y = __KB_PTR(b, x)[i + 1])->n >= b->t) { \
__KB_KEY(key_t, xp)[xp->n++] = __KB_KEY(key_t, x)[i]; \
__KB_KEY(key_t, x)[i] = __KB_KEY(key_t, y)[0]; \
if (xp->is_internal) __KB_PTR(b, xp)[xp->n] = __KB_PTR(b, y)[0]; \
--y->n; \
memmove(__KB_KEY(key_t, y), __KB_KEY(key_t, y) + 1, y->n * sizeof(key_t)); \
if (y->is_internal) memmove(__KB_PTR(b, y), __KB_PTR(b, y) + 1, (y->n + 1) * sizeof(void*)); \
} else if (i > 0 && (y = __KB_PTR(b, x)[i - 1])->n == b->t - 1) { \
__KB_KEY(key_t, y)[y->n++] = __KB_KEY(key_t, x)[i - 1]; \
memmove(__KB_KEY(key_t, y) + y->n, __KB_KEY(key_t, xp), xp->n * sizeof(key_t)); \
if (y->is_internal) memmove(__KB_PTR(b, y) + y->n, __KB_PTR(b, xp), (xp->n + 1) * sizeof(void*)); \
y->n += xp->n; \
memmove(__KB_KEY(key_t, x) + i - 1, __KB_KEY(key_t, x) + i, (x->n - i) * sizeof(key_t)); \
memmove(__KB_PTR(b, x) + i, __KB_PTR(b, x) + i + 1, (x->n - i) * sizeof(void*)); \
--x->n; \
free(xp); \
xp = y; \
} else if (i < x->n && (y = __KB_PTR(b, x)[i + 1])->n == b->t - 1) { \
__KB_KEY(key_t, xp)[xp->n++] = __KB_KEY(key_t, x)[i]; \
memmove(__KB_KEY(key_t, xp) + xp->n, __KB_KEY(key_t, y), y->n * sizeof(key_t)); \
if (xp->is_internal) memmove(__KB_PTR(b, xp) + xp->n, __KB_PTR(b, y), (y->n + 1) * sizeof(void*)); \
xp->n += y->n; \
memmove(__KB_KEY(key_t, x) + i, __KB_KEY(key_t, x) + i + 1, (x->n - i - 1) * sizeof(key_t)); \
memmove(__KB_PTR(b, x) + i + 1, __KB_PTR(b, x) + i + 2, (x->n - i - 1) * sizeof(void*)); \
--x->n; \
free(y); \
} \
} \
return __kb_delp_aux_##name(b, xp, k, s); \
} \
static key_t kb_delp_##name(kbtree_##name##_t *b, const key_t * __restrict k) \
{ \
kbnode_t *x; \
key_t ret; \
ret = __kb_delp_aux_##name(b, b->root, k, 0); \
--b->n_keys; \
if (b->root->n == 0 && b->root->is_internal) { \
--b->n_nodes; \
x = b->root; \
b->root = __KB_PTR(b, x)[0]; \
free(x); \
} \
return ret; \
} \
static inline key_t kb_del_##name(kbtree_##name##_t *b, const key_t k) \
{ \
return kb_delp_##name(b, &k); \
}
typedef struct {
kbnode_t *x;
int i;
} __kbstack_t;
#define __kb_traverse(key_t, b, __func) do { \
int __kmax = 8; \
__kbstack_t *__kstack, *__kp; \
__kp = __kstack = (__kbstack_t*)calloc(__kmax, sizeof(__kbstack_t)); \
__kp->x = (b)->root; __kp->i = 0; \
for (;;) { \
while (__kp->x && __kp->i <= __kp->x->n) { \
if (__kp - __kstack == __kmax - 1) { \
__kmax <<= 1; \
__kstack = (__kbstack_t*)realloc(__kstack, __kmax * sizeof(__kbstack_t)); \
__kp = __kstack + (__kmax>>1) - 1; \
} \
(__kp+1)->i = 0; (__kp+1)->x = __kp->x->is_internal? __KB_PTR(b, __kp->x)[__kp->i] : 0; \
++__kp; \
} \
--__kp; \
if (__kp >= __kstack) { \
if (__kp->x && __kp->i < __kp->x->n) __func(&__KB_KEY(key_t, __kp->x)[__kp->i]); \
++__kp->i; \
} else break; \
} \
free(__kstack); \
} while (0)
#define KBTREE_INIT(name, key_t, __cmp) \
__KB_TREE_T(name) \
__KB_INIT(name, key_t) \
__KB_GET_AUX1(name, key_t, __cmp) \
__KB_GET(name, key_t) \
__KB_INTERVAL(name, key_t) \
__KB_PUT(name, key_t, __cmp) \
__KB_DEL(name, key_t)
#define KB_DEFAULT_SIZE 512
#define kbtree_t(name) kbtree_##name##_t
#define kb_init(name, s) kb_init_##name(s)
#define kb_destroy(name, b) __kb_destroy(b)
#define kb_get(name, b, k) kb_get_##name(b, k)
#define kb_put(name, b, k) kb_put_##name(b, k)
#define kb_del(name, b, k) kb_del_##name(b, k)
#define kb_interval(name, b, k, l, u) kb_interval_##name(b, k, l, u)
#define kb_getp(name, b, k) kb_getp_##name(b, k)
#define kb_putp(name, b, k) kb_putp_##name(b, k)
#define kb_delp(name, b, k) kb_delp_##name(b, k)
#define kb_intervalp(name, b, k, l, u) kb_intervalp_##name(b, k, l, u)
#define kb_size(b) ((b)->n_keys)
#define kb_generic_cmp(a, b) (((b) < (a)) - ((a) < (b)))
#define kb_str_cmp(a, b) strcmp(a, b)
#endif
#ifdef TEST
#include <stdio.h>
#include <assert.h>
#include <time.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
typedef const char *str_t;
#include "kbtree.h"
typedef struct {
unsigned key;
char *value;
} intmap_t;
#define __intcmp(a, b) (((a).key > (b).key) - ((a).key < (b).key))
KBTREE_INIT(int, uint32_t, kb_generic_cmp)
KBTREE_INIT(str, str_t, kb_str_cmp)
KBTREE_INIT(intmap, intmap_t, __intcmp);
static int data_size = 5000000;
static unsigned *int_data;
static char **str_data;
static intmap_t *intmap_data;
void kb_init_data()
{
int i;
char buf[256];
printf("--- generating data... ");
srand48(11);
int_data = (unsigned*)calloc(data_size, sizeof(unsigned));
str_data = (char**)calloc(data_size, sizeof(char*));
intmap_data = (intmap_t*)calloc(data_size, sizeof(intmap_t));
for (i = 0; i < data_size; ++i) {
int_data[i] = (unsigned)(data_size * drand48() / 4) * 271828183u;
sprintf(buf, "%x", int_data[i]);
str_data[i] = strdup(buf);
intmap_data[i].key = i;
intmap_data[i].value = str_data[i];
}
printf("done!\n");
}
void kb_destroy_data()
{
int i;
for (i = 0; i < data_size; ++i) free(str_data[i]);
free(str_data); free(int_data);
}
void kb_tree_intmap()
{
int i;
intmap_t *data = intmap_data;
kbtree_t(intmap) *h;
h = kb_init(intmap, KB_DEFAULT_SIZE);
for (i = 0; i < data_size; ++i) {
if (kb_get(intmap, h, data[i]) == 0) kb_put(intmap, h, data[i]);
else kb_del(intmap, h, data[i]);
}
printf("[kb_tree_intmap] size: %d\n", kb_size(h));
__kb_destroy(h);
}
void kb_tree_int()
{
int i;
unsigned *data = int_data;
uint32_t *l, *u;
kbtree_t(int) *h;
h = kb_init(int, KB_DEFAULT_SIZE);
for (i = 0; i < data_size; ++i) {
if (kb_get(int, h, data[i]) == 0) kb_put(int, h, data[i]);
else kb_del(int, h, data[i]);
}
printf("[kb_tree_int] size: %d\n", kb_size(h));
if (1) {
int cnt = 0;
uint32_t x, y;
kb_interval(int, h, 2174625464u, &l, &u);
printf("interval for 2174625464: (%u, %u)\n", l? *l : 0, u? *u : 0);
#define traverse_f(p) { if (cnt == 0) y = *p; ++cnt; }
__kb_traverse(uint32_t, h, traverse_f);
__kb_get_first(uint32_t, h, x);
printf("# of elements from traversal: %d\n", cnt);
printf("first element: %d == %d\n", x, y);
}
__kb_destroy(h);
}
void kb_tree_str()
{
int i;
char **data = str_data;
kbtree_t(str) *h;
h = kb_init(str, KB_DEFAULT_SIZE);
for (i = 0; i < data_size; ++i) {
if (kb_get(str, h, data[i]) == 0) kb_put(str, h, data[i]);
else kb_del(str, h, data[i]);
}
printf("[kb_tree_int] size: %d\n", kb_size(h));
__kb_destroy(h);
}
void kb_timing(void (*f)(void))
{
clock_t t = clock();
(*f)();
printf("[kb_timing] %.3lf sec\n", (double)(clock() - t) / CLOCKS_PER_SEC);
}
int main(int argc, char *argv[])
{
if (argc > 1) data_size = atoi(argv[1]);
kb_init_data();
kb_timing(kb_tree_int);
kb_timing(kb_tree_str);
kb_timing(kb_tree_intmap);
kb_destroy_data();
return 0;
}
#endif

View file

@ -29,13 +29,14 @@
#include "wiredtiger.h"
#include "stats.h"
#include "async_nif.h"
#include "kbtree.h"
#include "khash.h"
#include "queue.h"
#define MAX_CACHE_SIZE ASYNC_NIF_MAX_WORKERS
static ErlNifResourceType *wterl_conn_RESOURCE;
static ErlNifResourceType *wterl_cursor_RESOURCE;
/* WiredTiger object names*/
typedef char Uri[128];
struct wterl_ctx {
@ -51,14 +52,15 @@ struct cache_entry {
SLIST_HEAD(ctxs, wterl_ctx) contexts;
};
#define __ctx_sig_cmp(a, b) (((a).sig > (b).sig) - ((a).sig < (b).sig))
KBTREE_INIT(cache_entries, struct cache_entry, __ctx_sig_cmp);
KHASH_MAP_INIT_INT64(cache_entries, struct cache_entry*);
typedef struct wterl_conn {
WT_CONNECTION *conn;
const char *session_config;
ErlNifMutex *cache_mutex;
kbtree_t(cache_entries) *cache;
khash_t(cache_entries) *cache;
uint32_t num_ctx_in_cache;
struct wterl_ctx *last_ctx_used[ASYNC_NIF_MAX_WORKERS];
SLIST_ENTRY(wterl_conn) conns;
uint64_t histogram[64];
uint64_t histogram_count;
@ -149,17 +151,6 @@ static inline uint32_t __log2(uint64_t x) {
}
#endif
/**
* Is the context cache full?
*
* -> 0 = no/false, anything else is true
*/
static int
__ctx_cache_full(WterlConnHandle *conn_handle)
{
return kb_size(conn_handle->cache) == ASYNC_NIF_MAX_WORKERS; // TODO:
}
/**
* Evict items from the cache.
*
@ -171,12 +162,17 @@ __ctx_cache_full(WterlConnHandle *conn_handle)
static int
__ctx_cache_evict(WterlConnHandle *conn_handle)
{
uint32_t num_evicted, i;
uint64_t mean, now;
struct wterl_ctx *to_free[ASYNC_NIF_MAX_WORKERS];
uint32_t mean, log, num_evicted, i;
uint64_t now, elapsed;
khash_t(cache_entries) *h = conn_handle->cache;
khiter_t itr;
struct cache_entry *e;
struct wterl_ctx *c, *n;
if (conn_handle->num_ctx_in_cache != MAX_CACHE_SIZE)
return 0;
now = cpu_clock_ticks();
kbtree_t(cache_entries) *t = conn_handle->cache;
// Find the mean of the recorded times that items stayed in cache.
mean = 0;
@ -191,51 +187,32 @@ __ctx_cache_evict(WterlConnHandle *conn_handle)
/*
* Evict anything older than the mean time in queue by removing those
* items from the lists at the leaf nodes of the tree.
* items from the lists stored in the tree.
*/
num_evicted = 0;
#define traverse_f(p) \
{ \
struct cache_entry *e; \
struct wterl_ctx *c; \
e = (struct cache_entry *)p; \
SLIST_FOREACH(c, &e->contexts, entries) { \
uint64_t elapsed = c->tstamp - now; \
uint32_t log = __log2(elapsed); \
if (log > mean) { \
SLIST_REMOVE(&e->contexts, c, wterl_ctx, entries); \
c->session->close(c->session, NULL); \
to_free[num_evicted] = c; \
num_evicted++; \
} \
} \
for (itr = kh_begin(h); itr != kh_end(h); ++itr) {
if (kh_exist(h, itr)) {
e = kh_val(h, itr);
c = SLIST_FIRST(&e->contexts);
while (c != NULL) {
n = SLIST_NEXT(c, entries);
elapsed = c->tstamp - now;
log = __log2(elapsed);
if (log > mean) {
SLIST_REMOVE(&e->contexts, c, wterl_ctx, entries);
c->session->close(c->session, NULL);
enif_free(c);
num_evicted++;
}
c = n;
}
if (SLIST_EMPTY(&e->contexts)) {
kh_del(cache_entries, h, itr);
enif_free(e);
kh_value(h, itr) = NULL;
}
}
}
__kb_traverse(struct cache_entry, t, traverse_f);
#undef traverse_f
/*
* Free up the wterl_ctx we've removed after finishing the loop.
*/
for (i = 0; i < num_evicted; i++) {
enif_free(to_free[i]);
}
/*
* Walk the tree again looking for empty lists to prune from the
* tree.
*/
#define traverse_f(p) \
{ \
struct cache_entry *e, query; \
e = p; \
query.sig = e->sig; \
if (SLIST_EMPTY(&e->contexts)) { \
kb_del(cache_entries, t, query); \
} \
}
__kb_traverse(struct cache_entry, t, traverse_f);
#undef traverse_f
conn_handle->num_ctx_in_cache -= num_evicted;
return num_evicted;
}
@ -252,21 +229,30 @@ static struct wterl_ctx *
__ctx_cache_find(WterlConnHandle *conn_handle, const uint64_t sig)
{
struct wterl_ctx *c = NULL;
struct cache_entry query, *result;
struct cache_entry *e;
khash_t(cache_entries) *h;
khiter_t itr;
query.sig = sig;
result = kb_get(cache_entries, conn_handle->cache, query);
if (result && !SLIST_EMPTY(&result->contexts)) {
/*
* cache hit:
* remove a context from the list in the tree node
*/
c = SLIST_FIRST(&result->contexts);
SLIST_REMOVE_HEAD(&result->contexts, entries);
uint64_t elapsed = cpu_clock_ticks() - c->tstamp;
conn_handle->histogram[__log2(elapsed)]++;
conn_handle->histogram_count++;
} // else { cache miss
h = conn_handle->cache;
enif_mutex_lock(conn_handle->cache_mutex);
if (conn_handle->num_ctx_in_cache > 0) {
itr = kh_get(cache_entries, h, sig);
if (itr != kh_end(h)) {
e = kh_value(h, itr);
if (!SLIST_EMPTY(&e->contexts)) {
/*
* cache hit:
* remove a context from the list in the tree node
*/
c = SLIST_FIRST(&e->contexts);
SLIST_REMOVE_HEAD(&e->contexts, entries);
conn_handle->histogram[__log2(cpu_clock_ticks() - c->tstamp)]++;
conn_handle->histogram_count++;
conn_handle->num_ctx_in_cache -= 1;
}
}
}
enif_mutex_unlock(conn_handle->cache_mutex);
return c;
}
@ -277,28 +263,28 @@ __ctx_cache_find(WterlConnHandle *conn_handle, const uint64_t sig)
* the front of the LRU.
*/
static void
__ctx_cache_add(WterlConnHandle *conn, struct wterl_ctx *c)
__ctx_cache_add(WterlConnHandle *conn_handle, struct wterl_ctx *c)
{
struct cache_entry query, *result;
/*
* Check to see if the cache is full and if so trigger eviction which will
* remove the least-recently-used half of the items from the cache.
*/
if (__ctx_cache_full(conn))
__ctx_cache_evict(conn);
struct cache_entry *e;
khash_t(cache_entries) *h;
khiter_t itr;
int itr_status;
enif_mutex_lock(conn_handle->cache_mutex);
__ctx_cache_evict(conn_handle);
c->tstamp = cpu_clock_ticks();
query.sig = c->sig;
result = kb_get(cache_entries, conn->cache, query);
if (result == NULL) {
SLIST_INIT(&query.contexts); // TODO: should this be on the heap?
SLIST_INSERT_HEAD(&query.contexts, c, entries);
kb_put(cache_entries, conn->cache, query);
} else {
SLIST_INSERT_HEAD(&result->contexts, c, entries);
h = conn_handle->cache;
itr = kh_get(cache_entries, h, c->sig);
if (itr == kh_end(h)) {
e = enif_alloc(sizeof(struct cache_entry)); // TODO: enomem
SLIST_INIT(&e->contexts);
itr = kh_put(cache_entries, h, c->sig, &itr_status);
kh_value(h, itr) = e;
}
e = kh_value(h, itr);
SLIST_INSERT_HEAD(&e->contexts, c, entries);
conn_handle->num_ctx_in_cache += 1;
enif_mutex_unlock(conn_handle->cache_mutex);
}
/**
@ -352,7 +338,7 @@ __zi(uint32_t p, uint32_t q)
/**
* Create a signature for the operation we're about to perform.
*
* Create a 32bit signature for this a combination of session configuration
* Create a 64bit signature for this a combination of session configuration
* some number of cursors open on tables each potentially with a different
* configuration. "session_config, [{table_name, cursor_config}, ...]"
*
@ -386,7 +372,8 @@ __ctx_cache_sig(const char *c, va_list ap, int count)
* session.
*/
static int
__retain_ctx(WterlConnHandle *conn_handle, struct wterl_ctx **ctx,
__retain_ctx(WterlConnHandle *conn_handle, uint32_t worker_id,
struct wterl_ctx **ctx,
int count, const char *session_config, ...)
{
int i = 0;
@ -399,39 +386,50 @@ __retain_ctx(WterlConnHandle *conn_handle, struct wterl_ctx **ctx,
sig = __ctx_cache_sig(session_config, ap, count);
va_end(ap);
enif_mutex_lock(conn_handle->cache_mutex);
(*ctx) = __ctx_cache_find(conn_handle, sig);
if ((*ctx) == NULL) {
// cache miss
WT_CONNECTION *conn = conn_handle->conn;
WT_SESSION *session = NULL;
int rc = conn->open_session(conn, NULL, session_config, &session);
if (rc != 0)
return rc;
size_t s = sizeof(struct wterl_ctx) + (count * sizeof(WT_CURSOR*));
*ctx = enif_alloc(s); // TODO: enif_alloc_resource()
if (*ctx == NULL) {
session->close(session, NULL);
return ENOMEM;
}
memset(*ctx, 0, s);
(*ctx)->sig = sig;
(*ctx)->session = session;
session_config = arg;
va_start(ap, session_config);
for (i = 0; i < count; i++) {
const char *uri = va_arg(ap, const char *);
const char *config = va_arg(ap, const char *);
// TODO: error when uri or config is NULL
rc = session->open_cursor(session, uri, NULL, config, &(*ctx)->cursors[i]);
if (rc != 0) {
session->close(session, NULL); // this will free the cursors too
DPRINTF("worker: %u cache size: %u", worker_id, conn_handle->num_ctx_in_cache);
if (conn_handle->last_ctx_used[worker_id] != NULL &&
conn_handle->last_ctx_used[worker_id]->sig == sig) {
(*ctx) = conn_handle->last_ctx_used[worker_id];
DPRINTF("worker: %u reuse hit: %lu %p", worker_id, sig, *ctx);
} else {
if (conn_handle->last_ctx_used[worker_id] != NULL)
__ctx_cache_add(conn_handle, conn_handle->last_ctx_used[worker_id]);
conn_handle->last_ctx_used[worker_id] = NULL;
(*ctx) = __ctx_cache_find(conn_handle, sig);
if ((*ctx) == NULL) {
// cache miss
DPRINTF("worker: %u cache miss: %lu", worker_id, sig);
WT_CONNECTION *conn = conn_handle->conn;
WT_SESSION *session = NULL;
int rc = conn->open_session(conn, NULL, session_config, &session);
if (rc != 0)
return rc;
size_t s = sizeof(struct wterl_ctx) + (count * sizeof(WT_CURSOR*));
*ctx = enif_alloc(s); // TODO: enif_alloc_resource()
if (*ctx == NULL) {
session->close(session, NULL);
return ENOMEM;
}
memset(*ctx, 0, s);
(*ctx)->sig = sig;
(*ctx)->session = session;
session_config = arg;
va_start(ap, session_config);
for (i = 0; i < count; i++) {
const char *uri = va_arg(ap, const char *);
const char *config = va_arg(ap, const char *);
// TODO: error when uri or config is NULL
rc = session->open_cursor(session, uri, NULL, config, &(*ctx)->cursors[i]);
if (rc != 0) {
session->close(session, NULL); // this will free the cursors too
return rc;
}
}
va_end(ap);
} else { // else { cache hit }
DPRINTF("worker: %u cache hit: %lu %p", worker_id, sig, *ctx);
}
va_end (ap);
} // else { cache hit }
enif_mutex_unlock(conn_handle->cache_mutex);
}
return 0;
}
@ -439,19 +437,20 @@ __retain_ctx(WterlConnHandle *conn_handle, struct wterl_ctx **ctx,
* Return a context to the cache for reuse.
*/
static void
__release_ctx(WterlConnHandle *conn_handle, struct wterl_ctx *ctx)
__release_ctx(WterlConnHandle *conn_handle, uint32_t worker_id, struct wterl_ctx *ctx)
{
int i, c;
int i, n;
WT_CURSOR *cursor;
c = sizeof((WT_CURSOR**)ctx->cursors) / sizeof(ctx->cursors[0]);
for (i = 0; i < c; i++) {
DPRINTF("worker: %u cache size: %u", worker_id, conn_handle->num_ctx_in_cache);
n = sizeof((WT_CURSOR**)ctx->cursors) / sizeof(ctx->cursors[0]);
for (i = 0; i < n; i++) {
cursor = ctx->cursors[i];
cursor->reset(cursor);
}
enif_mutex_lock(conn_handle->cache_mutex);
__ctx_cache_add(conn_handle, ctx);
enif_mutex_unlock(conn_handle->cache_mutex);
assert(conn_handle->last_ctx_used[worker_id] == 0 ||
conn_handle->last_ctx_used[worker_id] == ctx);
conn_handle->last_ctx_used[worker_id] = ctx;
}
/**
@ -462,46 +461,32 @@ __release_ctx(WterlConnHandle *conn_handle, struct wterl_ctx *ctx)
void
__close_all_sessions(WterlConnHandle *conn_handle)
{
int i, num_closed = 0;
struct wterl_ctx *to_free[ASYNC_NIF_MAX_WORKERS];
kbtree_t(cache_entries) *t = conn_handle->cache;
khash_t(cache_entries) *h = conn_handle->cache;
struct cache_entry *e;
struct wterl_ctx *c;
int i;
#define traverse_f(p) \
{ \
struct cache_entry *e; \
struct wterl_ctx *c; \
e = (struct cache_entry *)p; \
SLIST_FOREACH(c, &e->contexts, entries) { \
SLIST_REMOVE(&e->contexts, c, wterl_ctx, entries); \
c->session->close(c->session, NULL); \
to_free[num_closed] = c; \
num_closed++; \
} \
for (i = 0; i < ASYNC_NIF_MAX_WORKERS; i++) {
c = conn_handle->last_ctx_used[i];
c->session->close(c->session, NULL);
enif_free(c);
conn_handle->last_ctx_used[i] = NULL;
}
__kb_traverse(struct cache_entry *, t, traverse_f);
#undef traverse_f
/*
* Free up the wterl_ctx we've removed after finishing the loop.
*/
for (i = 0; i < num_closed; i++) {
enif_free(to_free[i]);
khiter_t itr;
for (itr = kh_begin(h); itr != kh_end(h); ++itr) {
if (kh_exist(h, itr)) {
e = kh_val(h, itr);
while ((c = SLIST_FIRST(&e->contexts)) != NULL) {
SLIST_REMOVE(&e->contexts, c, wterl_ctx, entries);
c->session->close(c->session, NULL);
enif_free(c);
}
kh_del(cache_entries, h, itr);
enif_free(e);
kh_value(h, itr) = NULL;
}
}
/*
* Walk the tree again to prune all the empty lists from the tree.
*/
#define traverse_f(p) \
{ \
struct cache_entry *e, query; \
e = (struct cache_entry *)p; \
query.sig = e->sig; \
if (SLIST_EMPTY(&e->contexts)) { \
kb_del(cache_entries, t, query); \
} \
}
__kb_traverse(struct cache_entry, t, traverse_f);
#undef traverse_f
conn_handle->num_ctx_in_cache = 0;
}
/**
@ -728,8 +713,9 @@ ASYNC_NIF_DECL(
conn_handle->conn = conn;
ERL_NIF_TERM result = enif_make_resource(env, conn_handle);
/* Init tree which manages the cache of session/cursor(s) */
conn_handle->cache = kb_init(cache_entries, ASYNC_NIF_MAX_WORKERS); // TODO: size
/* Init hash table which manages the cache of session/cursor(s) */
conn_handle->cache = kh_init(cache_entries);
conn_handle->num_ctx_in_cache = 0;
/* Keep track of open connections so as to free when unload/reload/etc.
are called. */
@ -1425,7 +1411,7 @@ ASYNC_NIF_DECL(
struct wterl_ctx *ctx = NULL;
WT_CURSOR *cursor = NULL;
int rc = __retain_ctx(args->conn_handle, &ctx, 1,
int rc = __retain_ctx(args->conn_handle, worker_id, &ctx, 1,
args->conn_handle->session_config,
args->uri, "overwrite,raw");
if (rc != 0) {
@ -1440,7 +1426,7 @@ ASYNC_NIF_DECL(
cursor->set_key(cursor, &item_key);
rc = cursor->remove(cursor);
ASYNC_NIF_REPLY(rc == 0 ? ATOM_OK : __strerror_term(env, rc));
__release_ctx(args->conn_handle, ctx);
__release_ctx(args->conn_handle, worker_id, ctx);
},
{ // post
@ -1484,7 +1470,7 @@ ASYNC_NIF_DECL(
struct wterl_ctx *ctx = NULL;
WT_CURSOR *cursor = NULL;
int rc = __retain_ctx(args->conn_handle, &ctx, 1,
int rc = __retain_ctx(args->conn_handle, worker_id, &ctx, 1,
args->conn_handle->session_config,
args->uri, "overwrite,raw");
if (rc != 0) {
@ -1513,7 +1499,7 @@ ASYNC_NIF_DECL(
unsigned char *bin = enif_make_new_binary(env, item_value.size, &value);
memcpy(bin, item_value.data, item_value.size);
ASYNC_NIF_REPLY(enif_make_tuple2(env, ATOM_OK, value));
__release_ctx(args->conn_handle, ctx);
__release_ctx(args->conn_handle, worker_id, ctx);
},
{ // post
@ -1566,7 +1552,7 @@ ASYNC_NIF_DECL(
struct wterl_ctx *ctx = NULL;
WT_CURSOR *cursor = NULL;
int rc = __retain_ctx(args->conn_handle, &ctx, 1,
int rc = __retain_ctx(args->conn_handle, worker_id, &ctx, 1,
args->conn_handle->session_config,
args->uri, "overwrite,raw");
if (rc != 0) {
@ -1584,7 +1570,7 @@ ASYNC_NIF_DECL(
item_value.size = value.size;
cursor->set_value(cursor, &item_value);
rc = cursor->insert(cursor);
__release_ctx(args->conn_handle, ctx);
__release_ctx(args->conn_handle, worker_id, ctx);
ASYNC_NIF_REPLY(rc == 0 ? ATOM_OK : __strerror_term(env, rc));
},
{ // post
@ -2388,8 +2374,9 @@ on_unload(ErlNifEnv *env, void *priv_data)
SLIST_FOREACH(conn_handle, &priv->conns, conns) {
__close_all_sessions(conn_handle);
conn_handle->conn->close(conn_handle->conn, NULL);
kb_destroy(cache_entries, conn_handle->cache);
enif_free((void*)conn_handle->session_config);
kh_destroy(cache_entries, conn_handle->cache);
if (conn_handle->session_config)
enif_free((void*)conn_handle->session_config);
enif_mutex_unlock(conn_handle->cache_mutex);
enif_mutex_destroy(conn_handle->cache_mutex);
}

View file

@ -664,7 +664,7 @@ various_maintenance_test_() ->
fun () ->
{ok, CWD} = file:get_cwd(),
?assertMatch(ok, filelib:ensure_dir(filename:join([?TEST_DATA_DIR, "x"]))),
{ok, ConnRef} = connection_open(filename:join([CWD, ?TEST_DATA_DIR]), []),
{ok, ConnRef} = connection_open(filename:join([CWD, ?TEST_DATA_DIR]), [{create,true}]),
ConnRef
end,
fun (ConnRef) ->

View file

@ -26,12 +26,12 @@ new(1) ->
new(Id) ->
setup(Id).
setup(_Id) ->
setup(Id) ->
%% Get the target directory
Dir = basho_bench_config:get(wterl_dir, "/tmp"),
Config = basho_bench_config:get(wterl, []),
Uri = config_value(table_uri, Config, "lsm:test"),
ConnectionOpts = config_value(connection, Config, [{create, true}]),
ConnectionOpts = config_value(connection, Config, [{create,true},{session_max, 8192}]),
SessionOpts = config_value(session, Config, []),
TableOpts = config_value(table, Config, []),
@ -43,7 +43,7 @@ setup(_Id) ->
{ok, Conn} ->
Conn;
{error, Reason0} ->
?FAIL_MSG("Failed to establish a WiredTiger connection, wterl backend unable to start: ~p\n", [Reason0])
?FAIL_MSG("Failed to establish a WiredTiger connection for ~p, wterl backend unable to start: ~p\n", [Id, Reason0])
end;
true ->
{ok, Conn} = wterl_conn:get(),